JPH0290040A - Microscope type spectrophotometer - Google Patents

Microscope type spectrophotometer

Info

Publication number
JPH0290040A
JPH0290040A JP24109688A JP24109688A JPH0290040A JP H0290040 A JPH0290040 A JP H0290040A JP 24109688 A JP24109688 A JP 24109688A JP 24109688 A JP24109688 A JP 24109688A JP H0290040 A JPH0290040 A JP H0290040A
Authority
JP
Japan
Prior art keywords
spectrophotometer
stage
infrared
mirror
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24109688A
Other languages
Japanese (ja)
Other versions
JP2539500B2 (en
Inventor
Kinya Eguchi
江口 欣也
Kikue Niitsuma
新妻 喜久枝
Masayoshi Ezawa
江沢 正義
Shigeru Wakana
若菜 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63241096A priority Critical patent/JP2539500B2/en
Publication of JPH0290040A publication Critical patent/JPH0290040A/en
Application granted granted Critical
Publication of JP2539500B2 publication Critical patent/JP2539500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure spectroscopic luminous intensity at the minute part of a large specimen by using a specimen stage wherein an optical means for converting light rays for analysis into parallel light rays and an optical means for receiving the light rays and projecting the light rays on the specimen are built in. CONSTITUTION:When measurement is performed in a reflecting mode, parallel infrared rays 35 from a spectrophotometer 34 are reflected through a switching planar reflecting mirror 10, a parabolic reflecting mirror 11, elliptical reflecting mirror 32, an aperture 33 and an edge mirror 16. The infrared rays which are reflected from a specimen on a specimen stage 15 are made to pass the rear side of the edge mirror 16 and detected with an infrared-ray detector 17. When measurement is performed in a a transmitting mode, the reflecting mirror 10 is switched, and the focal point is formed on the stage 15 by passing the infrared rays 35 through a planar reflecting mirror 12, a parabolic reflecting mirror 18, planar reflecting mirrors 19 and 20 and an elliptical reflecting mirror 14. Here, the reflecting mirrors 18, 14, 19 and 20 are mounted on a boat type stage 21. Therefore, even a large specimen can be mounted on the stage 21. The spectroscopic luminous intensity at the minute part of the surface of the large specimen can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は極微小部分の赤外吸収スペクトルを測定する装
置に係り、とくに測定部位の観察も同時に行なう事が出
来、極微部分の物質の分析が的確に行なうに好適な赤外
吸収スペクトル測定用顕微鏡装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an apparatus for measuring infrared absorption spectra of extremely small parts, and in particular, it is capable of simultaneously observing the measurement site and is useful for analyzing substances in extremely small parts. The present invention relates to a microscope device for measuring infrared absorption spectra, which is suitable for accurately measuring infrared absorption spectra.

〔従来の技術〕[Conventional technology]

一般に赤外吸収スペクトル測定装置は既に知られておシ
、赤外線光源、赤外線の各波長成分毎の赤外a強度を得
るためのモノクロメータ、又は干渉計及び赤外線検出器
、試料室等から構成されている。極微小部分の赤外吸収
スペクトルの測定は干渉計を用いたフーリエ赤外分光光
度計が高感度であるがゆえに従来、ロバートG ミッサ
ーシュミットがASTMスタンダード949ザデザイン
、サンプルハンドリングアンドアプリケイションオプイ
ンフラレッドマイクロスコープス(The Desig
n、 Sample Handling and Ap
−11oation of Infrared Mio
roscopes、 ASTMSTD 949. Am
erican 5ociet7 for Testin
gand Materials + Ph1ladel
phia (1987)、 〕の27員〜31頁やマー
シャルデツカ−社出版のインフラレッドマイクロスコピ
ー[PraticalSpaotroacop75ar
ies Volume 6 InfraredMicr
ospectrosoop711ted b)’ Ro
bart GMesaersohmまdt MARCF
jL DlilKKFVRINC,(198B)、)の
85〜87頁に論じているような顕微鏡装置との組合せ
で行なわれている。
Generally, an infrared absorption spectrum measuring device is already known and consists of an infrared light source, a monochromator for obtaining infrared a intensity for each wavelength component, an interferometer, an infrared detector, a sample chamber, etc. ing. Fourier infrared spectrophotometers using interferometers are highly sensitive for measuring infrared absorption spectra in extremely small areas. Red Microscopes (The Desig)
n, Sample Handling and Ap
-11 oation of Infrared Mio
roscopes, ASTM STD 949. Am
erican 5ociet7 for Testin
gand Materials + Ph1ladel
phia (1987), pp. 27-31, and Infrared Microscopy [Practical Spaotroacop 75ar, published by Marshall Detzker Publishing Co., Ltd.].
ies Volume 6 InfraredMicr
ospectrosoop711ted b)' Ro
bart GMesaersohmmadt MARCF
This has been done in combination with a microscopic apparatus such as that discussed in JL DliilKKFVRINC, (198B), pages 85-87.

