JPH0291171A - Coating composition - Google Patents

Coating composition

Info

Publication number
JPH0291171A
JPH0291171A JP24339188A JP24339188A JPH0291171A JP H0291171 A JPH0291171 A JP H0291171A JP 24339188 A JP24339188 A JP 24339188A JP 24339188 A JP24339188 A JP 24339188A JP H0291171 A JPH0291171 A JP H0291171A
Authority
JP
Japan
Prior art keywords
parts
weight
coating composition
pts
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24339188A
Other languages
Japanese (ja)
Inventor
Tatsuya Murachi
村知 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP24339188A priority Critical patent/JPH0291171A/en
Publication of JPH0291171A publication Critical patent/JPH0291171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain a coating composition improved in adhesion to rubber, synthetic resin, fiber or the like and giving a coating film improved in abrasion resistance by mixing a specified urethane prepolymer with a fluorocarbon resin, a silicone oil, a halogenating agent and a solvent. CONSTITUTION:An NCO-containing urethane prepolymer (A) is obtained by reacting a polyol (e.g., polyoxypropylene glycol of a number-average MW of 800-6000) with caster oil polyol and a polyisocyanate (e.g., 4,4'-diphenyl-methane diisocyanate) at 50-130 deg.C for 60-360min in a nitrogen gas. 100 pts.wt. component (A) is mixed with 2-100 pts.wt. fluorocarbon resin (B) (e.g., polytetrafluoroethylene), 5-100 pts.wt. silicone oil (C) (e.g., dimethylsilicone oil), 0.002-20 pts.wt. halogenating agent (D) (e.g., trichloroisocylanuric acid) and 10-90 pts.wt., per 100 pts.wt. obtained composition, solvent (e.g., trichloroethylene) (E).

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はゴム製品、合成樹脂製品等の塗装に通した塗料
組成物に関するものである。
[Industrial Application Field] The present invention relates to a coating composition for coating rubber products, synthetic resin products, etc.

【従来の技術】[Conventional technology]

