JPH0291089A - Production of quaternary phosphonium hydroxide - Google Patents

Production of quaternary phosphonium hydroxide

Info

Publication number
JPH0291089A
JPH0291089A JP63242373A JP24237388A JPH0291089A JP H0291089 A JPH0291089 A JP H0291089A JP 63242373 A JP63242373 A JP 63242373A JP 24237388 A JP24237388 A JP 24237388A JP H0291089 A JPH0291089 A JP H0291089A
Authority
JP
Japan
Prior art keywords
quaternary phosphonium
column
ion exchange
aqueous solution
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63242373A
Other languages
Japanese (ja)
Other versions
JPH0544957B2 (en
Inventor
Shuji Ota
太田 秀志
Seiji Shimura
志村 征爾
Koichi Takahashi
宏一 高橋
Tadashi Sugiya
正 杉矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP63242373A priority Critical patent/JPH0291089A/en
Publication of JPH0291089A publication Critical patent/JPH0291089A/en
Publication of JPH0544957B2 publication Critical patent/JPH0544957B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To industrially and readily obtain the title phosphonium useful for catalyst, etc., in high purity and yield by regenerating an ion exchange resin in raising stream of alkali regeneration liquid and bringing an aqueous solution of phosphonium into contact with the above-mentioned resin in descending stream. CONSTITUTION:An aqueous solution of alkali is passed in raising stream from the lower part of column packing a strongly basic anion exchange resin through the column and brought into contact with the ion exchange resin to regenerate the above-mentioned resin to OH type resin and the regenerated ion exchange resin is washed by feeding pure water to the column in raising stream and further in descending stream and then an aqueous solution of quaternary phosphonium compound expressed by formula I(R1-R4 are 1-18C alkyl, aryl or aralkyl or at least one kind of group thereof; X is anion) is fed to the column in descending stream to recover an aqueous solution of the aimed phosphonium compound from the lower part and further pure water is fed to the column in descending stream to push out the residual aimed phosphonium.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、水酸化第四級ホスホニウムの製造法に関する
。更に言えば、ポリシロキサンの製造に有用な重合触媒
(英国許794,119号明a出)電解コンデンサー電
解質用第四級ホスホニウム塩(特開昭62−272,5
12号、特開昭62−272,513号)さらには、半
導体装置等の電子部品及び電子機器の封止や含浸等に広
く用いられる電気的特性に優れたエポキシ樹脂の硬化触
媒等の原料に有用な高純度水酸化第回吸ホスホニウムを
イオン交換法により製造する方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing quaternary phosphonium hydroxide. Furthermore, polymerization catalysts useful in the production of polysiloxanes (UK Patent No. 794,119 published by Mei A) and quaternary phosphonium salts for electrolytes in electrolytic capacitors (Japanese Patent Application Laid-Open No. 62-272,5
12, JP-A No. 62-272,513) Furthermore, it can be used as a raw material for curing catalysts for epoxy resins with excellent electrical properties, which are widely used for sealing and impregnating electronic components such as semiconductor devices and electronic equipment. The present invention relates to a method for producing useful high-purity phosphonium hydroxide by an ion exchange method.

〈従来の技術と問題点〉 水酸化第四級ホスホニウムの製造方法としては、テトラ
−n−ブチルホスホニウムアイオダイドを水溶液で酸化
銀と反応させて、水酸化第4級ホスホニウムを得る方法
(英国許794,119号明111]出) (n−C4119)4 1+1/2AQO+1/2H2
0→(n−C4H9)J  POtl十八glへある。
<Prior art and problems> As a method for producing quaternary phosphonium hydroxide, there is a method to obtain quaternary phosphonium hydroxide by reacting tetra-n-butylphosphonium iodide with silver oxide in an aqueous solution (UK approved method). 794,119 Mei 111] (n-C4119) 4 1+1/2AQO+1/2H2
0→(n-C4H9)J POtl to 18gl.

しかしこの方法では酸化銀が高価である為に製造コスト
が高く工業的に望ましい方法ではない。
However, since silver oxide is expensive in this method, the production cost is high and it is not an industrially desirable method.

G、 H,に08OLAPOFF and L、HAI
ER(ORGANICPH0SPHOI(US COM
POUND)ltlLEY−INTER3CIENCE
、a  Division of  john Wil
ey &  5ons、lnc、Vol、2 .201
頁、 1972年では第四級ホスホニウム塩はイオン交
換樹脂を用いてイオン交換できる事が記載されている。
G, H, 08OLAPOFF and L, HAI
ER(ORGANICPH0SPHOI(US COM
POUND)ltlLEY-INTER3CIENCE
, a Division of John Will
ey & 5ons, lnc, Vol, 2. 201
Page, 1972, states that quaternary phosphonium salts can be ion-exchanged using ion-exchange resins.

しかしながら、回内に記載されているように、イオン交
換樹脂を用いてイオンする場合には、股に原液のa縮を
希薄にする必要があり、従って交換に長時間を必要とす
る欠点がある。
However, as described in Pronation, when ionizing using an ion exchange resin, it is necessary to dilute the acondensation of the stock solution, which has the drawback of requiring a long time for exchange. .