これらには第4,5図に示した様な顕微鏡の概略図面記
載されている。第4図の1及び第5図のIFi試料ステ
ージ、第4図の2.5および第5図の2は反射対物レン
ズ、第5因の3は試料を照明するための楕円面反射集光
鏡、第4図の4,4及び第5図の4.1は測定視野を制
限するためのアパチャ(孔)第5図の5は集光用の反射
対物レンズ、第4図の6及び第5図の6は赤外線検出器
である。
These documents contain schematic diagrams of microscopes such as those shown in FIGS. 4 and 5. 1 in Figure 4 and IFi sample stage in Figure 5, 2.5 in Figure 4 and 2 in Figure 5 are reflective objective lenses, and 3 in the fifth factor is an ellipsoidal reflective condenser for illuminating the sample. , 4, 4 in Fig. 4 and 4.1 in Fig. 5 are apertures (holes) for limiting the measurement field of view, 5 in Fig. 5 is a reflective objective lens for condensing light, 6 and 5 in Fig. 4 are 6 in the figure is an infrared detector.

フーリエ変換赤外分光器からの赤外線は第4図の5、及
び第5図の7である。試料の赤外吸収スペクトルの測定
は一般に透過又は反射のいずれかのモードで測定される
。透過測定モードのフーリエ変換赤外分光器からの赤外
線は第4.5図の7K、また反射モード測定赤外線は第
4図では5に図示されているが、第5図にはない、おそ
らく第5図の8の楕円面反射鏡を介して第5図の2の反
射対物レンズ照射させて行なわれると考えられるが詳細
は記述されていない0以上のように従来の装置では通常
使われている光学顕微鏡の光学システムを利用している
ので測定対象物の大きさ等に対する配慮がなされてない
。即ち、試料ステージ(第4.5図の1)の下への移動
は試料への赤外線集光鏡に(第4,5図の2)にまた上
への移動は反射対物レンズ(第4,5図の3)で制限さ
れる念め、試料ステージに搭載出来る試料の大きさに制
限が生じる欠点がある。透過方式による分光測定の場合
、測定出来る試料の厚さは赤外分光測定では10〜20
μmであり、ま九通常の可視部の分光測定でも数mであ
り、もともと大きな試料測定出来ないため対象外である
が、反射方式による分光測定の場合は試料表面を測定の
対象とするため対象となるが、試料ステージの上下動に
制限があるこのような装置では、大きな試料の測定の場
合試料ステージに搭載出来ない問題が生じる。また測定
のためのいろいろな分光測定治具を用いこの上記問題は
第4,5図の5の試料への赤外線集光鏡への赤外線の光
路について、この鏡を下にさげる事が出来るように配慮
するか、あるいは第4゜5因の2の反射対物レンズを上
VC6げることか出来る様に配慮するかがなされてない
ため試料ステージの上下動が制限されていた。また、赤
外吸収スペクトル測定等の分光測定では大気中の水蒸気
や炭酸ガス等の影響を強く受ける。このため赤外線の全
て光路は雰囲気の経時的変化を極力少なくする必要があ
る。この点に対する配慮がなされてなく、試料内の極微
小領域の高感度測定には光路の水蒸気や炭酸ガス等の経
時的変化がノイズの原因となる。本発明の目的は色々な
大きさの試料特に大きな試料の極微小領域の分光測定を
反射法で高感度に行なうことが出来る装置を提供すると
と上記目的には第4,5図の1の試料ステージの上下へ
動きの幅を大きくし大きな試料でも試料ステージに搭載
出来る様にする必要がある。このためには、鏡への赤外
線の光路について、この鏡を試料ステージと共に上下動
出来るように考案すしたものである。第5図の1の試料
への赤外線集光鏡を試料ステージと共に上下動しても試
料ステージ面上に赤外線の焦点が常に再現出来る様にす
る事により可能である。このためには第5図の5の集光
鏡と第5図の9の反射鏡を同時に上下動するようにした
ものである。第5図では、3の集光鏡は楕円面反射であ
る。またこの鏡の焦点100はフーリエ変換赤外分光光
度計からの赤外線を集光した焦点でもある。試料ステー
ジの幅を広げるため第5図の3の集光鏡を下にさげると
この鏡の焦点100の位置も下がる事になりフーリエ変
換赤外分光光度計からの赤外線を集光した焦点から外れ
てしまい試料ステージ面上に赤外線の焦点が出来なくな
る。この問題を解決するに第5図の7の赤外線を平行光
線とし、またフーリエ変換赤外分光光度計からの赤外線
も平行光線とすることにより達成したものである。こう
する事により第5図の3の集光鏡は下にさげても赤外線
の焦点は常に試料ステージ面上にあるようKなる。この
なめには第5図の5の集光鏡は放物面反射鏡にするか、
第5図の9の反射鏡を放物面反射鏡にし第5図の3の集
光鏡を楕円面反射鏡にする事によシ可能にしたものであ
る。即ち、第5図の9の反射鏡が平行な光路上移動し、
しかも反射鏡の移動軸と該光路を平行にすることKよシ
達成できる。また本発明は第5因の2の反射対物レンズ
側の顕微鏡を上下動して試料ステージと反射対物レンズ
との間隔を広げる事によっても達成した。この場合も顕
微鏡の移動軸と平行になるような赤外線の平行光線を作
り、顕微鏡をこの平行光線に沿って上下動することによ
り可能としたものである。こうする事により常圧対物レ
ンズの特定の場所に焦点を結ぶ様に成しえたものである
The infrared rays from the Fourier transform infrared spectrometer are 5 in FIG. 4 and 7 in FIG. 5. The infrared absorption spectrum of a sample is generally measured in either transmission or reflection mode. The infrared rays from the Fourier transform infrared spectrometer in transmission measurement mode are shown at 7K in Figure 4.5, and the infrared rays measured in reflection mode are shown at 5 in Figure 4, but are not shown in Figure 5, probably at 5K. It is thought that this is done by irradiating the reflective objective lens 2 in Figure 5 through the ellipsoidal reflector 8 in Figure 5, but the details are not described. Since the optical system of a microscope is used, no consideration is given to the size of the object to be measured. That is, the downward movement of the sample stage (1 in Figure 4.5) directs the infrared condensing mirror to the sample (2 in Figures 4 and 5), and the upward movement directs the reflection objective lens (4. Due to the limitation in 3) in Fig. 5, there is a drawback that the size of the sample that can be mounted on the sample stage is limited. In the case of spectroscopic measurement using the transmission method, the thickness of the sample that can be measured is 10 to 20 mm in infrared spectrometry.