従来、天然ゴム(NR) 、スチレン−ブタジェン共重
合ゴム(SBR)、ブタジェンゴム(BR)、イソブチ
レン−イソプレン共重合ゴム(IIR)、クロロプレン
ゴム(CR) 、アクリロニトリル−ブタジェン共重合
ゴム(NBR)、イソプレンゴム(IR)、エチレン−
プロピレン−ジエン共m合ゴム(EPDM)、エチレン
−プロピレン共重合ゴム(EPM)等のゴムや木綿、レ
ーヨン、ABS、PS等の表面塗装には、ナイロン系、
エポキシ系、アクリル系、アクリル−エチレン共重合系
の樹脂系塗料又はBR,CR,SBR等のゴム系塗料が
使用されている。
Conventionally, natural rubber (NR), styrene-butadiene copolymer rubber (SBR), butadiene rubber (BR), isobutylene-isoprene copolymer rubber (IIR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), isoprene Rubber (IR), ethylene-
Nylon-based,
Epoxy-based, acrylic-based, acrylic-ethylene copolymer-based resin paints, or rubber-based paints such as BR, CR, and SBR are used.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記従来の樹脂系塗料やゴム系塗料は、ゴム、合成樹脂
、繊維等の被塗物との密着性が悪いため塗料が被塗物か
ら剥がれたり、また得られた塗膜の耐摩耗性が劣るとい
う問題点があった。 本発明の目的は、得られる塗膜の耐摩耗性が優れ、被塗
物との密着性が良い塗料組成物を提供することにある。 [課題を解決するための手段] 上記目的を達成するために、本発明の塗料組成物はポリ
オール、ひまし油ポリオール及びポリイソシアネートよ
りなりイソシアネート基を有するウレタンプレポリマー
100重量部に対し、フッ素樹脂を2〜100重量部、
シリコーンオイルを5〜100重量部及びハロゲン化剤
を0. OO2〜20重量部配置部るという手段を採用
している。 [手段の詳細な説明] まず、本発明で使用するウレタンプレポリマーについて
説明する。 ポリオールとしては、ポリオキシプロピレングリコール
(PPG)、グリセリンのプロピレンオキサイド付加体
、トリメチロールプロパンのプロピレンオキサイド付加
体、ペンタエリスリトールのプロピレンオキサイド付加
体、トリエチレングリコール(TG)、ショ糖にプロピ
レンオキサイドを付加した化合物等があげられる。上記
ポリオキシプロピレングリコールは数平均分子量が80
0〜6000の範囲のものが好ましい。 ポリイソシアネートは、イソシアネート基を複数個有す
る化合物で、例えば2.4−1−リレンジイソシアネー
ト(TDI) 、65/35 (2,4−トリレンジイ
ソシアネートと2.6−)リレンジイソシアネートとの
割合、以下同様)トリレンジイソシアネート、80/2
0トリレンジイソシアネート、4.4’−ジフェニルメ
タンジイソシアネート(MDI)、ジアニシジンジイソ
シアネート、トリデンジイソシアネート、ヘキサメチレ
ンジイソシアネート、メタキシレンジイソシアネート、
l、5−ナフタレンジイソシアネート(NDI)、水添
4,4′−ジフェニルメタンジイソシアネート、水添キ
シレンジイソシアネート、水添2.4−)リレンジイソ
シアネート、水添65/35トリレンジイソシアネート
、水添80/20トリレンジイソシアネート、イソホロ
ンジイソシアネート (IPDI) 、4.4’、4“
−トリフェニルメタントリイソシアネート、トリス(、
p−イソシアネートフェニル)チオホスフェート等が使
用される。 次に、上記ウレタンプレポリマーに配合する成分につい
て説明する。 フッ素樹脂としては、ポリテトラフルオルエチレンをは
じめ、ポリクロルトリフルオルエチレン、三フッ化エチ
レン、フッ化ビニリデン等が使用される。このフッ素樹
脂の配合割合は、前記ウレタンプレポリマー100重量
部に対して2〜100重量部の範囲である。2重量部未
満では得られる塗膜の耐摩耗性が悪く、100重量部を
超えると塗料組成物の塗布が困難となる。 シリコーンオイルとしては、ジメチルシリコーンオイル
、メチル塩化シリコーンオイル、メチル水素シリコーン
オイル、メチルフェニルシリコーンオイル、フロロシリ
コーンオイル等が使用される。 同シリコーンオイルの配合割合は、前記ウレタンプレポ
リマー100重量部に対して5〜100重量部である。 5重量部未満で・は、耐摩耗性の向上を図ることができ
ない。また、100重量部を超える量配合しても、耐摩
耗性を向上させる効果は変わらず、かえって密着性が低
下する。 ハロゲン化剤としては、N−プロムサクシンイミド(N
BS I) 、N−ブロムフタルイミド等の酸イミドハ
ロゲン化合物、トリクロロイソシアヌル酸(T CI 
A) 、ジクロロイソシアヌル酸等のイソシアヌル酸ハ
ライド、ジクロロジメチルヒダントインのようなハロゲ
ン化ヒダントイン、アルキルハイポハライド等が使用さ
れる。 上記アルキルハイポハライドとは、ノルマル、第2級又
は第3級のアルキルハイポハライドであって、とりわけ
安定な第3級アルキルのクロライドやブロマイド即ち第
3級ブチルハイポクロライド(t−BHC)、第3級ブ
チルハイポブロマイド、第3級アミルハイポブロマイド
等が好ましく、さらにジクロロ、トリクロロ又はフルオ
ロメチルハイポクロライド等のようなハロゲン置換され
たアルキルハイポクロライドを使用することもできる。 同ハロゲン化剤は、前記ウレタンプレポリマー100重
量部に対し、0.002〜20重量部配合さ置部。同配
合割合が0.002重量部未満では、塩素化の程度が少
ないため密着性の向上が少なく、20重量部を超えると
塗料組成物の安定性が悪くなる。 所望により使用される溶剤としては、ベンゼン、トルエ
ン、キシレン、エチルベンゼン、塩化エチレン、ジメチ
ルホルムアミド(DMF) 、ジメチルスルホキサイド
、メチルエチルケトン、アトセン、メチルイソプロピル
ケトン、メチルイソブチルケトン、酢酸メチル、酢酸エ
チル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソ
ブチル、アニソール、テトラヒドロフラン、メチレンク
ロライド、l、1.1−)リクロルエタン、n−ヘキサ
ン、シクロヘキサン等があげられる。 この溶剤の配合割合は、塗料組成物100重量部中10
〜90重量部の範囲が好適である。同配合割合が10重
量部未満では相対的に固形分の割合が高くなって塗料組
成物の粘度が上昇し、塗布作業が難しくなり、ひいては
密着性の低下につながりやすく、90重量部を超えると
逆に固形分の割合が低くなって塗料組成物の膜厚が薄く
なり、塗料として好ましくない。 本発明の塗料組成物は、例えば次のようにして調製され
る。まず、前記ポリオール、ひまし油ポリオール、ポリ
イソシアネート及び必要な溶剤を適宜選択して混合し、
これを乾燥窒素ガス中で50〜130℃、60〜360
分間反応させ、イソシアネート基を有するウレタンプレ
ポリマーを調製する。 次いで、このウレタンプレポリマー100Ht部に対し
てフッ素樹脂を2〜100重量部、シリコーンオイルを
5〜tooffi量部及びハロゲン化剤を0.002〜
20重量部添加し、さらに溶剤を加えて塗布に通した粘
度に調整する。この場合、フッ素樹脂の一部を二硫化モ
リブデン、ガラス繊維、カーボン繊維、ポリエチレン、
酸化珪素、炭酸カルシウム、炭酸マグネシウム、クレー
等に置き換えることもできる。 [作用] 前記手段を採用したことにより、塗料組成物はシリコー
ンオイルの潤滑性、フッ素樹脂の摩擦係数の小さいこと
等の特性によって、得られる塗膜の耐摩耗性が向上する
とともに、ハロゲン化剤が被塗物をハロゲン化し、かつ
ポリオール、ひまし油ポリオール及びポリイソシアネー
トからなり、イソシアネート基を有する特定構造のウレ
タンプレポリマーの特性により、被塗物に対する密着性
が向上する。 [実施例1へ16及び比較例1〜10]以下に°、本発
明を具体化した実施例について比較例と対比して説明す
る。 まず、被塗物は次のような加硫物である。 即ち、同加硫物はEPDM100重量部(以下単に部と
いう)、カーボンブラック70部、鉱物油35部、酸化
亜鉛7部、ステアリン酸2部、加硫促進剤2部、硫黄1
.5部からなる組成物を160℃で30分加硫したもの
である。 また、耐摩耗試験は次の方法で行い、摩耗減量で耐摩耗
性を評価した。 即ち、 試験機:テイパー式ロータリーアブレッサー(株式会社
東洋精機製作所製) 試験条件:摩耗輪;H−22、荷重;1kg摩耗回転速
度i60rpm 試料寸法;10100mmX100 摩耗回数;1000回 なお、実施例2〜16においては、各塗料組成物を実施
例1と同様にして被塗物に塗布、乾燥し、それについて
