JPH029052B2 - - Google Patents

Info

Publication number
JPH029052B2
JPH029052B2 JP5953482A JP5953482A JPH029052B2 JP H029052 B2 JPH029052 B2 JP H029052B2 JP 5953482 A JP5953482 A JP 5953482A JP 5953482 A JP5953482 A JP 5953482A JP H029052 B2 JPH029052 B2 JP H029052B2
Authority
JP
Japan
Prior art keywords
acid
unsaturated polyester
unsaturated
group
glycidyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5953482A
Other languages
Japanese (ja)
Other versions
JPS58176209A (en
Inventor
Katsuo Kagaya
Katsuhiro Doi
Minoru Usuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5953482A priority Critical patent/JPS58176209A/en
Publication of JPS58176209A publication Critical patent/JPS58176209A/en
Publication of JPH029052B2 publication Critical patent/JPH029052B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐クラツク性および表面研摩性の優
れた塗膜や成形物等をもたらすことができる紫外
線硬化性不飽和ポリエステル樹脂組成物に関する
ものである。 最近社会的ニーズから省資源、省エネルギーに
適したより高性能の塗料の要求が深まつている。
この様な塗料として、(1)速硬化性である、(2)エネ
ルギーコストが低い、(3)無公害化が可能である等
の利点から紫外線硬化性塗料が使用されている。
例えば、木工塗装に於いて、最も使用量の多い中
塗り用塗料、いわゆるサンデイング塗料として空
気硬化性不飽和ポリエステル樹脂に光増感剤等を
添加して得られた紫外線硬化性塗料が使用されて
いる。しかしながら、かかる塗料は紫外線の照射
により硬化させた場合、表面乾燥性が十分でな
く、研摩性が悪く、しかも完全硬化させると塗膜
の内部歪が大きいためクラツクが発生する欠点が
ある。このクラツクの発生は、一般的に硬化機構
において紫外線硬化が従来の過酸化物とナフテン
酸コバルト、オクテン酸コバルトなどの有機金属
塩類による常温硬化に比べてラジカルの生成速度
が極端に大きく速硬化性であり、必然的に内部歪
を多く発生させる結果によると推定される。 特に光増感剤や光照射装置の進歩により、硬化
速度をますます大きくすることが可能となつて生
産性の向上が図られてきた反面、上述の如きクラ
ツクの問題が一層大きなトラブルとなり、その改
良が望まれている。かかる欠点を改良するため
に、(1)硬化物の架橋密度を下げて塗膜の軟質化を
図る方法、(2)樹脂分子中あるいは架橋剤に可撓性
骨格を導入する方法が主に行なわれてきた。しか
しながら、これらの方法では、クラツクの改良が
十分でないばかりか、硬化塗膜の硬度および耐薬
品性の低下や、表面乾燥性を悪化させ研摩ができ
ない等の作業性に悪影響をおよぼす欠陥を有して
いる。 本発明者らは、特にサンデイング塗料に必要な
塗膜特性および作業特性を低下させることなく、
耐クラツク性に優れた表面研摩性の良好な樹脂組
成物について鋭意研究した結果、末端カルボキシ
ル基含有不飽和ポリエステルに不飽和一塩基酸の
グリシジル化合物を付加反応せしめた不飽和ポリ
エステル樹脂と、アリルエーテル基を含有する不
飽和ポリエステル樹脂とを混合することにより、
耐クラツク性および表面研摩性の優れた紫外線硬
化性不飽和ポリエステル樹脂組成物を見い出し、
本発明を完成するに至つた。 即ち、本発明は(A)分子末端にカルボキシル基を
含有する不飽和ポリエステルのカルボキシル基
と、不飽和一塩基酸のグリシジルエステルのグリ
シジル基とを反応せしめて得られる不飽和ポリエ
ステルと、(B)不飽和多塩基酸またはその無水物、
必要により飽和多塩基酸またはその無水物を含む
多塩基酸と多価アルコールと、多塩基酸のカルボ
キシル基と反応する水酸基またはグリシジル基を
有し、且つアリルエーテル基を有する化合物とを
縮合反応せしめて得られる不飽和ポリエステル
と、(C)重合性単量体とを含む紫外線硬化性不飽和
ポリエステル樹脂組成物を提供するものである。 本発明の組成物は両ポリエステル成分(A),(B)を
含むことにより、特に耐クラツク性および表面研
摩性の物性に於いて予想以上の改善、即ち相乗効
果を端的に示すものである。 本発明組成物を構成する前記不飽和ポリエステ
ル(A)とは、たとえば不飽和多塩基酸またはその無
水物、必要により飽和多塩酸または無水物を含む
酸成分と多価アルコール成分とを当量比で酸成分
が過剰となるように反応して得られるエステル化
重合物、即ち、分子末端にカルボキシル基を含有
する不飽和ポリエステルのカルボキシル基と不飽
和一塩基酸のグリシジルエステル(以下、不飽和
グリシジル化合物という)のグリシジル基とを付
加反応せしめた不飽和ポリエステルを指称するも
のである。この際の分子末端にカルボキシル基を
含有する不飽和ポリエステルは好ましくは両末端
がカルボキシル基の線状のものであるが、両末端
のうちの一端の50%以下、好ましくは75%以下を
水酸基に代えた末端カルボキシル基含有不飽和ポ
リエステルも使用できる。又、このポリエステル
は通常酸価25〜145のものである。このポリエス
テルを構成する一成分である不飽和グリシジル化
合物としては、アクリル酸、メタクリル酸等の不
飽和一塩基酸のグリシジルエステル、例えばグリ
シジルアクリレート、グリシジルメタクリレート
等、尚、かかる不飽和グリシジル化合物としては
グリシジルアクリレート、グリシジルメタクリレ
ート等のα,β―不飽和一塩基酸のグリシジルエ
ステルが好ましい。又、不飽和ポリエステルAの
必須成分である不飽和多塩基酸またはその無水物
としては、マレイン酸、フマール酸、イタコン
酸、シトラコン酸、メタコン酸、塩素化マレイン
酸等の如き公知慣用のα,β―不飽和多塩基酸ま
たはその無水物の中から選ばれるものである。
尚、必要により併用し得る飽和多塩基酸またはそ
の無水物としては、例えばフタル酸、無水フタル
酸、テトラハイドロ無水フタル酸、シス―3―メ
チル―4―シクロヘキセン―シス,シス―1,2
―ジカルボン酸無水物、イソフタル酸、テレフタ
ル酸、ジメチルテレフタル酸、モノクロルフタル
酸、ジクロルフタル酸、トリクロルフタル酸、ヘ
ツト酸、テトラブロムフタル酸、セバチン酸、コ
ハク酸、アジピン酸、グルタル酸、ピメリン酸、
トリメリツト酸、ピロメリツト酸等の公知慣用の
飽和酸またはその無水物あるいはエステル物を用
いることができる。尚、好ましくは、シス―3―
メチル―4―シクロヘキセン―シス,シス―1,