μm, and even normal spectroscopic measurements in the visible range are several meters long, so they are not applicable because they cannot measure large samples. However, in spectroscopic measurements using the reflection method, the surface of the sample is the subject of measurement. However, in such an apparatus where the vertical movement of the sample stage is limited, a problem arises in that when measuring a large sample, it cannot be mounted on the sample stage. In addition, using various spectroscopic measurement jigs for measurement, this problem can be solved by lowering the mirror for the optical path of the infrared light to the infrared condensing mirror for the sample in Figures 4 and 5. The vertical movement of the sample stage was restricted because no consideration was taken to raise the upper VC6 of the reflective objective lens in factor 2 of 4.5. In addition, spectroscopic measurements such as infrared absorption spectroscopy are strongly affected by water vapor, carbon dioxide, etc. in the atmosphere. For this reason, it is necessary to minimize changes in the atmosphere over time in all infrared light paths. No consideration has been given to this point, and temporal changes in water vapor, carbon dioxide, etc. in the optical path cause noise in high-sensitivity measurements of extremely small areas within a sample. The purpose of the present invention is to provide an apparatus that can perform spectroscopic measurements of extremely small regions of samples of various sizes, especially large samples, with high sensitivity using the reflection method. It is necessary to increase the range of movement of the stage up and down so that even large samples can be mounted on the sample stage. To this end, the optical path of the infrared rays to the mirror was devised so that the mirror could be moved up and down together with the sample stage. This is possible by making it possible to always reproduce the focus of the infrared rays on the surface of the sample stage even if the infrared condensing mirror 1 in FIG. 5 moves up and down with the sample stage. For this purpose, the condensing mirror 5 in FIG. 5 and the reflecting mirror 9 in FIG. 5 are moved up and down simultaneously. In FIG. 5, the collector mirror 3 is an ellipsoidal reflector. The focal point 100 of this mirror is also the focal point where infrared rays from a Fourier transform infrared spectrophotometer are collected. When the condensing mirror 3 in Figure 5 is lowered to widen the width of the sample stage, the position of the focal point 100 of this mirror will also be lowered, and the infrared rays from the Fourier transform infrared spectrophotometer will be removed from the focal point. As a result, the infrared rays cannot be focused on the sample stage surface. This problem was solved by making the infrared rays shown at 7 in FIG. 5 parallel rays, and by making the infrared rays from the Fourier transform infrared spectrophotometer also parallel rays. By doing this, even if the condensing mirror 3 in FIG. 5 is lowered down, the focus of the infrared rays will always be on the sample stage surface. For this purpose, the condensing mirror 5 in Figure 5 should be a parabolic reflector, or
This is made possible by making the reflecting mirror 9 in FIG. 5 a parabolic reflecting mirror and the condensing mirror 3 in FIG. 5 an ellipsoidal reflecting mirror. That is, the reflecting mirror 9 in FIG. 5 moves on a parallel optical path,
Moreover, it is possible to make the moving axis of the reflecting mirror parallel to the optical path. The present invention was also achieved by increasing the distance between the sample stage and the reflective objective lens by vertically moving the microscope on the reflective objective lens side, which is the fifth factor. In this case as well, parallel infrared rays are created parallel to the axis of movement of the microscope, and the microscope is moved up and down along this parallel ray. By doing this, it was possible to focus the atmospheric pressure objective lens on a specific location.

また、大気中の水蒸気や炭酸ガス等の経時的変化を極力
少なくする目的を達成するために、赤外線の光路の外側
を出来るだけ密閉することKしたものである。とくに赤
外線の集光鏡試料ステージを前記目的の九めKは一体化
したため開放部が広くなる。動かない部分は単に遮蔽板
を被せ、摺動する部分は摺動遮蔽膜によシ大気中の水蒸
気や炭酸ガス等の混入やそとの光の混入を防止するよう
Kしたものである。
Furthermore, in order to achieve the purpose of minimizing changes over time in water vapor, carbon dioxide, etc. in the atmosphere, the outside of the infrared light path is sealed as much as possible. In particular, since the infrared condensing mirror sample stage is integrated in the above-mentioned objective, the opening becomes wider. The parts that do not move are simply covered with shielding plates, and the sliding parts are covered with sliding shielding films to prevent water vapor, carbon dioxide, etc. from entering the atmosphere, and light from outside.