又、この点を克服すべく特開昭62−212,397号
では比較的高濃度領域で第四級ホスホニウムハライドを
強塩基性アニオン交換樹脂(OH型)と接触して、イオ
ン交換する事によって水酸化第四級ホスホニウムを得る
方法が記載されている。しかし、この方法の場合は、実
施例に記載されているようにイオン交換が完全に行われ
ない為(収率66.4〜90.8%)、流出液中へ原料
である第四級ホスホニウムハライドが混入づる事が避け
られない。
In addition, in order to overcome this point, in JP-A-62-212,397, quaternary phosphonium halide is brought into contact with a strongly basic anion exchange resin (OH type) in a relatively high concentration region to undergo ion exchange. A method for obtaining quaternary phosphonium hydroxides is described. However, in the case of this method, as described in the example, ion exchange is not completely performed (yield 66.4-90.8%), so the raw material quaternary phosphonium is mixed into the effluent. Contamination with halide is unavoidable.

従って、ハロゲン化炭化水素等の有機溶媒を使って取り
除く工程が必要である。
Therefore, it is necessary to remove it using an organic solvent such as a halogenated hydrocarbon.

また、このように溶媒を使用して原料を取り除いたとし
ても、流出液からの完全な回収は困難で、その流出液中
のハロゲンを分析すると数100〜数1000 I)I
)lは含まれている。
Furthermore, even if the raw material is removed using a solvent in this way, it is difficult to completely recover it from the effluent, and analysis of the halogen in the effluent reveals several hundred to several thousand I)I
)l is included.

〈問題を解決するための手段〉 前記したとおり、従来法では、いずれも高純度の水酸化
第四級ホスホニウムが得られないか又は工業的には全く
適応できないものである。
<Means for Solving the Problem> As mentioned above, none of the conventional methods yields highly pure quaternary phosphonium hydroxide or is completely unsuitable for industrial use.

本光明者らは、上記の諸問題に鑑み鋭意詳細に研究した
結果、特に工業的に有効とされるイオン交換方式に基づ
く製造法の改良を研究したところ、予想外に高純度かつ
高収率で水酸化第四級ホスホニウムが製造できる方法を
知見し本発明を完成した。
As a result of intensive and detailed research in view of the above-mentioned problems, the authors researched improvements to the manufacturing method based on the ion exchange method, which is considered particularly industrially effective, and found that unexpectedly high purity and high yields were obtained. discovered a method for producing quaternary phosphonium hydroxide and completed the present invention.

く作用〉 すなわち、本光明は強塩基性イオン交換樹脂を充填した
カラムを使用で、−最大(1)R3 (式中R1、R2、R3、およびR4はおのおの同−又
は異なる1乃至18のアルキル基。
In other words, the present invention uses a column filled with a strongly basic ion exchange resin, and uses a column packed with a strongly basic ion exchange resin to produce -maximum (1) R3 (wherein R1, R2, R3, and R4 are the same or different 1 to 18 alkyl groups). Base.

アリール基、アラルキル基、若しくは、それらのいずれ
か少なくとも1種の基がヒドロオキシ基又はアルコオキ
シ基で置換されたものを表し、Xはアニオンを表わrj
)で表わされた第四級ホスホニウム化合物を陰イオン交
換する事により、−最大(2) 〈式中R1、R2、R3、およびR4はそれぞれ前記の
意味と同じ)で表わされた水酸化第四級ホスホニウムを
製造する方法において、アルカリ再生液をカラムの下部
から上昇流で通液してOH型に再生し次いで、第四級ホ
スホニウム化合物の水溶液は逆に下降流で該再生イオン
交換樹脂と接触させることを特徴とする高純度水酸化第
回吸ホスホニウムの製造法に係る。まず、木光明におけ
るイオン交換すべき原料たる第四級ホスホニウム化合物
としては、前記(1)式で示されるものである。
represents an aryl group, an aralkyl group, or one in which at least one group thereof is substituted with a hydroxyl group or an alkoxy group, X represents an anion;
) by anion-exchanging the quaternary phosphonium compound represented by -maximum (2) (wherein R1, R2, R3, and R4 are each as defined above) In a method for producing quaternary phosphonium, an alkaline regenerating solution is passed upward from the bottom of the column to regenerate it into an OH form, and then an aqueous solution of a quaternary phosphonium compound is passed down to the regenerated ion exchange resin. The present invention relates to a method for producing high-purity phosphonium hydroxide, which comprises contacting the same with phosphonium hydroxide. First, the quaternary phosphonium compound which is the raw material to be ion-exchanged in Mokkomei is represented by the above formula (1).

具体例としては、式中のR1−R4は、メチル、エチル
、プルピル、ブチル、ペンチル、ヘキシル、ヘプチル、
オクチル等のアルキル基。
As specific examples, R1-R4 in the formula are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl,
Alkyl groups such as octyl.

フェニル、トリル、キシリル等のアリール基。Aryl groups such as phenyl, tolyl, xylyl.

ベンジル、フエニチル等のアラルキル基又はそれらの基
中がヒドロキシ基、若しくはアルコオキシ基で買換され
た基等であり、Xは、フッ素。
An aralkyl group such as benzyl or phenityl, or a group in which one of these groups is replaced with a hydroxy group or an alkoxy group, and X is fluorine.

塩素、臭素又は沃素のハロゲンイオン、ギ酸。Halogen ions of chlorine, bromine or iodine, formic acid.