同じ〈実施例1と同様に耐摩耗試験を実施した。 (実施例1) まず、次のようにしてウレタンプレポリマーを製造した
。 PPG2000 (重量平均分子量約2000)100
部、ひまし油ポリオール(水酸基価80)100部、M
D I 75部、トリクロルエチレン140部を混合し
て乾燥窒素中で80℃で3時間反応を行ってウレタンプ
レポリマーを得た。 次に、このウレタンプレポリマー100部に対し、フッ
素樹脂10部、ジメチルシリコーンオイル〔動粘性率1
万センチストークス(Cst ) 1 10部、TCI
AI部を混合して塗料組成物を得た。 この塗料組成物を前記被塗物としての加硫物に塗布し、
80℃で20分間乾燥した。これについて、耐摩耗試験
を実施した。その結果を後記表−1に示す。 (実施例2) 上記実施例1において、MDIの使用量を100部とし
た以外は、実施例1と同様にして塗料組成物を得た。 (実施例3) 前記実施例1において、MDIの使用量を125部とし
た以外は、実施例1と同様にして塗料組成物を得た。 (実施例4) 前記実施例1において、ジメチルシリコーンオイル(動
粘性率1万センチストークス(Cst ) )10部に
代えてジメチルシリコーンオイル(動粘性率6万Cst
 )  15部とした以外は、実施例1と同様にして塗
料組成物を得た。 (実施例5) 前記実施例1において、ジメチルシリコーンオイル(動
粘性率1万Cst )  10部に代えてジメチルシリ
コーンオイル(動粘性率10万Cst )  20部と
した以外は、実施例1と同様にして塗料組成物を得た。 (実施例6) 前記実施例1において、PPG2000 (重量平均分
子量的2000)100部、ひまし油ポリオール(水酸
基価80)100部に代えて、PPG2000 (重量
平均分子量的2000)50部、ひまし油ポリオール(
水酸基価80)150部とした以外は、実施例1と同様
にして塗料組成物を得た。 (実施例7) 前記実施例1において、PPG2000 (重量平均分
子量的2000)100部、ひまし油ポリオール(水酸
基価80)100部に代えてPPG2000 (重量平
均分子量的2000)150部、ひまし油ポリオール(
水酸基価80)50部とした以外は、実施例1と同様に
して塗料組成物を得た。 (実施例8) 前記実施例1において、ひまし油ポリオール(水酸基価
80)100部に代えてひまし油ポリオール(水酸基価
86)80部とした以外は、実施例1と同様にして塗料
組成物を得た。 (実施例9) 前記実施例1において、ひまし油ポリオール(水酸基価
80)100部に代えてひまし油ポリオール(水酸基価
92)70部とした以外は、実施例1と同様にして塗料
組成物を得た。 (実施例10) 前記実施例1において、PPG2000 (重量平均分
子量的2000)100部、ひまし油ポリオール(水酸
基価80)100部、MD I 75部、トリクロルエ
チレン140部に代えて、グリセリンのプロピレンオキ
サイド付加体(重量平均分子量的3000)150部、
ひまし油ポリオール(水酸基価80)150部、TD1
104部、トリクロルエチレン200部とした以外は、
実施例1と同様にして塗料組成物を得た。 (実施例11) 前記実施例1において、PPG2000 (重量平均分
子量的2000)100部、ひまし油ポリオール(水酸
基価80)100部、MDI75部、トリクロルエチレ
ン140部に代えて、トリメチロールプロパンのプロピ
レンオキサイド付加体(重量平均分子量的3000)2
50部、ひまし油ポリオール(水酸基価86)50部、
MD1150部、トリクロルエチレン225部とした以
外は、実施例1と同様にして塗料組成物を得た。 (実施例12) 前記実施例1において、TCIAの代わりにt−BHC
を使用した以外は、同実施例1と同様にして塗料組成物
を得た。 (実施例13) 前記実施例1において、TCIAの代わりにNBSIを
使用した以外は、同実施例1と同様にして塗料組成物を
得た。 (実施例14) 前記実施例1において、TCIAI部を0.002部と
した以外は、同実施例1と同様にして塗料組成物を得た
。 (実施例15) 前記実施例1において、TCIA1部を0.1部とした
以外は、同実施例1と同様にして塗料組成物を得た。 (実施例16) 前記実施例1において、TCIA1部を20部とした以
外は、同実施例1と同様にして塗料組成物を得た。 また、比較例として以下のような各塗料組成物を調製し
、それを使用して試験片を作製し、その試験片について
前記耐摩耗試験を行った。その結果を後記表−2に示す
。 (比較例1) 液状ポリブタジェン(出光石油化学工業株式会社製商品
名出光シールAB−700W)100部、MDIIO部
を混合し、塗料を調製した。この塗料を前記被塗物に塗
布し、室温で硬化させ試験片を作製した。 (比較例2) 液状ポリブタジェン(出光石油化学工業株式会社製商品
名出光シールAB−100)100部、MDIIO部を
混合し、塗料を調製した。この塗料を前記被塗物に塗布
し、室温で硬化させ試験片を作製した。 (比較例3) N−メトキシメチル化ナイロンのメタノール70%溶液
(帝国化学産業株式会社製商品名トレジンM−20)を
前記被塗物に塗布し、室温で硬化させ試験片を作製した
。 (比較例4) エポキシ樹脂(日本チバガイギー株式会社製商品名アラ
ルダイトpza20)100部、ポリアミノアマイド(
日本チバガイギー株式会社製商品名ハードナー)12)
100部を混合し、塗料を調製した。この塗料を前記被
塗物に塗布し、室温で硬化させ試験片を作製した。 (比較例5) エポキシ樹脂(日本チバガイギー株式会社製商品名アラ
ルダイトGY250)100部、ポリアミノアマイド(
日本チバガイギー株式会社製商品名ハードナーH2)3
0部を混合し、塗料を調製した。この塗料を前記被塗物
に塗布し、室温で硬化させ試験片を作製した。 (比較例6) 塗料として、クロロプレン系ゴムのトルエン74%溶液
(コニシ株式会社製商品名ボンドG2)を前記被塗物に
塗布し、室温で硬化させ試験片を作製した。 (比較例7) SBR(ノガワケミカル株式会社製商品名ダイヤボンド
5010)を前記被塗物に塗布し、室温で硬化させ試験
片を作製した。 (比較例8) 塗料として、不揮発分70%のアクリル樹脂エマルジョ
ン(ノガワケミカル株式会社製商品名ダイヤボンドDA
−830A)を前記被塗物に塗布し、室温で硬化させ試
験片を作製した。 (比較例9) 塗料として、不揮発分55%のアクリル−エチレン系変
性エマルジョン(サンスター化学株式会社製商品名ペン
ギンセメント138)を前記被塗物に塗布し、室温で硬
化させ試験片を作製した。 (比較例10) 塗料として、ポリウレタン系塗料(ノガワケミカル株式
会社製商品名ダイヤボンドDA700E)を前記被塗物
に塗布し、室温で硬化させ試験片を作製した。 表−1 前記表=1かられかるように、各実施例の塗料組成物は
1000回にわたる摩耗試験によっても摩耗減量は3.
5〜4.3 mgと極めて少量である。 各実施例の塗料組成物がこのように優れた耐摩耗性を示
す理由は、シリコーンオイルが有する潤ン%性、フッ素
樹脂が有する摩擦係数の小さい特性等に基づくものと推
定される。 また、各実施例の塗料組成物は、ハロゲン化剤が被塗物
をハロゲン化する上に、所定量のポリオール、ひまし油
ポリオール及びポリイソシアネートからなりイソシアネ
ート基を有するウレタンプレポリマーの特性に基づいて
被塗物である加硫ゴムに対して優れた密着性を発揮する
。 一方、表−2かられかるように、各比較例の塗料組成物
は摩耗減量が482〜2290mgと大きく、耐摩耗性
が劣る。 [発明の効果] 本発明の塗料組成物は、得られた塗膜の耐摩耗性が非常
に良好で、しかも被塗物との密着性が優れているという
効果を奏する。 表−2
The conventional resin-based paints and rubber-based paints described above have poor adhesion to the objects to be coated, such as rubber, synthetic resins, and fibers, which may cause the paint to peel off from the objects to be coated, or the abrasion resistance of the resulting coating film may deteriorate. There was a problem that it was inferior. An object of the present invention is to provide a coating composition that provides a coating film with excellent abrasion resistance and good adhesion to objects to be coated. [Means for Solving the Problems] In order to achieve the above object, the coating composition of the present invention contains 2 parts by weight of a fluororesin per 100 parts by weight of a urethane prepolymer comprising a polyol, a castor oil polyol, and a polyisocyanate and having an isocyanate group. ~100 parts by weight,