〔作用〕[Effect]

本発明に係る作用を第1図及び第2図、第3図でもって
説明する。10は7一リエ変換赤外分光光度計の干渉計
によって周波数に変調された赤外線の平行光線を受ける
2枚の平面反射鏡であり一方は反射(落射)測定モード
のための光学系で11の放物面反射鏡方向く赤外線を向
けるための鏡である。他方は透過測定モードの光学系で
12の平面反射鏡方向に赤外線を向けるための鏡である
。これらはレーバにより切り替えることができる。この
赤外線を13の反射対物レンズと14の楕円面反射鏡に
より試料15に集光して照射する。
The effects of the present invention will be explained with reference to FIGS. 1, 2, and 3. 10 are two plane reflecting mirrors that receive parallel infrared rays modulated in frequency by the interferometer of the 7-Lier transform infrared spectrophotometer, and one is an optical system for the reflection (epi-illumination) measurement mode. A parabolic reflector is a mirror that directs infrared rays in the direction of the mirror. The other is an optical system in transmission measurement mode and is a mirror for directing infrared rays toward the 12 flat reflecting mirrors. These can be switched by a lever. This infrared rays are focused and irradiated onto the sample 15 by 13 reflective objective lenses and 14 ellipsoidal reflectors.

反射測定モードの場合は、16はエツジ鏡で11の放物
面反射鏡からきた赤外線はこの鏡で13の反射対物レン
ズ方向に反射すし、試料からの赤外線はこのエツジ鏡の
裏側を通り17の赤外線検出器に至る。透過測定モード
の場合はこの16のエツジ鏡は光路から外して測定する
In the case of reflection measurement mode, reference numeral 16 is an edge mirror, and the infrared rays coming from the parabolic reflector 11 are reflected by this mirror toward the reflection objective lens 13, and the infrared rays from the sample pass through the back side of this edge mirror 17. This leads to an infrared detector. In the transmission measurement mode, the 16 edge mirrors are removed from the optical path for measurement.

18は放物面反射鏡で14の楕円面反射鏡と19゜20
の平面反射鏡は21の母型ステージ内に搭載しである。
18 is a parabolic reflector and 14 ellipsoid reflectors and 19°20
The plane reflector is mounted inside the 21 master stage.

またこの21の母型ステージの楕円面反射鏡も上には試
料ステージ23がある。この母型ステージ21は22の
駆動装置により上下動するようになっている。10で反
射した赤外線24は12の平面反射鏡で下方に直角に反
射する赤外線25となる。また18の放物面反射鏡でも
直角に反射した赤外線26となる。また25の赤外線は
平行光線であるので21の母盤ステージを上下しても母
型ステージ及びその後の光学系に影響を与えない作用が
ある。この様にすることにより試料ステージの下に固定
の赤外線照射集光鏡を廃止することが可能となりこの試
料ステージは下方向には自由駆動できる作用がある。
Further, the sample stage 23 is located above the ellipsoidal reflecting mirror of the 21 matrix stages. This master stage 21 is moved up and down by a drive device 22. The infrared rays 24 reflected by 10 become infrared rays 25 which are reflected downward at right angles by 12 plane reflectors. Further, the infrared rays 26 are reflected at right angles by the 18 parabolic reflectors. Furthermore, since the infrared rays 25 are parallel rays, even if the mother stage 21 is moved up and down, the mother stage and the subsequent optical system are not affected. By doing so, it is possible to eliminate the fixed infrared irradiation condensing mirror below the sample stage, and this sample stage has the effect of being able to freely move downward.

第2図は母型ステージの拡大図である。この母屋ステー
ジの顕微鏡本体から露出する部分は、集光し九赤外線を
通す試料に照射するための孔124のほかは全て塞いで
ある。
FIG. 2 is an enlarged view of the matrix stage. The portion of this main stage that is exposed from the microscope body is closed except for the hole 124 for condensing light and irradiating the sample through nine infrared rays.

125.126Fi舟型ステージの上、下に取付けた遮
蔽膜で、母型ステージの上下動に従って上下する様にな
っている。即ち27はこれを引っ張るワイヤで28の分
銅が他端に取付けであるまた、もう一方の下方向の遮蔽
膜には2Pのスプリングばねで引っ張っておいて、両者
のバランスヲトっておく、こうする事により母型ステー
ジの上下動を負荷なく出来き、ま九、顕微鏡外の空気や
元が混入する事を防止する作用がある。
125.126Fi There are shielding membranes attached to the top and bottom of the boat-shaped stage that move up and down as the mother stage moves up and down. That is, 27 is a wire that pulls this, and a weight 28 is attached to the other end.Also, the other lower shielding film is pulled by a 2P spring, and the balance between the two is maintained. This allows the master stage to move up and down without any load, and also has the effect of preventing air or sources from entering outside the microscope.