酢酸、蓚酸等のカルボキシルイオン、fi!!酸、ジメ
チル又はジエチル18等のイオン、硝酸イオン、リン酸
イオン、メチル又はジメチルリン酸、エチル又はジエチ
ルリン酸等の有機リン酸あるいは水酸基の各陰イオンが
挙げられる。 次に、強塩基性イオン交換樹脂について
は、例えばアバンライトERA−400,アンバーライ
トIRA401.アンバーライトIRA900等の如き
所望の樹脂を選択し、これを詰めたカラムを調製する。
Carboxyl ions such as acetic acid and oxalic acid, fi! ! Examples include acids, ions such as dimethyl or diethyl 18, nitrate ions, phosphate ions, organic phosphoric acids such as methyl or dimethyl phosphate, ethyl or diethyl phosphate, or hydroxyl group anions. Next, regarding strong basic ion exchange resins, for example, Avanlite ERA-400, Amberlite IRA401. Select a desired resin, such as Amberlite IRA900, and prepare a column packed with it.

カラムを構成する材質は、特に制限されるものではない
が、イオン交換の際にアルカリ性の雰囲気になるため、
その際に不純分が溶出しない耐アルカリ性のものであれ
ばよい。又カラムの形状についても特に制限されるもの
ではなく通常の円筒状のもので良い。
There are no particular restrictions on the material that makes up the column, but since it creates an alkaline atmosphere during ion exchange,
Any material may be used as long as it is alkali-resistant so that impurities are not eluted at that time. Further, the shape of the column is not particularly limited, and may be a normal cylindrical shape.

本発明は、この様にして調製したカラムに対して、前記
の方法でイオン交換を行なうものであるが、特に好まし
くは、次の5つの操作を1サイクルとしてイオン交換を
行うことにより高純度水酸化第回吸ホスホニウムを製造
する。
In the present invention, the column prepared in this manner is subjected to ion exchange using the method described above, and it is particularly preferable to carry out ion exchange using the following five operations as one cycle to obtain high-purity water. Produce phosphonium oxide.

■カラム下部よりアルカリ水溶液を上昇流で所定量供給
(7てイオン交換樹脂と接触せしめ、樹脂をOH型に再
生する。(上昇流再生)■次いで、純水を[1]と同様
に上昇流で供給し残留するアルカリの大部分を押し出し
洗浄する。
■ A predetermined amount of alkaline aqueous solution is supplied from the bottom of the column in an upward flow (Step 7: it is brought into contact with the ion exchange resin and the resin is regenerated into an OH type. (Upward flow regeneration) ■ Next, pure water is supplied in an upward flow as in [1] The remaining alkali is extruded and washed.

(上昇流洗浄) ■次いで、カラム上部より純水を下流で供給し下部出口
からアルカリが実質的に流出しなくなるまで洗浄づ゛る
。(下降流洗浄) ■次いで、洗浄カラム上部より原料である第四級ホスホ
ニウム化合物水溶液を■と同様に下降流にて供給し、カ
ラム下部よりイオン交換された対応する水酸化第四級ホ
スホニウムの水溶液を得る。(下降流生成) ■次いで、純水を[4]と同様に下降流で流し、カラム
中に残存する水酸化第4級ホスホニウムを押し出し、イ
オン交換を完結させる。(下降流洗浄) 以上の■〜■の操作を1サイクルとしてイオン交換して
製造するものであるが、本発明前記のようにイオン交換
カラムに対してアルカリ再生液を上向液で供給再生しく
■)、原料である第四級ホスホニウム化合物の水溶液は
逆に下降流で流す(■)事が、最も基本的に重要なとこ
ろである。
(Upward flow cleaning) Next, pure water is supplied downstream from the upper part of the column, and cleaning is continued until substantially no alkali flows out from the lower outlet. (Downflow washing) ■Next, the raw material quaternary phosphonium compound aqueous solution is supplied from the top of the washing column in a downward flow in the same manner as in ■, and the corresponding ion-exchanged aqueous solution of quaternary phosphonium hydroxide is supplied from the bottom of the column. get. (Generation of downward flow) (2) Next, pure water is caused to flow downward in the same manner as in [4] to push out the quaternary phosphonium hydroxide remaining in the column and complete the ion exchange. (Downflow washing) This is produced by ion exchange with the above operations ① to ③ as one cycle, but as described above in the present invention, the alkaline regenerating liquid is supplied to the ion exchange column as an upward liquid for regeneration. The most fundamentally important point is (■) that the aqueous solution of the quaternary phosphonium compound, which is the raw material, is allowed to flow downward (■).

従って、本発明とは異なる方法、例えばアルカリ再生液
及び、第四級ホスホニウム化合物水溶液を共に下降流で
通す方法、逆に両者とも上昇流で通す方法、あるいは本
発明の方法とは全く逆にアルカリ再生液を下降流で流し
て再生し、第四級ホスホニウム化合物水溶液は上昇流で
通して、イオン交換する方法等のいずれの態様であって
もイオン交換は行なわれるものの完全ではなく、対応す
るアニオンが生成物である水酸化第四級ホスホニウムの
中に混入して高純度のものは得ることができない。
Therefore, a method different from the present invention, such as a method in which the alkaline regenerating liquid and the quaternary phosphonium compound aqueous solution are passed together in a downward flow, a method in which both are passed in an upward flow, or a method in which the alkali In either method, such as by passing the regenerating liquid in a downward flow for regeneration and passing the quaternary phosphonium compound aqueous solution in an upward flow for ion exchange, ion exchange is performed, but not completely, and the corresponding anions are is mixed into the quaternary phosphonium hydroxide product, making it impossible to obtain a highly pure product.