5 to 100 parts by weight of silicone oil and 0.0 parts by weight of halogenating agent. A method of disposing 2 to 20 parts by weight of OO is adopted. [Detailed Description of Means] First, the urethane prepolymer used in the present invention will be described. Polyols include polyoxypropylene glycol (PPG), propylene oxide adduct of glycerin, propylene oxide adduct of trimethylolpropane, propylene oxide adduct of pentaerythritol, triethylene glycol (TG), and propylene oxide adduct of sucrose. Examples include compounds such as The above polyoxypropylene glycol has a number average molecular weight of 80
A value in the range of 0 to 6000 is preferred. Polyisocyanate is a compound having a plurality of isocyanate groups, such as 2,4-1-lylene diisocyanate (TDI), a ratio of 65/35 (2,4-tolylene diisocyanate and 2,6-)lylene diisocyanate, or the following. Similar) Tolylene diisocyanate, 80/2
0-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), dianisidine diisocyanate, tridene diisocyanate, hexamethylene diisocyanate, metaxylene diisocyanate,
l,5-naphthalene diisocyanate (NDI), hydrogenated 4,4'-diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated 2,4-)lylene diisocyanate, hydrogenated 65/35 tolylene diisocyanate, hydrogenated 80/20 tri Diisocyanate, isophorone diisocyanate (IPDI), 4.4', 4"
-triphenylmethane triisocyanate, tris(,
p-isocyanate phenyl) thiophosphate, etc. are used. Next, the components to be added to the urethane prepolymer will be explained. As the fluororesin, polytetrafluoroethylene, polychlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, etc. are used. The blending ratio of this fluororesin is in the range of 2 to 100 parts by weight based on 100 parts by weight of the urethane prepolymer. If it is less than 2 parts by weight, the resulting coating film will have poor abrasion resistance, and if it exceeds 100 parts by weight, it will be difficult to apply the coating composition. As the silicone oil, dimethyl silicone oil, methyl chloride silicone oil, methyl hydrogen silicone oil, methylphenyl silicone oil, fluorosilicone oil, etc. are used. The blending ratio of the silicone oil is 5 to 100 parts by weight based on 100 parts by weight of the urethane prepolymer. If the amount is less than 5 parts by weight, the wear resistance cannot be improved. Furthermore, even if the amount exceeds 100 parts by weight, the effect of improving wear resistance remains the same, but the adhesion deteriorates on the contrary. As a halogenating agent, N-promsuccinimide (N
BSI), acid imide halogen compounds such as N-bromphthalimide, trichloroisocyanuric acid (TCI),
A) Isocyanuric acid halides such as dichloroisocyanuric acid, halogenated hydantoins such as dichlorodimethylhydantoin, alkyl hypohalides, etc. are used. The above-mentioned alkyl hypohalides are normal, secondary or tertiary alkyl hypohalides, particularly stable tertiary alkyl chlorides and bromides, such as tertiary butyl hypochloride (t-BHC), tertiary butyl hypohalides, Preferred are butylhypobromide, tertiary amylhypobromide, and the like, and halogen-substituted alkylhypochlorides such as dichloro, trichloro, or fluoromethylhypochloride can also be used. The halogenating agent is blended in an amount of 0.002 to 20 parts by weight based on 100 parts by weight of the urethane prepolymer. When the blending ratio is less than 0.002 parts by weight, the degree of chlorination is small, so there is little improvement in adhesion, and when it exceeds 20 parts by weight, the stability of the coating composition deteriorates. Solvents that may be used as desired include benzene, toluene, xylene, ethylbenzene, ethylene chloride, dimethylformamide (DMF), dimethyl sulfoxide, methyl ethyl ketone, atocene, methyl isopropyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, and acetic acid. Isopropyl, n-butyl acetate, isobutyl acetate, anisole, tetrahydrofuran, methylene chloride, l,1.1-)lychloroethane, n-hexane, cyclohexane, and the like. The blending ratio of this solvent is 10 parts by weight in 100 parts by weight of the coating composition.