顕微鏡本体を上下動する場合の作用を第3図でもって説
明する。この場合も赤外線の11の放物面反射鏡への入
射角と反射角は45度で、即ち、この11の放物面反射
鏡によって赤外線は直角に曲げられる。ま之11の放物
面反射鏡への入射光線とこの顕微鏡の上下動の移動軸は
平行しておく事により、顕微鏡の上下に動かしても13
の反射対物レンズによシ赤外線が集光する光学系は不変
である作用がある。この光学系が顕微鏡の上下動によF
)Kわる事による赤外線の反射対物レンズへの入射効率
の著しい低下を防止する作用もある。
The operation of moving the microscope body up and down will be explained with reference to FIG. In this case as well, the incident angle and reflection angle of the infrared rays to the 11 parabolic reflectors are 45 degrees, that is, the infrared rays are bent at right angles by the 11 parabolic reflectors. By keeping the incident light beam on the parabolic reflector of Mano 11 parallel to the movement axis of the vertical movement of this microscope, even if the microscope is moved up and down,
The optical system in which the infrared rays are focused by the reflective objective lens has an unchanging effect. This optical system is controlled by the vertical movement of the microscope.
) It also has the effect of preventing a significant decrease in the incidence efficiency of infrared rays into the reflective objective lens due to the change in K.

〔実施例1〕 以下1本発明の実施例1を第1図により説明する。第1
図(b)は透過測定モードと反射測定モードの2つの方
式で試料のフーリエ変換赤外吸収スペクトルの測定が出
来るの装置である。切り替え平面反射鏡」0は2群の鏡
からな夛フーリエ変換赤外分元光度計の平行な赤外線を
反射(落射)測定モードための放物面反射l1811に
赤外線を向けるための反射鏡と透過測定モード九めの平
面反射鏡12に赤外線を向けるための鏡からなり、これ
らの鏡はレーバによプ切り替えることが出来る様にした
[Example 1] Example 1 of the present invention will be described below with reference to FIG. 1st
Figure (b) shows an apparatus that can measure the Fourier transform infrared absorption spectrum of a sample using two methods: transmission measurement mode and reflection measurement mode. "Switchable Plane Reflector" 0 consists of two groups of mirrors: a reflector for directing the infrared rays to a parabolic reflector for the reflection (epi-illumination) measurement mode of the Fourier transform infrared spectrophotometer and a transmissive mirror for directing the infrared rays. The measuring mode consists of a mirror for directing infrared rays to the ninth flat reflecting mirror 12, and these mirrors can be switched by a lever.

まず反射モード測定の光学系について第1図(a)に基
づいて説明する0分光元度計34からの平行な赤外MA
55を放物面反射*11で楕円面反射鏡52の第1焦点
に集光させ念、この操作は赤外線検知板を使い放物面反
射鏡11の焦点を予め設計した光軸上に正確K11il
整し、その後楕円面反射鏡52の第2焦点が7バチヤ5
5に結ぶ様に赤外線検知板を使い調整し九、以下赤外線
の光学系の焦点の−の調整は赤外線検知板を使い行なっ
た。エツジ鏡16の部分は上半分が鏡で下半分は素透視
にした。楕円面反射鏡32のからきた赤外線はこの碗で
反射対物レンズ方向13に反射するようにした。さらに
試料ステージ15上の試料で反射し九赤外線はこのエツ
ジ鏡16の裏側を通り赤外線検出器17に至るようにし
た。
First, the optical system for reflection mode measurement will be explained based on FIG.
55 to the first focus of the ellipsoidal reflector 52 by parabolic reflection*11, this operation uses an infrared detection plate to accurately align the focus of the parabolic reflector 11 on the pre-designed optical axis.
After that, the second focus of the ellipsoidal reflector 52 is set to 7
An infrared detection plate was used to adjust the focal point of the infrared optical system. The upper half of the edge mirror 16 is a mirror and the lower half is transparent. The infrared rays coming from the ellipsoidal reflecting mirror 32 are reflected by this bowl in the direction 13 of the reflecting objective lens. Furthermore, the nine infrared rays reflected by the sample on the sample stage 15 were made to pass through the back side of this edge mirror 16 and reach the infrared detector 17.

次に透過モード測定の光学系について説明する。Next, the optical system for transmission mode measurement will be explained.

切り替え平面反射鏡1つを切p替えて分光器からの平行
な赤外l555を平面反射鏡12方向に向け、さらに、
放物面反射鏡18により楕円面反射鏡14の焦点距離の
長い万の焦点に集光させ元、楕円面反射鏡14の短い方
の焦点を試料ステージ15上に結ぶせる之めに2枚の平
面反射鏡19゜20により光路をひきあげ念、また放物
面反射鏡18と楕円面反射鏡14及び2枚の平面反射鏡
は母型ステージの上べ搭載し、この母型ステージに試料
ステージ15をボルトで固定した。ま之この母型ステー
ジ21は上下動駆動装置22により反射モード測定、透
過モード測定のいずれの場合も焦点合わせが出来るよう
Kした。
One switching plane reflecting mirror is switched to direct the parallel infrared rays 555 from the spectrometer toward the plane reflecting mirror 12, and further,
The parabolic reflector 18 condenses the light to the longer focal point of the ellipsoidal reflector 14, and the shorter focus of the ellipsoidal reflector 14 is connected to the sample stage 15 using two mirrors. In addition, the parabolic reflector 18, the ellipsoid reflector 14, and the two plane reflectors are mounted on the matrix stage, and the sample stage 15 is mounted on the matrix stage. was fixed with bolts. Manoko's master stage 21 was designed so that it could be focused by a vertical movement drive device 22 in both reflection mode measurement and transmission mode measurement.