まず、操作■の再生条件に説明すると、再生に使用する
アルカリ水溶液は、例えば水酸化ナトリウムや水酸化カ
リウム等の如き苛性アルカリ水溶液でよい。
First, to explain the regeneration conditions in operation (2), the alkaline aqueous solution used for regeneration may be a caustic alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.

また、これらの濃度や流速も特に制限されるものではな
いが、多くの場合1〜10重量%水溶液を樹脂に対して
全量速度即ち、5V=O。
Further, the concentration and flow rate are not particularly limited, but in most cases, the total amount rate of 1 to 10% by weight aqueous solution to the resin, that is, 5V=O.

5〜6Hr−1が適当である。この理由は、そのS V
 laよりも大ぎくしで上向流で供給すると充填した樹
脂が流動化してくれるため好ましくなく、逆に遅すぎる
と脈流を生じて再生が不均になるからであり、好ましく
は5V=0.5〜4Hr−1が良い。
5 to 6 Hr-1 is suitable. The reason for this is that the S V
If it is supplied in an upward flow with a force larger than la, the filled resin will become fluidized, which is undesirable.On the other hand, if it is too slow, a pulsating flow will occur and the regeneration will be uneven, so it is preferable that 5V=0 .5 to 4 Hr-1 is good.

また、アルカリによるイオン交換樹脂の再生においてそ
の使用量は、樹脂の公称総交換容吊の2〜20倍、好ま
しくは3〜5@のアルカリを接触さぜイオン交換樹脂十
分OH型に再生しておくことが重要である。
In addition, in the regeneration of ion exchange resin with alkali, the amount used is 2 to 20 times the nominal total exchange capacity of the resin, preferably 3 to 5 @ of alkali, and the ion exchange resin is sufficiently regenerated into an OH type. It is important to keep

次に、上昇流洗浄(操作■)及び下降流洗浄(操作■)
においても、アルカリ上昇流再生(操作■)と同程度の
流速で行なうが、就中操作■の下降流による逆洗浄では
、実質的にアルカリイオンが無視できる濃度になるまで
十分洗浄する必要がある。当然のことながら、この洗浄
が不十分な場合、イオン交換された製品中にアルカリ金
属が混入する原因となる。
Next, upward flow cleaning (operation ■) and downward flow cleaning (operation ■)
In step 2, the flow rate is similar to that of the alkali upflow regeneration (operation ①), but especially in the downflow backwashing in step ②, it is necessary to sufficiently wash the alkali ions to a virtually negligible concentration. . Naturally, if this cleaning is insufficient, it will cause alkali metals to be mixed into the ion-exchanged product.

次に、操作■で下降流にて、供給する第四級ホスホニウ
ム化合物は一般に水溶液として用いられるが、低級アル
コールやアセトン等の水に親和性の有機溶媒が含まれて
いても良い。
Next, in step (2), the quaternary phosphonium compound supplied in a downward flow is generally used as an aqueous solution, but may contain an organic solvent having affinity for water, such as a lower alcohol or acetone.

しかし、イオン交換樹脂の青白が短かくなる可能性があ
る為、出来るだけ少ない方が好ましい。第四級ホスホニ
ウム化合物の濃度は特に制限されるものではないが、多
くの場合2〜50重量%好ましくは5〜30重量%の範
囲にある。
However, since the blue-white color of the ion exchange resin may be shortened, it is preferable to use as little as possible. The concentration of the quaternary phosphonium compound is not particularly limited, but is often in the range of 2 to 50% by weight, preferably 5 to 30% by weight.

又下降流速は充填樹脂に対して5V=0.5〜68r”
の範囲が適当である。
Also, the descending flow rate is 5V = 0.5 to 68r for the filled resin.
A range of is appropriate.

なお、一般に、イオン交換樹脂はその使用回数が増える
と共に総イオン交換容量が小さくなってゆく。
Generally, the total ion exchange capacity of an ion exchange resin decreases as the number of times it is used increases.

例えば、新しい強塩基性イオン交換樹脂を使用した場合
、特に当初の回数は急激に総イオン交換容量が低下し、
その樹脂の公称総イオン交換容量の40〜60%で【よ
ぼ一定となる。
For example, when using a new strongly basic ion exchange resin, the total ion exchange capacity decreases rapidly, especially during the first cycle.
It remains approximately constant at 40-60% of the nominal total ion exchange capacity of the resin.

従って、本発明では原料第四級ホスホニウム化合物の処
理量は、上記イオン交換樹脂の総イオン交換容量以下で
通す事は極めて重要である。
Therefore, in the present invention, it is extremely important that the amount of raw material quaternary phosphonium compound to be treated is less than or equal to the total ion exchange capacity of the ion exchange resin.

交換容量以上の原料を通すと、当然ながらカラムの出口
から未交換の原料が流出して来る。
If a raw material exceeding the exchange capacity is passed through the column, unexchanged raw material naturally flows out from the outlet of the column.

この様に未交換ホスホニウム化合物の出口から流出づる
場合、すなわち破過を経験したイオン交換樹脂は、イオ
ン交換能力が急激に低下し、例えアルカリ水溶液を過剰
に用いて再生したものを使用してイオン交換しても、完
全に行なわれず、得られる水酸化第四級ホスホニウム水
溶液には、数10〜数100 ppraの対応するアニ
オンが混入して純度が著しく低下する。
In this way, when unexchanged phosphonium compounds flow out from the outlet, in other words, an ion exchange resin that has experienced breakthrough, its ion exchange ability rapidly decreases, and even if the ion exchange resin is regenerated using an excessive amount of alkaline aqueous solution, Even if the exchange is performed, the exchange is not completed completely, and the resulting quaternary phosphonium hydroxide aqueous solution is contaminated with several tens to hundreds of ppra of the corresponding anion, resulting in a significant decrease in purity.