A range of 90 parts by weight is preferred. If the blending ratio is less than 10 parts by weight, the solid content will be relatively high and the viscosity of the coating composition will increase, making coating work difficult and likely resulting in a decrease in adhesion; if it exceeds 90 parts by weight, On the contrary, the proportion of solids becomes low and the film thickness of the coating composition becomes thin, which is not preferable as a coating material. The coating composition of the present invention is prepared, for example, as follows. First, the polyol, castor oil polyol, polyisocyanate and necessary solvent are appropriately selected and mixed,
This was heated in dry nitrogen gas at 50-130°C and 60-360°C.
A urethane prepolymer having isocyanate groups is prepared by reacting for minutes. Next, 2 to 100 parts by weight of a fluororesin, 5 to 100 parts by weight of silicone oil, and 0.002 to 0.002 parts by weight of a halogenating agent are added to 100 parts of this urethane prepolymer.
Add 20 parts by weight, and further add a solvent to adjust the viscosity to be suitable for coating. In this case, part of the fluororesin may be molybdenum disulfide, glass fiber, carbon fiber, polyethylene,
It can also be replaced with silicon oxide, calcium carbonate, magnesium carbonate, clay, etc. [Function] By adopting the above means, the coating composition improves the abrasion resistance of the resulting coating film due to the characteristics such as the lubricity of the silicone oil and the low coefficient of friction of the fluororesin, and also improves the abrasion resistance of the resulting coating film. The coating material is halogenated, and the adhesion to the coating material is improved due to the properties of the urethane prepolymer, which is composed of a polyol, a castor oil polyol, and a polyisocyanate, and has a specific structure having an isocyanate group. [Example 1 to 16 and Comparative Examples 1 to 10] Examples embodying the present invention will be described below in comparison with comparative examples. First, the object to be coated is a vulcanized product as shown below. That is, the vulcanizate contained 100 parts by weight of EPDM (hereinafter simply referred to as "parts"), 70 parts of carbon black, 35 parts of mineral oil, 7 parts of zinc oxide, 2 parts of stearic acid, 2 parts of vulcanization accelerator, and 1 part of sulfur.
.. A composition consisting of 5 parts was vulcanized at 160°C for 30 minutes. In addition, the wear resistance test was conducted by the following method, and the wear resistance was evaluated based on the amount of wear loss. That is, Test machine: Taper type rotary abrader (manufactured by Toyo Seiki Seisakusho Co., Ltd.) Test conditions: Wear wheel: H-22, Load: 1 kg, Wear rotation speed i60 rpm Sample size: 10100 mm x 100 Number of wear: 1000 times In No. 16, each coating composition was applied to the object to be coated and dried in the same manner as in Example 1, and the abrasion resistance test was conducted on it in the same manner as in Example 1. (Example 1) First, a urethane prepolymer was manufactured as follows. PPG2000 (weight average molecular weight approx. 2000) 100
parts, castor oil polyol (hydroxyl value 80) 100 parts, M
75 parts of D I and 140 parts of trichlorethylene were mixed and reacted in dry nitrogen at 80° C. for 3 hours to obtain a urethane prepolymer. Next, to 100 parts of this urethane prepolymer, 10 parts of fluororesin, dimethyl silicone oil [kinematic viscosity: 1
Ten thousand centistokes (Cst) 1 10 parts, TCI