2―ジカルボン酸無水物などの空乾特性を有する
化合物が良い。 不飽和ポリエステル(A)の多価アルコール成分と
しては、エチレングリコール、ジエチレングリコ
ール、トリエチレングリコール、ポリエチレング
リコール、プロピレングリコール、ジプロピレン
グリコール、トリプロピレングリコール、ポリプ
ロピレングリコール、1,3―ブチレングリコー
ル、2,3―ブチレングリコール、1,4―ブチ
レングリコール、ネオペンチルグリコール、ヘキ
シレングリコール、オクチルグリコール、トリメ
チロールプロパン、グレセリン、ペンタエリスリ
トール、ハイドロキノンのエチレンオキサイドま
たはプロピレンオキサイド付加物、水添ビスフエ
ノールA、トリシクロデカンジメチロール等の公
知慣用の多価アルコール類が挙げられる。 尚、かかる不飽和ポリエステル(A)中の付加され
た不飽和グリシジル化合物の量は、通常不飽和ポ
リエステル(A)中5〜30重量%、好ましくは10〜15
重量%となる量が適当である。 本発明組成物を構成する「アリルエーテル基含
有不飽和ポリエステル(B)」とは、不飽和多塩基酸
またはその無水物、必要により飽和多塩基酸また
はその無水物を含む酸成分と多価アルコール成分
と、酸成分のカルボキシル基と反応する水酸基ま
たはグリシジル基を有し、且つアリルエーテル基
を有する化合物(以下、アリルエーテル基含有化
合物という)とを縮合反応せしめて得られるもの
を指称する。この際、アリルエーテル基含有化合
物は他の成分と同時に混合されて反応に供され
る。 かかるアリルエーテル基含有化合物としては、
公知慣用のものがいずれも使用できるが、そのう
ちでも代表的なものとしては、エチレングリコー
ルモノアリルエーテル、ジエチレングリコールモ
ノアリルエーテル、トリエチレングリコールモノ
アリルエーテル、ポリエチレングリコールモノア
リルエーテル、プロピレングリコールモノアリル
エーテル、ジプロピレングリコールモノアリルエ
ーテル、トリプロピレングリコールモノアリルエ
ーテル、ポリプロピレングリコールモノアリルエ
ーテル、1,2―ブチレングリコールモノアリル
エーテル、1,3―ブチレングリコールモノアリ
ルエーテル、ヘキシレングリコールモノアリルエ
ーテル、オクチレングリコールモノアリルエーテ
ル、トリメチロールプロパンモノアリルエーテ
ル、トリメチロールプロパンジアリルエーテル、
グリセリンモノアリルエーテル、グリセリンジア
リルエーテル、ペンタエリスリトールモノアリル
エーテル、ペンタエリスリトールジアリルエーテ
ル、ペンタエリスリトールトリアリルエーテルな
どの多価アルコール類のアリルエーテル化合物;
アリルグリシジルエーテルなどの如きオキシラン
環を有するアリルエーテル化合物などが挙げられ
る。 又、不飽和ポリエステル(B)の構成成分である酸
成分や多価アルコール成分は、前記不飽和ポリエ
ステル(A)を構成する酸成分および多価アルコール
成分と同様のものが用いられる。その他に、一価
アルコール、ジシクロペンタジエンまたはその誘
導体、ロジンまたはエステルガム類、油脂類等も
併用できる。 尚、不飽和ポリエステル(B)中のアリルエーテル
基の量は通常、前記アリルエーテル基含有化合物
の使用量で特定され、具体的には該化合物が不飽
和ポリエステル(B)中5〜30重量%、好ましくは8
〜25重量%となる量が適当である。 本発明組成物を構成する他の必須成分たる前記
「重合性単量体(C)」としては、公知慣用のもので
あればいずれも用いることができるが、そのうち
の代表的なものとしては、スチレン、α―メチル
スチレン、ビニルトルエン、クロルスチレン、ア
クリル酸もしくはメタクリン酸またはそれらのア
ルキルエステル、アクリロニトリル、酢酸ビニ
ル、酢酸アリル、トリアリルシアヌレート、トリ
アリルイソシアヌレート、アクリルアマイド、ダ
イアセトンアクリルアマイド、ジアリルフタレー
トなどが挙げられるが、就中スチレンまたはメタ
クリル酸アルキルエステルが好適である。 本発明の組成物に於ける不飽和ポリエステル(A)
と(B)との配合割合は、通常前者:後者(重量比)
が9:1〜3:7、好ましくは8:2〜5:5で
ある。又、重合性単量体と、不飽和ポリエステル
(A)及び(B)の合計量との重量比(固形分比)は2:
8〜6:4が適当である。 以上述べたような構成になる本発明組成物を紫
外線硬化させる場合には光増感性物質が添加さ
れ、その具体的なものとしてはベンゾイン、ベン
ゾインメチルエーテル、ベンゾインエチルエーテ
ル、ベンジル、ジフエニルジサルフアイド、テト
ラメチル―チウラムモノサルフアイド、p―tert
―ブチルトリクロロアセトフエノン、p―tert―
ブチルジクロロアセトフエノン、2,2―ジメト
キシ―2―フエニルアセトフエノンの如き公知慣
用のものの一種または二種以上が使用することが
できる。 また、本発明の組成物に表面乾燥性の改良補助
剤としてナフテン酸コバルト、オクテン酸コバル
トなどの有機金属塩類を併用することができる。
さらに本発明組成物に対しては、目的に応じて他
の慣用の不飽和ポリエステル樹脂、ビニルエステ
ル樹脂、ビニルウレタン樹脂、ビニルエステルウ
レタン樹脂、ポリイソシアネート、ポリエポキシ
ド、アクリル樹脂類、アルキド樹脂類、尿素樹脂
類、メラミン樹脂類、ポリ酢酸ビニル、酢酸ビニ
ル系共重合体、ポリジエン系エラストマー、飽和
ポリエステル類、飽和ポリエーテル類やニトロセ
ルローズ、セルローズ―アセテートブチレートな
どのセルローズ誘導体やアマニ油、桐油、大豆
油、ヒマシ油、エポキシ化油などの油脂類の如き
天然及び合成高分子物質;炭酸カルシウム、タル
ク、マイカ、クレー、シリカパウダー、コロイダ
ルシリカ、アスベスト粉末、硫酸バリウム、水酸
化アルミニウム、ステアリン酸亜鉛、チタン白、
亜鉛華、ベンガラまたはアゾ顔料などの各種充填
剤や顔料;ハイドロキノン、ベンゾキノン、トル
ハイドロキノン、p―tert―ブチルカテコール、
2,6―ジ―tert―ブチル―4―メチルフエノー
ルなどの重合禁止剤を添加することもできる。 かくして得られた本発明の組成物は、家具、楽
器などの木工製品の塗装用ばかりでなく、金属サ
ーフエサー、トツプコートなどの金属塗装用をは
じめ種々の基材への塗装に適するほか、さらには
FRP成形用などとしても利用できる。 次に本発明を参考例、実施例および比較例によ
り詳細に説明するが本発明はこれら実施例に限定
されるものではない。以下において部および%は
特に断りのないかぎりはすべて重量基準であるも
のとする。 参考例1 〔不飽和ポリエステル樹脂(A)の調製〕 イソフタル酸166g(1モル)およびジエチレ
ングリコール180g(1.7モル)を不活性ガス気流
中215℃で加熱脱水縮合させて固形分の酸価が7
なる中間体―1を得た。次いで、この中間体―1
を160℃に冷却させたのち、ハイドロキノン0.02
gおよびフマル酸116g(1モル)を加え、200℃
で8時間加熱反応させて不飽和ポリエステルを得
た。 しかる後、このポリエステルをスチレン162g
に溶解せしめて酸価59なる中間体―2を得た。次
いでこの中間体―2に2―メチルイミダゾール
1.1gおよびグリシジルメタクリレート86g(0.6
モル)を加えて80℃で10時間開環付加反応させて
酸価4、ガードナー粘度(以下これを単に粘度と
略記する。)X―Yなる不飽和ポリエステル樹脂