従って、イオン交!Ij!樹脂の交換容量を予め十分把
握し、それ以下の原料溶液を通りように細心の注意を払
う必要がある。
Therefore, ion exchange! Ij! It is necessary to fully understand the exchange capacity of the resin in advance and pay close attention to passing the raw material solution with less than that capacity.

かくして、本発明に係る方法によれば、製造された水酸
化第四級ホスホニウムの水溶液中には原料に由来するア
ニオンのみならず、それ以外のアニオーンもほとんど含
まれず、しかも高純度のものがほぼ定量的に得られる。
Thus, according to the method of the present invention, the aqueous solution of quaternary phosphonium hydroxide produced contains not only anions derived from the raw materials but also almost no other anions, and moreover, almost no anions of high purity are contained. Obtained quantitatively.

〈実施例〉 以下に、本光明の方法を実施例および比較例によって具
体的に説明覆る。
<Examples> The method of the present Komei will be specifically explained below using Examples and Comparative Examples.

実施例1 水中で十分に膨潤させたアンバーライトIRA−401
(CI型:オルガノ社製品)180威を内径25制のカ
ラムに充填した。5wt%苛性ソーダ水溶液672!?
 (840ミリモル)をカラムの下部より5V=1.O
Hr”の流速で上昇流で供給し、樹脂をOH型に再生し
た。
Example 1 Amberlite IRA-401 fully swollen in water
(CI type: Organo Co., Ltd. product) 180 yen was packed into a column with an inner diameter of 25 mm. 5wt% caustic soda aqueous solution 672! ?
(840 mmol) from the bottom of the column at 5V=1. O
The resin was supplied in an upward flow at a flow rate of 100 hr" to regenerate the resin into an OH type.

次に、脱イオン水を再生剤と同一方向、同一速度で約1
80ae流して押し出しのち、さらに脱イオン水でカラ
ムの上部より下降流でS■=1、oHr−’の流速で流
し、カラムの下部より流出する水中のNa濃度が無視で
きる様になるまで続けた(<0.05ppm)。
Next, apply deionized water to the regenerant in the same direction and at the same speed for about 1 hour.
After extrusion by flowing 80 ae, deionized water was further flowed downward from the top of the column at a flow rate of S = 1, oHr-', and this was continued until the Na concentration in the water flowing out from the bottom of the column became negligible. (<0.05ppm).

次いで、5wt%のテトラエチルホスホニウムブロマイ
ド218!? (57,7ミリモル)を5V=1.0H
r−1の流速でカラムの上部より下降流で供給し、次い
で、脱イオン水を同一方向、同一速度で流し出し、主分
画410gを得た。
Then 5 wt% of tetraethylphosphonium bromide 218! ? (57.7 mmol) at 5V=1.0H
The column was supplied in a downward flow from the top of the column at a flow rate of r-1, and deionized water was then flowed out in the same direction and at the same speed to obtain 410 g of the main fraction.

この溶液を分析した結果、下記に示す様にハロゲン・金
属ともに極めて少ない、濃度0.137モル/Kgの高
@度水酸化テトラエチルホスホニウム水溶液を収率97
%の高純率で得ることができた。
As a result of analyzing this solution, as shown below, a high-strength tetraethylphosphonium hydroxide aqueous solution with extremely low halogen and metal content and a concentration of 0.137 mol/Kg was obtained with a yield of 97.
% of high purity.

また、上記と同様の操作を10回繰り返した結果と比較
すると第1表に示すような収率96゜8%をもって得ら
れた。
Further, when compared with the results of repeating the same operation as above 10 times, a yield of 96.8% was obtained as shown in Table 1.

第1表 なお、分析結果は、第2表の様であった。Table 1 The analysis results were as shown in Table 2.

第2表 実施例2 イオン交換樹脂にアンバーライトIRA−900を用い
た以外に実施例1と同じ条件でイオン交換を行なった結
果、濃度0.14モル/Kgの水酸化テトラエチルホス
ホニウム水溶液396gを得た。これは、供給原料に対
して96゜1%の収率に相当する。
Table 2 Example 2 Ion exchange was carried out under the same conditions as in Example 1 except that Amberlite IRA-900 was used as the ion exchange resin. As a result, 396 g of an aqueous tetraethylphosphonium hydroxide solution with a concentration of 0.14 mol/Kg was obtained. Ta. This corresponds to a yield of 96.1% based on the feedstock.