A coating composition was obtained by mixing the AI part. Applying this coating composition to the vulcanizate as the object to be coated,
It was dried at 80°C for 20 minutes. Regarding this, a wear resistance test was conducted. The results are shown in Table 1 below. (Example 2) A coating composition was obtained in the same manner as in Example 1 except that the amount of MDI used in Example 1 was changed to 100 parts. (Example 3) A coating composition was obtained in the same manner as in Example 1 except that the amount of MDI used was 125 parts. (Example 4) In Example 1, dimethyl silicone oil (kinematic viscosity 60,000 Cst) was replaced with 10 parts of dimethyl silicone oil (kinematic viscosity 10,000 Cst).
) A coating composition was obtained in the same manner as in Example 1 except that the amount was changed to 15 parts. (Example 5) Same as Example 1 except that 20 parts of dimethyl silicone oil (kinematic viscosity 100,000 Cst) was used instead of 10 parts of dimethyl silicone oil (kinematic viscosity 100,000 Cst) in Example 1. A coating composition was obtained. (Example 6) In Example 1, 100 parts of PPG2000 (weight average molecular weight 2000) and 100 parts of castor oil polyol (hydroxyl value 80) were replaced with 50 parts of PPG2000 (weight average molecular weight 2000) and castor oil polyol (
A coating composition was obtained in the same manner as in Example 1 except that the hydroxyl value was 80) and 150 parts. (Example 7) In the above Example 1, 150 parts of PPG2000 (weight average molecular weight 2000) and castor oil polyol (
A coating composition was obtained in the same manner as in Example 1 except that the hydroxyl value was 80) and 50 parts. (Example 8) A coating composition was obtained in the same manner as in Example 1, except that 80 parts of castor oil polyol (hydroxyl value 86) was used instead of 100 parts of castor oil polyol (hydroxyl value 80) in Example 1. . (Example 9) A coating composition was obtained in the same manner as in Example 1, except that 70 parts of castor oil polyol (hydroxyl value 92) was used instead of 100 parts of castor oil polyol (hydroxyl value 80) in Example 1. . (Example 10) In Example 1, 100 parts of PPG2000 (weight average molecular weight 2000), 100 parts of castor oil polyol (hydroxyl value 80), 75 parts of MD I, and 140 parts of trichlorethylene were replaced with propylene oxide addition of glycerin. body (weight average molecular weight 3000) 150 parts,
Castor oil polyol (hydroxyl value 80) 150 parts, TD1
Except for using 104 parts and 200 parts of trichlorethylene.
A coating composition was obtained in the same manner as in Example 1. (Example 11) In Example 1, instead of 100 parts of PPG2000 (weight average molecular weight 2000), 100 parts of castor oil polyol (hydroxyl value 80), 75 parts of MDI, and 140 parts of trichlorethylene, trimethylolpropane was added with propylene oxide. body (weight average molecular weight 3000) 2
50 parts, castor oil polyol (hydroxyl value 86) 50 parts,
A coating composition was obtained in the same manner as in Example 1, except that MD was 1150 parts and trichlorethylene was 225 parts. (Example 12) In Example 1, t-BHC was used instead of TCIA.
A coating composition was obtained in the same manner as in Example 1 except that . (Example 13) A coating composition was obtained in the same manner as in Example 1 except that NBSI was used instead of TCIA. (Example 14) A coating composition was obtained in the same manner as in Example 1 except that the TCIAI part was changed to 0.002 parts. (Example 15) A coating composition was obtained in the same manner as in Example 1 except that 1 part of TCIA was changed to 0.1 part. (Example 16) A coating composition was obtained in the same manner as in Example 1 except that 1 part of TCIA was changed to 20 parts. Further, as a comparative example, the following coating compositions were prepared, test pieces were made using the paint compositions, and the abrasion resistance test was conducted on the test pieces. The