を得た。以下これを樹脂(A)と略記する。 参考例2 〔不飽和ポリエステル樹脂(B)の調製〕 無水マレイン酸196g(2モル)およびジエチ
レングリコール159g(1.5モル)を不活性ガス気
流中で200℃にて加熱脱水縮合させて固形分の酸
価が171なる中間体を得た。次いでこの中間体を
冷却させたのち、トリメチロールプロパンジアリ
ルエーテル214g(1モル)、グリセリン46g
(0.5モル)およびハイドロキノン0.04gを加えて
不活性ガス気流中において、180℃で10時間加熱
脱水縮合させて不飽和ポリエステルを得た。しか
る後、このポリエステルをスチレン162gに溶解
せしめて粘度U―Vなる不飽和ポリエステル樹脂
を得た。以下、これを樹脂(B)と略記する。 参考例3 〔比較対照用不飽和ポリエステルの調
製〕 無水マレイン酸98g(1モル)、無水フタル酸
148g(1モル)、プロピレングリコール160g
(2.1モル)およびハイドロキノン0.06gを仕込み
不活性ガス気流中200℃で12時間加熱脱水縮合さ
せて固形分の酸価が27.2なる不飽和ポリエステル
を得た。このポリエステル全量370gにスチレン
182gを加えて溶解せしめ、酸価18、粘度S―T
なる不飽和ポリエステル樹脂を得た。以下、これ
を樹脂(C)と略記する。 参考例1〜3で得られた不飽和ポリエステル樹
脂(A),(B)および(C)なる樹脂の各種の恒数を測定し
た。これらの結果はまとめて第1表に示す。
The present invention relates to an ultraviolet curable unsaturated polyester resin composition that can provide coatings, molded articles, etc. with excellent crack resistance and surface abrasiveness. Recently, there has been a growing demand for higher performance paints that are suitable for resource and energy conservation due to social needs.
As such paints, ultraviolet curable paints are used because of their advantages such as (1) fast curing, (2) low energy costs, and (3) non-polluting properties.
For example, in wood painting, UV-curable paints obtained by adding photosensitizers to air-curable unsaturated polyester resins are used as intermediate coating paints, so-called sanding paints, which are the most commonly used paints. There is. However, when such a paint is cured by irradiation with ultraviolet rays, its surface dryness is insufficient, its abrasiveness is poor, and furthermore, when it is completely cured, it has the disadvantage that cracks occur due to the large internal distortion of the paint film. The reason for the occurrence of this crack is that, in general, in the curing mechanism, ultraviolet curing has an extremely high radical generation rate and is fast curing compared to conventional room temperature curing using peroxide and organometallic salts such as cobalt naphthenate and cobalt octenoate. This is presumed to be due to the fact that a large amount of internal distortion inevitably occurs. In particular, advances in photosensitizers and light irradiation equipment have made it possible to increase curing speeds and improve productivity, but on the other hand, the problem of cracks as described above has become an even bigger problem. Improvements are desired. In order to improve these drawbacks, the main methods used are (1) to lower the crosslinking density of the cured product to soften the coating film, and (2) to introduce a flexible skeleton into the resin molecule or the crosslinking agent. It's been coming. However, these methods not only do not sufficiently improve cracks, but also have defects that adversely affect workability, such as a decrease in the hardness and chemical resistance of the cured coating, and poor surface dryness, making polishing impossible. ing. In particular, the inventors of the present invention have found that without reducing the film properties and working properties necessary for sanding paints,