実施例3 窒素雰囲気下300d四ツ目フラスコ中トリエチルホス
フィン20.8y(1フロミリモル)をトルエン120
rdに溶解し、常温下撹拌しながらジエチル硫132.
6h (211ミリモル)を滴下づる。50℃で8vF
間加熱反応したのち、トルエンを減圧留去した結果、4
1.2g(151ミリモル)のエチル硫酸テトラエチル
ホスホニウムを得た(収率86.0%)。このうち16
.3y (60,0ミリモル)を脱イオン水160gに
溶解させ、実施例1と同じ条件でイオン交換した結果、
エチル硫酸イオンをほとんど含まない(<0.2ppl
)高純度の水酸化テトラエチルホスホニウムの水溶液3
10gを得た(濃度0.189モル/Ky)。
Example 3 In a 300 d four-eye flask under nitrogen atmosphere, 20.8 y (1 fluorimole) of triethylphosphine was mixed with 120 y of toluene.
rd, and add diethyl sulfur 132% while stirring at room temperature.
6h (211 mmol) was added dropwise. 8vF at 50℃
After the reaction was heated for a while, toluene was distilled off under reduced pressure.
1.2 g (151 mmol) of tetraethylphosphonium ethyl sulfate was obtained (yield 86.0%). 16 of these
.. 3y (60.0 mmol) was dissolved in 160 g of deionized water and ion exchanged under the same conditions as in Example 1.
Contains almost no ethyl sulfate ion (<0.2ppl
) High purity aqueous solution of tetraethylphosphonium hydroxide 3
10 g was obtained (concentration 0.189 mol/Ky).

第3表 実施例4 イオン交換樹脂アンバーライトIRA400を内径25
aaのカラムに150戒を充填し、原料に20wt%の
テトラブチルホスホニウムブロマイドの水溶液140.
0g(82,5ミリモル)を使用した以外は、実施例1
と同様な操作でイオン交換した結果、主分画として0.
30モル/Kfiの水酸化テトラブチルホスホニウム2
65.44?を得た(収率96.5%)。得られたもの
の分析結果は第3表のとおりであった。
Table 3 Example 4 Ion exchange resin Amberlite IRA400 with an inner diameter of 25
A column of AA was filled with 150 ml of 140.
Example 1 except that 0 g (82.5 mmol) was used.
As a result of ion exchange using the same procedure as above, the main fraction was 0.
30 mol/Kfi of tetrabutylphosphonium hydroxide 2
65.44? was obtained (yield 96.5%). The analysis results of the obtained product are as shown in Table 3.

比較例1 水中で充分に膨潤させたアンバーライトIRA−400
,150+teを内径25Mのカラムに充填した。5W
1%の苛性ソーダ水溶液672(840ミリモル)をカ
ラムの上部より下降流で5V=1.0Hr−1の流速で
通し、樹脂をOH型に再生し、続いて脱イオン水を同方
向、同一速度で流し、カラムの下部からの溶出液中にナ
トリウムイオンが検出されなくなるまで洗浄した。(<
0.O5ppm )20重量%のテトラブチルホスホニ
ウムブロマイド水溶液140゜Og(82,5ミリモル
)を5V=1.0Hr−1の流速でカラムの上部より、
下降流で通し、続いて同方向、同一流速で脱イオン水で
を流し、0.277モル/hの水酸化テトラブチルホス
ホニウムを含む水溶液の主分画275gを得た(収率9
2.5%)。この水溶液を分析したところBrイオンが
2090 ppm含まれていた。
Comparative Example 1 Amberlite IRA-400 sufficiently swollen in water
, 150+te was packed into a column with an inner diameter of 25M. 5W
A 1% aqueous solution of caustic soda 672 (840 mmol) was passed downward from the top of the column at a flow rate of 5 V = 1.0 Hr-1 to regenerate the resin into the OH form, followed by deionized water in the same direction and at the same rate. The column was washed until no sodium ions were detected in the eluate from the bottom of the column. (<
0. 140° Og (82.5 mmol) of a 20% by weight aqueous solution of tetrabutylphosphonium bromide (O5ppm) was added from the top of the column at a flow rate of 5 V = 1.0 Hr-1.
By passing deionized water in the same direction and at the same flow rate, 275 g of the main fraction of an aqueous solution containing 0.277 mol/h of tetrabutylphosphonium hydroxide was obtained (yield: 9
2.5%). Analysis of this aqueous solution revealed that it contained 2090 ppm of Br ions.

これを27!Mのジクロロメタンで2回抽出した後、水
溶液中に残存する微量のジクロロメタンを減圧留去した
結果213g水溶液を得た。
This is 27! After extracting M twice with dichloromethane, trace amounts of dichloromethane remaining in the aqueous solution were distilled off under reduced pressure to obtain 213 g of an aqueous solution.

この水相を分析した結果、Brイオンは1055 pp
nで、水酸化テトラブチルホスホニウムの濃度はO,’
2650モル/Ky(抽出による損失25.8%)だっ
た。
As a result of analyzing this aqueous phase, Br ions were found to be 1055 ppp.
n, the concentration of tetrabutylphosphonium hydroxide is O,'
It was 2650 mol/Ky (loss due to extraction 25.8%).

以上の結果から明らかな様に、カラムに対してアルカリ
再生液と第四級ホスホニウム塩の水溶液を共に下降流で
通すと完全にイオン交換されず製品中にアニオンが混入
し、又その回収除去も完全ではない。
As is clear from the above results, when an alkali regenerant and an aqueous solution of a quaternary phosphonium salt are passed through the column in a downward flow, ions are not completely exchanged and anions are mixed into the product, and it is difficult to recover and remove them. incomplete.

比較例2 実施例1と同様に内径25mmのカラムにアンバーライ
トIRA400,180aeを詰めた。
Comparative Example 2 Amberlite IRA400, 180ae was packed in a column with an inner diameter of 25 mm in the same manner as in Example 1.

5wt%苛性ソーダ水溶液820g(1025ミリモル
)カラムの上部よV)sV=1.0Hr−1の流速で下
降流で供給し樹脂を0ト1型に再生した。
820 g (1025 mmol) of a 5 wt % aqueous solution of caustic soda was supplied from the top of the column in a downward flow at a flow rate of V) sV = 1.0 Hr-1 to regenerate the resin to 0-1 type.