results are shown in Table 2 below. (Comparative Example 1) 100 parts of liquid polybutadiene (trade name: Idemitsu Seal AB-700W, manufactured by Idemitsu Petrochemical Industries, Ltd.) and parts of MDIIO were mixed to prepare a paint. This paint was applied to the object to be coated and cured at room temperature to prepare a test piece. (Comparative Example 2) 100 parts of liquid polybutadiene (trade name: Idemitsu Seal AB-100, manufactured by Idemitsu Petrochemical Industries, Ltd.) and part MDIIO were mixed to prepare a paint. This paint was applied to the object to be coated and cured at room temperature to prepare a test piece. (Comparative Example 3) A 70% methanol solution of N-methoxymethylated nylon (trade name: Torezin M-20, manufactured by Teikoku Kagaku Sangyo Co., Ltd.) was applied to the coated object and cured at room temperature to prepare a test piece. (Comparative Example 4) 100 parts of epoxy resin (trade name: Araldite pza20, manufactured by Nippon Ciba Geigy Co., Ltd.), polyaminoamide (
Made by Nippon Ciba Geigy Co., Ltd. Product name Hardener) 12)
100 parts were mixed to prepare a paint. This paint was applied to the object to be coated and cured at room temperature to prepare a test piece. (Comparative Example 5) 100 parts of epoxy resin (trade name: Araldite GY250, manufactured by Nippon Ciba Geigy Co., Ltd.), polyaminoamide (
Product name Hardener H2)3 manufactured by Nippon Ciba Geigy Co., Ltd.
0 parts were mixed to prepare a paint. This paint was applied to the object to be coated and cured at room temperature to prepare a test piece. (Comparative Example 6) As a paint, a 74% toluene solution of chloroprene rubber (trade name: Bond G2, manufactured by Konishi Co., Ltd.) was applied to the object to be coated, and cured at room temperature to prepare a test piece. (Comparative Example 7) SBR (trade name: Diabond 5010, manufactured by Nogawa Chemical Co., Ltd.) was applied to the coated object and cured at room temperature to prepare a test piece. (Comparative Example 8) As a paint, an acrylic resin emulsion with a non-volatile content of 70% (trade name Diabond DA manufactured by Nogawa Chemical Co., Ltd.) was used.
-830A) was applied to the object to be coated and cured at room temperature to prepare a test piece. (Comparative Example 9) As a paint, an acrylic-ethylene modified emulsion (manufactured by Sunstar Chemical Co., Ltd., trade name: Penguin Cement 138) with a nonvolatile content of 55% was applied to the object to be coated and cured at room temperature to prepare a test piece. . (Comparative Example 10) As a paint, a polyurethane paint (trade name: Diabond DA700E, manufactured by Nogawa Chemical Co., Ltd.) was applied to the object to be coated and cured at room temperature to prepare a test piece. Table 1 As can be seen from Table 1 above, the coating compositions of each example had abrasion loss of 3.0% even after 1000 abrasion tests.
It is extremely small at 5-4.3 mg. The reason why the coating compositions of each example exhibit such excellent abrasion resistance is presumed to be based on the moisture % property of the silicone oil, the low coefficient of friction property of the fluororesin, and the like. In addition, in the coating compositions of each example, the halogenating agent not only halogenates the object to be coated, but also coats the object based on the properties of a urethane prepolymer containing a predetermined amount of polyol, castor oil polyol, and polyisocyanate and having an isocyanate group. Demonstrates excellent adhesion to vulcanized rubber coatings. On the other hand, as can be seen from Table 2, the paint compositions of each comparative example had a large abrasion loss of 482 to 2290 mg, and had poor abrasion resistance. [Effects of the Invention] The coating composition of the present invention has the effect that the resulting coating film has very good abrasion resistance and has excellent adhesion to the object to be coated. Table-2