As a result of intensive research on resin compositions with excellent crack resistance and good surface abrasiveness, we discovered that unsaturated polyester resins are made by addition-reacting unsaturated polyesters containing terminal carboxyl groups with glycidyl compounds, which are unsaturated monobasic acids, and allyl ethers. By mixing with an unsaturated polyester resin containing groups,
Discovered an ultraviolet curable unsaturated polyester resin composition with excellent crack resistance and surface abrasiveness,
The present invention has now been completed. That is, the present invention provides (A) an unsaturated polyester obtained by reacting the carboxyl group of an unsaturated polyester containing a carboxyl group at the molecular end with the glycidyl group of a glycidyl ester of an unsaturated monobasic acid, and (B) unsaturated polybasic acid or its anhydride,
If necessary, a polybasic acid containing a saturated polybasic acid or its anhydride, a polyhydric alcohol, and a compound having a hydroxyl group or a glycidyl group that reacts with the carboxyl group of the polybasic acid and an allyl ether group are subjected to a condensation reaction. The present invention provides an ultraviolet curable unsaturated polyester resin composition containing an unsaturated polyester obtained by the above method and (C) a polymerizable monomer. By containing both polyester components (A) and (B), the composition of the present invention clearly shows unexpected improvements in physical properties, particularly crack resistance and surface abrasiveness, that is, a synergistic effect. The unsaturated polyester (A) constituting the composition of the present invention is composed of an acid component containing an unsaturated polybasic acid or its anhydride, optionally a saturated polyhydrochloric acid or anhydride, and a polyhydric alcohol component in an equivalent ratio. An esterified polymer obtained by reacting the acid component in excess, that is, a glycidyl ester of an unsaturated monobasic acid and a carboxyl group of an unsaturated polyester containing a carboxyl group at the molecular end (hereinafter referred to as an unsaturated glycidyl compound) It refers to an unsaturated polyester that has undergone an addition reaction with the glycidyl group of In this case, the unsaturated polyester containing carboxyl groups at the molecular ends is preferably linear with carboxyl groups at both ends, but 50% or less, preferably 75% or less of one end of both ends is a hydroxyl group. Alternative unsaturated polyesters containing terminal carboxyl groups can also be used. Further, this polyester usually has an acid value of 25 to 145. Examples of the unsaturated glycidyl compound which is a component constituting this polyester include glycidyl esters of unsaturated monobasic acids such as acrylic acid and methacrylic acid, such as glycidyl acrylate and glycidyl methacrylate. Glycidyl esters of α,β-unsaturated monobasic acids such as acrylates and glycidyl methacrylates are preferred. Further, as the unsaturated polybasic acid or its anhydride which is an essential component of the unsaturated polyester A, known and commonly used α, such as maleic acid, fumaric acid, itaconic acid, citraconic acid, methaconic acid, chlorinated maleic acid, It is selected from β-unsaturated polybasic acids or their anhydrides.