以上のようにするととくより試料ステージと反射対物レ
ンズとの間隔を自由に広げる事が出来るようになり、大
きな試料でも試料ステージに搭載可能となった。これに
より従来出来なかったような大形試料の極微小部分の表
面の反射赤外吸収スペクトルの測定が可能となっ九。
By doing the above, it became possible to freely widen the distance between the sample stage and the reflective objective lens, and even a large sample could be mounted on the sample stage. This makes it possible to measure the reflection infrared absorption spectrum of the surface of an extremely small part of a large sample, which was previously impossible.

又、透過モードの測定の場合測定出来る試料の厚さには
分光測定の場合制限がもともとある6特に赤外分光法の
場合は試料の厚さは20ミクロンメータ以下であり、又
、赤外線自体波長が長いので焦点深度深く予め光学系を
最高の感度に試料ステージを上下動して調整しておけば
の試料の違いにより焦点会わせの必要度は小さい。反射
対物し/ズ13を異なった倍率のものに交換して測定す
る場合、反射対物レンズにより焦点距離が異なりその都
度下部からの赤外線照明光の集光鏡の位置も調整する必
要がある。しかし従来装置ではこれが出来なかったが、
本発明により初めて可能となった。
In addition, in the case of transmission mode measurement, there are inherent limitations on the thickness of the sample that can be measured in spectroscopic measurements.6 In particular, in the case of infrared spectroscopy, the sample thickness is 20 microns or less, and the wavelength of infrared rays itself Since the distance is long, the depth of focus is deep, and if the optical system is adjusted in advance to the highest sensitivity by moving the sample stage up and down, there is little need for focusing due to differences in samples. When measuring by replacing the reflective objective lens 13 with one of a different magnification, the focal length differs depending on the reflective objective lens, and it is necessary to adjust the position of the condenser mirror for the infrared illumination light from the bottom each time. However, this was not possible with conventional equipment;
The present invention has made this possible for the first time.

〔実施例2〕 つぎに本発明の実施例2を第2図により説明する。!2
図は母型ステージと試料ステージの拡大図である。この
母屋ステージ21の顕微鏡本体から露出する部分は、集
光し九赤外線を通す試料に照射するための孔124のほ
かは全て塞いでだ。
[Example 2] Next, Example 2 of the present invention will be described with reference to FIG. ! 2
The figure is an enlarged view of the matrix stage and sample stage. The portion of the main stage 21 exposed from the microscope body is closed except for the hole 124 for condensing light and irradiating the sample through nine infrared rays.

黒色化処理したステンレス製の遮蔽膜125126を母
型ステージの上、下に取付けた。上側の遮蔽膜126の
他端にはワイヤ27を取り付けた。ま之このワイヤ27
の先には分銅28を取付けた。母型ステージ21の下側
の他端にはスプリング29ばねを取り付は母型ステージ
21の上下動に従って上下する様にした0両者のバラン
スをとっておき、母型ステージ21の上下動が負荷なく
操作出来るようにした。
Blackened stainless steel shielding films 125126 were attached above and below the master stage. A wire 27 was attached to the other end of the upper shielding film 126. Manoko's Wire 27
A weight 28 was attached to the tip. A spring 29 is attached to the other end of the lower side of the mother mold stage 21 so that it moves up and down according to the vertical movement of the mother mold stage 21. By keeping both of them in balance, the vertical movement of the mother mold stage 21 can be operated without any load. I made it possible.

以上により顕微鏡外の空気や光の混入を防ぐことが出来
るようにな夛、水蒸気や炭酸ガス等や、外光によるノイ
ズの影響のない赤外吸収スペクトルの測定が出来る様に
なった。
As described above, it is possible to prevent air and light from entering outside the microscope, and it is now possible to measure infrared absorption spectra without the influence of noise from water vapor, carbon dioxide, etc., or external light.

〔実施例3〕 つぎに本発明の実施例6を第2図によシ説明する。第3
図は顕微鏡本体を上下動する場合の実施例である。フー
リエ変換赤外線分光光度計からの集光赤外線は放物面反
射鏡50によυ平行光線に変換され、放物面反射鏡11
人射する様にした。
[Embodiment 3] Next, Embodiment 6 of the present invention will be explained with reference to FIG. Third
The figure shows an example in which the microscope body is moved up and down. The condensed infrared rays from the Fourier transform infrared spectrophotometer are converted into υ parallel rays by the parabolic reflector 50, and the parabolic reflector 11
I made it look like someone was shooting.