続いて、同方向、同流速により脱イオン水約180gを
流して押し出した後、さらに脱イオン水をカラムの下部
より上昇流で5V=1.0トer−1の流速で洗浄を続
け、カラム上部から流出する洗浄水中のNa+イオン濃
度が<0.05 ppl無視できる様になるまで行なっ
た。
Subsequently, approximately 180 g of deionized water was forced out in the same direction and at the same flow rate, and further washing of deionized water was continued from the bottom of the column at a flow rate of 5 V = 1.0 t er-1. This was done until the concentration of Na+ ions in the wash water flowing out from the top became negligible to <0.05 ppl.

次に、6.54wt%のテトラエチルホスホニウムブロ
マイド水溶液210.4g(60,5ミリモル)を5V
−1,OHr”の流速でカラムの下部より上昇流で通流
した後、さらに、脱イオン水で同方向、同速度で洗浄し
、442びの主分画を得た。
Next, 210.4 g (60.5 mmol) of a 6.54 wt% tetraethylphosphonium bromide aqueous solution was added at 5 V.
The column was passed upwardly from the bottom of the column at a flow rate of -1,OHr'', and then washed with deionized water in the same direction and at the same rate to obtain 442 main fractions.

この主分画を分析した結果、得られた水酸化テトラエチ
ルホスホニウムの濃度は129ミリモル/Kg(収率9
4.6%>Br−11i度は136ppnだった。
As a result of analyzing this main fraction, the concentration of tetraethylphosphonium hydroxide obtained was 129 mmol/Kg (yield 9
4.6%>Br-11i degree was 136 ppn.

以上の様に本発明の方法とは逆に、下降流でアルカリ再
生したイオン交換カラムに対し、原液を上昇流で通して
イオン交換してもイオン交換は完全ではなく製品中にア
ニオンが混入して来る純度の悪いものであった。
As described above, contrary to the method of the present invention, even if the stock solution is passed in an upward flow for ion exchange through an ion exchange column that has been alkali regenerated in a downward flow, the ion exchange is not complete and anions are mixed into the product. The purity of the product was poor.

く弁明の効果〉 本発明に係る方法によれば、原料の第四級ホスホニウム
化合物の水溶液の如何に問わず、■集的に容易に高純度
かつ高収率で水酸化第四級ホスホニウムを製造すること
ができる。
According to the method of the present invention, quaternary phosphonium hydroxide can be produced collectively and easily with high purity and high yield, regardless of the aqueous solution of the quaternary phosphonium compound as a raw material. can do.

本発明に係る方法で得られた第四級ホスホニウムはその
知られている各種触媒又は特殊電解質用原料として有効
に利用することができる。
The quaternary phosphonium obtained by the method according to the present invention can be effectively used as a raw material for various known catalysts or special electrolytes.

Claims (3)

【特許請求の範囲】[Claims] (1)強塩基性陰イオン交換樹脂を充填したカラムを使
用して、一般式(1) ▲数式、化学式、表等があります▼(1) (式中R1、R2、R3、およびR4はおのおの同一又
は異なる炭素数1乃至18のアルキル基、アリール基、
アラルキル基、若しくは、それらのいずれか少なくとも
1種の基がヒドロオキシ基又はアルコオキシ基で置換さ
れたものを表し、Xはアニオンを表す)で表された第四
級ホスホニウム化合物をイオン交換することにより、一
般式(2) ▲数式、化学式、表等があります▼ (式中R1、R2、R3、およびR4はそれぞれ前記の
意味と同じ)で表された水酸化第四級ホスホニウムを製
造する方法において、アルカリ再生液を上昇流で通液し
てイオン交換樹脂を(OH型)に再生し、次いで、第四
級ホスホニウム化合物の水溶液は下降流でイオン交換樹
脂(OH型)に接触させることを特徴とする水酸化第四
級ホスホニウムの製造方法。
(1) Using a column filled with a strong basic anion exchange resin, the general formula (1) ▲Mathematical formula, chemical formula, table, etc.▼(1) (In the formula, R1, R2, R3, and R4 are each The same or different alkyl groups and aryl groups having 1 to 18 carbon atoms,
By ion-exchanging a quaternary phosphonium compound represented by an aralkyl group, or one in which at least one group thereof is substituted with a hydroxy group or an alkoxy group, and X represents an anion, General formula (2) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (In the formula, R1, R2, R3, and R4 each have the same meaning as above) In the method for producing quaternary phosphonium hydroxide, The ion exchange resin is regenerated into (OH type) by passing an alkaline regeneration liquid in an upward flow, and then the aqueous solution of the quaternary phosphonium compound is brought into contact with the ion exchange resin (OH type) in a downward flow. A method for producing quaternary phosphonium hydroxide.
(2)請求項1記載の水酸化第四級ホスホニウムの製造
方法において [1]カラム下部よりアルカリ水溶液を上昇流で、通流
してイオン交換樹脂と接触せしめ該樹脂をOH型に再生
すること、 [2]次いで、純水を[1]と同様に上昇流で供給して
残留アルカリを洗浄すること、 [3]次いで、カラム上部より純水を下降流で供給して
下部出口からアルカリが実質的に流出しなくなるまで洗
浄すること、 [4]次いで、[3]と同様に第四級ホスホニウム化合
物水溶液を下降流にて供給して下部より水酸化第4級ホ
スホニウム水溶液を回収すること、[5]次いで、純水
を[4]と同様に下降流で供給し、残存する水酸化第四
級ホスホニウムを押し出しイオン交換を完結させること
を1サイクルとして、イオン交換することを特徴とする
水酸化第四級ホスホニウムの製造法。
(2) In the method for producing quaternary phosphonium hydroxide according to claim 1, [1] an aqueous alkaline solution is passed through the column in an upward flow from the bottom of the column to contact with an ion exchange resin to regenerate the resin into an OH type; [2] Then, as in [1], pure water is supplied in an upward flow to wash away the residual alkali. [3] Next, pure water is supplied in a downward flow from the upper part of the column until the alkali is substantially removed from the bottom outlet. [4] Next, similarly to [3], supply the quaternary phosphonium compound aqueous solution in a downward flow and recover the quaternary phosphonium hydroxide aqueous solution from the lower part; 5] Next, as in [4], pure water is supplied in a downward flow, and the remaining quaternary phosphonium hydroxide is extruded to complete the ion exchange, which is one cycle of ion exchange. Method for producing quaternary phosphonium.
(3)請求項1又は2の第四級ホスホニウムがテトラエ
チルホスホニウムブロマイド又はエチル硫酸テトラエチ
ルホスホニウムの水溶液であることを特徴とする水酸化
第四級ホスホニウムの製造法。
(3) A method for producing quaternary phosphonium hydroxide, wherein the quaternary phosphonium according to claim 1 or 2 is an aqueous solution of tetraethylphosphonium bromide or tetraethylphosphonium ethyl sulfate.
JP63242373A 1988-09-29 1988-09-29 Production of quaternary phosphonium hydroxide Granted JPH0291089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242373A JPH0291089A (en) 1988-09-29 1988-09-29 Production of quaternary phosphonium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242373A JPH0291089A (en) 1988-09-29 1988-09-29 Production of quaternary phosphonium hydroxide