In addition, examples of saturated polybasic acids or anhydrides thereof that can be used in combination if necessary include phthalic acid, phthalic anhydride, tetrahydrophthalic anhydride, cis-3-methyl-4-cyclohexene-cis, cis-1,2
-Dicarboxylic acid anhydride, isophthalic acid, terephthalic acid, dimethyl terephthalic acid, monochlorophthalic acid, dichlorophthalic acid, trichlorophthalic acid, hettic acid, tetrabromophthalic acid, sebacic acid, succinic acid, adipic acid, glutaric acid, pimelic acid,
Known and commonly used saturated acids such as trimellitic acid and pyromellitic acid, or their anhydrides or esters can be used. In addition, preferably cis-3-
Methyl-4-cyclohexene-cis, cis-1,
A compound having air-drying properties such as 2-dicarboxylic anhydride is preferred. The polyhydric alcohol component of the unsaturated polyester (A) includes ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 1,3-butylene glycol, 2,3 -Butylene glycol, 1,4-butylene glycol, neopentyl glycol, hexylene glycol, octyl glycol, trimethylolpropane, glycerin, pentaerythritol, ethylene oxide or propylene oxide adduct of hydroquinone, hydrogenated bisphenol A, tricyclode Known and commonly used polyhydric alcohols such as candimethylol can be mentioned. The amount of the added unsaturated glycidyl compound in the unsaturated polyester (A) is usually 5 to 30% by weight, preferably 10 to 15% by weight in the unsaturated polyester (A).
An appropriate amount is expressed as % by weight. "Allyl ether group-containing unsaturated polyester (B)" constituting the composition of the present invention refers to an acid component containing an unsaturated polybasic acid or its anhydride, optionally a saturated polybasic acid or its anhydride, and a polyhydric alcohol. It refers to a product obtained by condensing a component with a compound having a hydroxyl group or a glycidyl group that reacts with the carboxyl group of the acid component and also having an allyl ether group (hereinafter referred to as an allyl ether group-containing compound). At this time, the allyl ether group-containing compound is simultaneously mixed with other components and subjected to the reaction. Such allyl ether group-containing compounds include:
Any known and commonly used ones can be used, but representative ones include ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, triethylene glycol monoallyl ether, polyethylene glycol monoallyl ether, propylene glycol monoallyl ether, Dipropylene glycol monoallyl ether, tripropylene glycol monoallyl ether, polypropylene glycol monoallyl ether, 1,2-butylene glycol monoallyl ether, 1,3-butylene glycol monoallyl ether, hexylene glycol monoallyl ether, octylene glycol Monoallyl ether, trimethylolpropane monoallyl ether, trimethylolpropane diallyl ether,
Allyl ether compounds of polyhydric alcohols such as glycerin monoallyl ether, glycerin diallyl ether, pentaerythritol monoallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether;