赤外線は放物面反射鏡11で楕円面反射@32の第1焦
点に集光させた。放物面反射鏡11の焦点を予め設計し
た元軸上に正確に調整し、その後楕円面反射鏡32の第
2焦点がアパチャ3tIに結ぶ様に赤外線検知板を使い
調整した。エツジ鏡16の部分は上半分が鏡で下牛分は
素透視にし念、楕円面反射鏡52のからきた赤外線はこ
の鏡で反射対物レンズ方向13に反射するようにし念。
The infrared rays were focused by the parabolic reflector 11 to the first focus of the ellipsoid reflector @32. The focal point of the parabolic reflector 11 was accurately adjusted on the pre-designed original axis, and then the second focus of the ellipsoidal reflector 32 was adjusted using an infrared detection plate so that it was connected to the aperture 3tI. The upper half of the edge mirror 16 is a mirror, and the lower part is intended to be transparent, and the infrared rays coming from the ellipsoidal reflecting mirror 52 are reflected in the direction of the reflective objective lens 13 by this mirror.

さらに試料36で反射した赤外線はこのエツジ!116
の裏側を通り赤外線検出器17のに至るようにした。
Furthermore, the infrared rays reflected by sample 36 are this edge! 116
It passes through the back side of the infrared detector 17 and reaches the infrared detector 17.

フーリエ変換赤外線分光光度計からの集光赤外線は放物
面反射鏡30は顕微鏡の架台に取り付け、又顕微鏡は架
台に対して垂直方向に駆動装置31を介して上下動出来
るようにした。又、放物面反射鏡50と放物面反射鏡1
1との間は蛇腹状のゴム製の円筒37によシ外部空気及
び外部光と遮断した。
A parabolic reflector 30 for condensing infrared light from a Fourier transform infrared spectrophotometer was attached to a microscope mount, and the microscope could be moved up and down via a drive device 31 in a direction perpendicular to the mount. Moreover, the parabolic reflecting mirror 50 and the parabolic reflecting mirror 1
A bellows-shaped rubber cylinder 37 is used to block external air and external light.

以上のようKしたことによシ顕微鏡の反射対物レンズの
下に広い空間を作ることが出来るようになり適当な試料
保持具さえ準備する事によシ以下なる大きさの試料でも
その極小部分の表面の赤外吸収スペクトルの測定は出来
る様になった。
As described above, it is now possible to create a wide space under the reflective objective lens of the microscope, and by preparing a suitable sample holder, even the smallest part of the sample can be easily captured. It has become possible to measure the infrared absorption spectrum of the surface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば顕微鏡の反射対物レンズの下の空間を自
由に大きく取る事ができるので測定する試料の大きさの
制限がなく分光光度の測定が出来る様になる。また、反
射対物レンズを交換してもその焦点距離にありた位ff
1Hcただちに光学系を調整出来るので、極微小部分の
赤外吸収スペクトルが簡易な操作でしかも高感度に測定
出来る。顕微方式の分光光度計を提供出来る効果がある
According to the present invention, since the space under the reflective objective lens of the microscope can be freely enlarged, spectrophotometric measurements can be performed without any restrictions on the size of the sample to be measured. Also, even if you replace the reflective objective lens, the focal length will be ff
Since the optical system can be adjusted immediately after 1Hc, the infrared absorption spectrum of extremely small parts can be measured with simple operation and high sensitivity. This has the effect of providing a microscopic spectrophotometer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al 、 (b)は本発明に係る分光顕微鏡の
詳細を示した図である。第2図は本発明に係る試料ステ
ージ透過照明光学系を搭載する舟形ステージの詳細を示
した図である。第3図は顕微鏡本体が上下動出来る装@
に関する説明図である。第4図及び第5図は本発明に係
る従来例を説明するための図である。 符号の説明 10・・・・・・切り替え平面反射鏡 11.18・・・・・・放物面反射鏡 12・・・・・・平面反射鏡 15・・・・・・試料ステージ 16・・・・・・エツジ鏡 14・・・・・・楕円面反射鏡 21・・・・・・母型ステージ 22・・・・・・上下動駆動装置 125.126・・・・・・遮蔽膜 37・・・・・・蛇腹状ゴム製円筒。
Figures 1 (al and b) are diagrams showing details of a spectroscopic microscope according to the present invention. Figure 2 is a diagram showing details of a boat-shaped stage equipped with a sample stage transmitted illumination optical system according to the present invention. Figure 3 shows a device that allows the microscope body to move up and down.
FIG. FIG. 4 and FIG. 5 are diagrams for explaining a conventional example according to the present invention. Explanation of symbols 10...Switching plane reflector 11.18...Parabolic reflector 12...Flat reflector 15...Sample stage 16... ... Edge mirror 14 ... Ellipsoidal reflecting mirror 21 ... Matrix stage 22 ... Vertical movement drive device 125, 126 ... Shielding film 37・・・・・・A bellows-shaped rubber cylinder.