Publications (2)

Publication Number Publication Date
JPH0291089A true JPH0291089A (en) 1990-03-30
JPH0544957B2 JPH0544957B2 (en) 1993-07-07

Family

ID=17088208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242373A Granted JPH0291089A (en) 1988-09-29 1988-09-29 Production of quaternary phosphonium hydroxide

Country Status (1)

Country Link
JP (1) JPH0291089A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230220A (en) * 1991-05-23 1993-07-27 Samsung Electronics Co., Ltd. Sterilizing/deodorizing apparatus for use in a refrigerator
EP1337470A1 (en) * 2000-10-20 2003-08-27 Sachem, Inc. Process for recovering onium hydroxides from solutions containing onium compounds
JP2016128529A (en) * 2015-01-09 2016-07-14 サンアプロ株式会社 Epoxy resin curing accelerator and epoxy resin composition for sealing semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230220A (en) * 1991-05-23 1993-07-27 Samsung Electronics Co., Ltd. Sterilizing/deodorizing apparatus for use in a refrigerator
EP1337470A1 (en) * 2000-10-20 2003-08-27 Sachem, Inc. Process for recovering onium hydroxides from solutions containing onium compounds
EP1337470A4 (en) * 2000-10-20 2004-11-24 Sachem Inc Process for recovering onium hydroxides from solutions containing onium compounds
JP2016128529A (en) * 2015-01-09 2016-07-14 サンアプロ株式会社 Epoxy resin curing accelerator and epoxy resin composition for sealing semiconductor

Also Published As

Publication number Publication date
JPH0544957B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
JP4788023B2 (en) Method for recovering catalyst components from liquid phase oxidation reaction mother liquor
US4560813A (en) Processes for the production of alkylene glycol in the presence of organometalate
KR101840951B1 (en) Aldehyde adsorbent, method for removing aldehyde, method for producing acetic acid, and method for regenerating aldehyde adsorbent
RU2185374C2 (en) Method of lactam treatment
US3941837A (en) Method of treating an aqueous solution of acrylamide
CN1061772A (en) From carbonylation process stream, remove the method for carbonyl impurities
US6508940B1 (en) Process for recovering onium hydroxides from solutions containing onium compounds
JPS61501630A (en) Method for producing alkylene glycol using metalate-containing solid material
JPH0291089A (en) Production of quaternary phosphonium hydroxide
CN100546720C (en) The manufacture method of modified ion-exchange resin and bisphenols
US4150241A (en) Process for the production of pure racemic acid and mesotartaric acid and separation of maleic acid from synthetic tartaric acid
US2993916A (en) Purification of ethylene oxide
JPS5855233B2 (en) Method for producing sebacic acid dimethyl ester
JP2013129613A (en) Method of producing trialkylene glycol
DE4034501A1 (en) METHOD FOR REMOVING METAL CORROSION PRODUCTS FROM WATER-FREE CARBONYLATION REACTIONS
JP2014234383A (en) Method for manufacturing a carbonyl compound
US4579983A (en) Process for the hydrolysis of alkylene oxides using organometalates
US4450287A (en) Butenyl acetate production
US4450289A (en) Butenyl acetate production
US3441376A (en) Process for producing an acid and a basic salt from an alkali metal halide
CA1058634A (en) Process for producing pure racemic acid and mesotartaric acid
CN110124755B (en) Process for producing alkanoic acid
JP3476226B2 (en) Purification method of methacrylamide aqueous solution
US4237317A (en) Process for producing sebacic acid
JPS5836680B2 (en) Method for producing sebacic acid diester