Examples include allyl ether compounds having an oxirane ring such as allyl glycidyl ether. Further, as the acid component and the polyhydric alcohol component which are the constituent components of the unsaturated polyester (B), the same ones as the acid component and the polyhydric alcohol component which constitute the unsaturated polyester (A) are used. In addition, monohydric alcohols, dicyclopentadiene or its derivatives, rosin or ester gums, oils and fats, etc. can also be used in combination. The amount of allyl ether group in the unsaturated polyester (B) is usually specified by the amount of the allyl ether group-containing compound used, and specifically, the amount of the allyl ether group-containing compound is 5 to 30% by weight in the unsaturated polyester (B). , preferably 8
An amount of ~25% by weight is suitable. As the above-mentioned "polymerizable monomer (C)" which is another essential component constituting the composition of the present invention, any known and commonly used monomer can be used, but representative ones include: Styrene, α-methylstyrene, vinyltoluene, chlorostyrene, acrylic acid or methacrylic acid or their alkyl esters, acrylonitrile, vinyl acetate, allyl acetate, triallyl cyanurate, triallyl isocyanurate, acrylamide, diacetone acrylamide, Examples include diallyl phthalate, among which styrene or methacrylic acid alkyl ester is preferred. Unsaturated polyester (A) in the composition of the invention
The mixing ratio of and (B) is usually the former: the latter (weight ratio)
is from 9:1 to 3:7, preferably from 8:2 to 5:5. In addition, polymerizable monomers and unsaturated polyesters
The weight ratio (solid content ratio) to the total amount of (A) and (B) is 2:
A ratio of 8 to 6:4 is appropriate. When the composition of the present invention having the structure described above is cured by ultraviolet light, a photosensitizing substance is added, and specific examples thereof include benzoin, benzoin methyl ether, benzoin ethyl ether, benzyl, and diphenyl disulfide. Ido, tetramethyl-thiuram monosulfide, p-tert
-Butyltrichloroacetophenone, p-tert-
One or more of known and commonly used compounds such as butyldichloroacetophenone and 2,2-dimethoxy-2-phenylacetophenone can be used. Furthermore, organometallic salts such as cobalt naphthenate and cobalt octenoate can be used in combination with the composition of the present invention as an aid for improving surface drying properties.
Furthermore, the composition of the present invention may be used with other conventional unsaturated polyester resins, vinyl ester resins, vinyl urethane resins, vinyl ester urethane resins, polyisocyanates, polyepoxides, acrylic resins, alkyd resins, urea resins, etc., depending on the purpose. Resins, melamine resins, polyvinyl acetate, vinyl acetate copolymers, polydiene elastomers, saturated polyesters, saturated polyethers, nitrocellulose, cellulose derivatives such as cellulose-acetate butyrate, linseed oil, tung oil, large Natural and synthetic polymeric substances such as oils and fats such as bean oil, castor oil, epoxidized oil; calcium carbonate, talc, mica, clay, silica powder, colloidal silica, asbestos powder, barium sulfate, aluminum hydroxide, zinc stearate, titanium white,
Various fillers and pigments such as zinc white, red iron or azo pigments; hydroquinone, benzoquinone, toluhydroquinone, p-tert-butylcatechol,