Claims (1)

【特許請求の範囲】[Claims] 1、ポリオール、ひまし油ポリオール及びポリイソシア
ネートよりなりイソシアネート基を有するウレタンプレ
ポリマー100重量部に対し、フッ素樹脂を2〜100
重量部、シリコーンオイルを5〜100重量部及びハロ
ゲン化剤を0.002〜20重量部配合してなる塗料組
成物。
1. 2 to 100 parts by weight of fluororesin to 100 parts by weight of a urethane prepolymer containing isocyanate groups consisting of polyol, castor oil polyol, and polyisocyanate.
A coating composition comprising 5 to 100 parts by weight of silicone oil and 0.002 to 20 parts by weight of a halogenating agent.
JP24339188A 1988-09-27 1988-09-27 Coating composition Pending JPH0291171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24339188A JPH0291171A (en) 1988-09-27 1988-09-27 Coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24339188A JPH0291171A (en) 1988-09-27 1988-09-27 Coating composition

Publications (1)

Publication Number Publication Date
JPH0291171A true JPH0291171A (en) 1990-03-30

Family

ID=17103164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24339188A Pending JPH0291171A (en) 1988-09-27 1988-09-27 Coating composition

Country Status (1)

Country Link
JP (1) JPH0291171A (en)

Similar Documents

Publication Publication Date Title
KR0133525B1 (en) Primer composition for glass
JP3393875B2 (en) Glass adhesive
US4569961A (en) Polyurethane lacquers containing nitroso-aromatics
US4987204A (en) Coating composition
JPH0291171A (en) Coating composition
JPH0291172A (en) Coating composition
JPH0211677A (en) Coating composition
JPH0291173A (en) Coating composition
JPH0211678A (en) Coating composition
JPH0211679A (en) Coating composition
JPH0291174A (en) Coating composition
JPH0551555A (en) Urethane coating composition
JPH0320376A (en) Coating composition
JPH0321675A (en) Coating composition
JPH02158672A (en) Coating composition
JPH02158675A (en) Coating composition
JPH0321676A (en) Coating composition
JPH03258877A (en) Coating compound composition
JPH03252477A (en) Coating composition
JPH02158674A (en) Coating composition
JPH01278576A (en) Coating compound composition
JPH02187476A (en) Coating composition
JPH02110176A (en) Coating composition
JPS61136528A (en) Glass run
JPH0431474A (en) Coating composition and coated object