A polymerization inhibitor such as 2,6-di-tert-butyl-4-methylphenol may also be added. The composition of the present invention thus obtained is suitable not only for coating wood products such as furniture and musical instruments, but also for coating various substrates including metal coatings such as metal surfers and top coats.
It can also be used for FRP molding. Next, the present invention will be explained in detail using reference examples, working examples, and comparative examples, but the present invention is not limited to these examples. In the following, all parts and percentages are based on weight unless otherwise specified. Reference Example 1 [Preparation of unsaturated polyester resin (A)] 166 g (1 mol) of isophthalic acid and 180 g (1.7 mol) of diethylene glycol were heated and dehydrated and condensed at 215°C in an inert gas stream until the acid value of the solid content was 7.
Intermediate-1 was obtained. Next, this intermediate-1
After cooling to 160℃, hydroquinone 0.02
g and 116 g (1 mol) of fumaric acid, and heated to 200°C.
The mixture was heated and reacted for 8 hours to obtain an unsaturated polyester. After that, add 162g of styrene to this polyester.
Intermediate-2 with an acid value of 59 was obtained. Then, 2-methylimidazole was added to this intermediate-2.
1.1g and glycidyl methacrylate 86g (0.6
A ring-opening addition reaction was carried out at 80° C. for 10 hours to obtain an unsaturated polyester resin having an acid value of 4 and a Gardner viscosity (hereinafter simply referred to as viscosity) XY. Hereinafter, this will be abbreviated as resin (A). Reference Example 2 [Preparation of unsaturated polyester resin (B)] 196 g (2 mol) of maleic anhydride and 159 g (1.5 mol) of diethylene glycol were subjected to dehydration condensation under heating at 200°C in an inert gas stream to determine the acid value of the solid content. An intermediate with 171 was obtained. After cooling this intermediate, 214 g (1 mol) of trimethylolpropane diallyl ether and 46 g of glycerin were added.
(0.5 mol) and 0.04 g of hydroquinone were added, followed by dehydration condensation under heating at 180° C. for 10 hours in an inert gas stream to obtain an unsaturated polyester. Thereafter, this polyester was dissolved in 162 g of styrene to obtain an unsaturated polyester resin having a viscosity of UV. Hereinafter, this will be abbreviated as resin (B). Reference Example 3 [Preparation of unsaturated polyester for comparison] 98 g (1 mol) of maleic anhydride, phthalic anhydride
148g (1 mole), propylene glycol 160g
(2.1 mol) and 0.06 g of hydroquinone were charged and subjected to dehydration condensation under heating at 200° C. for 12 hours in an inert gas stream to obtain an unsaturated polyester having an acid value of 27.2 in solid content. Styrene is added to the total amount of polyester (370g).
Add 182g and dissolve, acid value 18, viscosity ST
An unsaturated polyester resin was obtained. Hereinafter, this will be abbreviated as resin (C). Various constants of the unsaturated polyester resins (A), (B) and (C) obtained in Reference Examples 1 to 3 were measured. These results are summarized in Table 1.

〔判定基準〕〔Judgment criteria〕

◎―僅かな力で容易にサンデイングが可能であ
る。 〇―比較的容易にサンデイングできる。 △―少しペーパーの目詰まりも認められるが、サ
ンデイング自体は可能である。 ×―ペーパーの目詰まりも多くサンデイングも困
難である。 Γ鉛筆硬度……JIS―K―5400に従つて測定した。
◎ - Can be easily sanded with a small amount of force. 〇 - Can be sanded relatively easily. △ - Slight clogging of the paper is observed, but sanding itself is possible. - Paper is often clogged and sanding is difficult. Γ Pencil hardness: Measured according to JIS-K-5400.

【表】 第2表より明らかな如く、本発明組成物は耐ク
ラツク性および表面研摩性のいずれも優れるもの
であることが判明した。
[Table] As is clear from Table 2, the composition of the present invention was found to be excellent in both crack resistance and surface abrasiveness.

Claims (1)

【特許請求の範囲】 1 (A) 分子末端にカルボキシル基を含有する不
飽和ポリエステルのカルボキシル基と、不飽和
一塩基酸のクリシジルエステルのグリシジル基
とを反応せしめて得られる不飽和ポリエステル
と、 (B) 不飽和多塩基酸またはその無水物、必要によ
り飽和多塩基酸またはその無水物を含む多塩基
酸と多価アルコールと、多塩基酸のカルボキシ
ル基と反応する水酸基またはグリシジル基を有
し、且つアリルエーテル基を有する化合物とを
縮合反応せしめて得られる不飽和ポリエステル
と、 (C) 重合性単量体 とを含むことを特徴とする紫外線硬化性不飽和ポ
リエステル樹脂組成物。
[Scope of Claims] 1 (A) An unsaturated polyester obtained by reacting the carboxyl group of an unsaturated polyester containing a carboxyl group at the molecular end with the glycidyl group of a cricidyl ester of an unsaturated monobasic acid; (B) An unsaturated polybasic acid or its anhydride, optionally a polybasic acid containing a saturated polybasic acid or its anhydride, a polyhydric alcohol, and a hydroxyl group or glycidyl group that reacts with the carboxyl group of the polybasic acid. , and a compound having an allyl ether group, and (C) a polymerizable monomer.
JP5953482A 1982-04-12 1982-04-12 Ultraviolet ray-curable unsaturated polyester resin composition Granted JPS58176209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5953482A JPS58176209A (en) 1982-04-12 1982-04-12 Ultraviolet ray-curable unsaturated polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5953482A JPS58176209A (en) 1982-04-12 1982-04-12 Ultraviolet ray-curable unsaturated polyester resin composition

Publications (2)

Publication Number Publication Date
JPS58176209A JPS58176209A (en) 1983-10-15
JPH029052B2 true JPH029052B2 (en) 1990-02-28

Family

ID=13116019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5953482A Granted JPS58176209A (en) 1982-04-12 1982-04-12 Ultraviolet ray-curable unsaturated polyester resin composition

Country Status (1)

Country Link
JP (1) JPS58176209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126449U (en) * 1990-03-31 1991-12-19

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002976A (en) * 1989-02-23 1991-03-26 Radcure Specialties, Inc. Radiation curable acrylate polyesters
JP2756825B2 (en) * 1989-05-15 1998-05-25 昭和電工株式会社 Allyl-based thermosetting resin composition
JP2005008857A (en) * 2003-05-28 2005-01-13 Showa Denko Kk Curable polymer compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126449U (en) * 1990-03-31 1991-12-19

Also Published As

Publication number Publication date
JPS58176209A (en) 1983-10-15

Similar Documents

Publication Publication Date Title
EP1194493B2 (en) Fast-dry, high solids coatings based on modified alkyd resins
JP3376033B2 (en) Radiation-curable compositions and uses thereof
EP0002866B1 (en) Process for coating a substrate with a radiation curable coating composition
KR20070038984A (en) Radiation curable composition consisting of unsaturated amorphous polyesters and reactive dilutant agents
SK51494A3 (en) Radical hardenable varnish composition and its using as furniture varnish
JP2001520686A (en) Powder coating binder composition
CN112778464A (en) Styrene-free unsaturated polyester resin and preparation method and application thereof
JPH029052B2 (en)
EP1495064B1 (en) Fast-dry, high solids coating compositions based on acetoacetate-functionalizedalkyd resins
JP3024238B2 (en) UV curable resin composition for sanding paint and woodwork using the same
JPH0834956A (en) Curable composition having improved adhesion and its use forcoating substrate
JPS6039283B2 (en) Method for producing polybutadiene-modified unsaturated polyester
JPH0150327B2 (en)
US4104215A (en) Odorless or low-odor resinous composition
JPS601901B2 (en) Air-curable unsaturated polyester resin composition for paints
JP3355760B2 (en) Unsaturated polyester resin composition for electrostatic coating, paint, coating method
US3215656A (en) Unsaturated polyester resins
JPH04300910A (en) Vinyl ester resin composition and coating composition using the same
JP2546253B2 (en) Non-wax type unsaturated polyester resin composition for paints
JP3114176B2 (en) Resin composition for coating
JPH04114021A (en) Resin composition curable with actinic energy ray
JP2000239328A (en) Unsaturated polyester resin composition
JPH0317850B2 (en)
JPH09272723A (en) Resin composition for electrical insulation
JPH0150329B2 (en)