Claims (1)

【特許請求の範囲】 1、分光光度計、顕微鏡及び検出器からなり、透過及び
反射の両分光測定方式並びに観察可能な顕微方式分光光
度計において、該分光光度計または、該分光光度計の光
源と上下可変試料ステージとの間の分析用光線を平行光
線に変換するための光学手段(1)と、また該光線を受
光し試料に照射するための光学手段(2)を内蔵した試
料ステージを用いたことを特徴とする顕微方式分光光度
計。 2、該光学手段(1)及び(2)として放物面反射鏡を
用いたことを特徴とする請求項1記載の顕微方式分光光
度計。 3、該光学手段(2)として放物面反射鏡と楕円面反射
鏡の組合せ又は、これらの反射鏡の光路上に2枚又は、
複数枚の平面反射鏡用いたことを特徴とする請求項1記
載の顕微方式分光光度計。 4、該光学手段(1)を経て該光学手段(2)へ入射す
る光線の光軸と試料ステージの移動軸とが平行であるこ
とを特徴とする請求項1記載の顕微方式分光光度計。 5、該上下可変試料ステージは外部空気及び光の混入を
防止するための顕微鏡の内外との間に上下動出来る遮蔽
膜有し、また光路以外は遮蔽したこと特徴とする請求項
1記載の顕微方式分光光度計。 6、該上下可変試料ステージは試料への照射口に開閉可
能なシャッタを有することを特徴としる請求項5記載の
顕微方式分光光度計。 7、固定の試料ステージと上下動する対物レンズ及び検
出器からなり、反射方式の分光測定及び観察が出来る顕
微方式分光光度計において、該分光光度計または、該分
光光度計の光源と該上下動する対物レンズ及び検出器と
の間の分析用光線を平行光線に変換するための光学手段
(1)、また該光線を受光し試料に照射するための光学
手段(3)を内蔵した落射方式顕微鏡であって、これら
の光軸は平行であることを特徴とする顕微方式分光光度
計。 8、請求項1から7記載のいずれかの分光光度計はフー
リエ変換分光光度計であることを特徴とする顕微方式分
光光度計。
[Scope of Claims] 1. A microscopic spectrophotometer that is composed of a spectrophotometer, a microscope, and a detector and capable of both transmission and reflection spectrometry and observation, the spectrophotometer or the light source of the spectrophotometer; and a vertically variable sample stage, the sample stage has a built-in optical means (1) for converting the analytical light beam into a parallel light beam, and an optical means (2) for receiving the light beam and irradiating it onto the sample. A microscopic spectrophotometer characterized by the use of a microscopic spectrophotometer. 2. The microscopic spectrophotometer according to claim 1, wherein parabolic reflecting mirrors are used as the optical means (1) and (2). 3. As the optical means (2), a combination of a parabolic reflecting mirror and an ellipsoidal reflecting mirror, or two mirrors on the optical path of these reflecting mirrors, or
2. The microscopic spectrophotometer according to claim 1, characterized in that a plurality of plane reflecting mirrors are used. 4. The microscopic spectrophotometer according to claim 1, wherein the optical axis of the light beam incident on the optical means (2) via the optical means (1) is parallel to the movement axis of the sample stage. 5. The microscope according to claim 1, wherein the vertically variable sample stage has a shielding film that can be moved vertically between the inside and outside of the microscope to prevent outside air and light from entering, and is shielded from areas other than the optical path. Method spectrophotometer. 6. The microscopic spectrophotometer according to claim 5, wherein the vertically variable sample stage has a shutter that can be opened and closed at an irradiation port for the sample. 7. In a microscopic spectrophotometer that is composed of a fixed sample stage, an objective lens and a detector that move up and down, and is capable of spectroscopic measurement and observation using the reflection method, the spectrophotometer or the light source of the spectrophotometer and the An epi-illumination microscope that incorporates an optical means (1) for converting the analytical light beam between the objective lens and the detector into a parallel light beam, and an optical means (3) for receiving the light beam and irradiating the sample. A microscopic spectrophotometer characterized in that these optical axes are parallel. 8. A microscopic spectrophotometer, wherein the spectrophotometer according to any one of claims 1 to 7 is a Fourier transform spectrophotometer.
JP63241096A 1988-09-28 1988-09-28 Microscopic spectrophotometer Expired - Lifetime JP2539500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63241096A JP2539500B2 (en) 1988-09-28 1988-09-28 Microscopic spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63241096A JP2539500B2 (en) 1988-09-28 1988-09-28 Microscopic spectrophotometer

Publications (2)

Publication Number Publication Date
JPH0290040A true JPH0290040A (en) 1990-03-29
JP2539500B2 JP2539500B2 (en) 1996-10-02

Family

ID=17069228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63241096A Expired - Lifetime JP2539500B2 (en) 1988-09-28 1988-09-28 Microscopic spectrophotometer

Country Status (1)

Country Link
JP (1) JP2539500B2 (en)

Also Published As

Publication number Publication date
JP2539500B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US6274871B1 (en) Method and system for performing infrared study on a biological sample
CN104483104B (en) A kind of photo detector spectral response analysis system
JP2922185B2 (en) Confocal microspectrophotometer system
JP2005106815A (en) Optical alignment of x-ray microanalyzer
US4922104A (en) Infrared microspectrometer
JPH0248054B2 (en)
CN104807761A (en) Design method of spectrograph for realizing micro-area spectral measurement
CN104390943A (en) Microscopic imaging system capable of simultaneously obtaining appearance image and element distribution image
JPH01320440A (en) Intensity variation analyzer
US4716293A (en) Accessory for infrared emission spectroscopy
JPH0290040A (en) Microscope type spectrophotometer
Pollock et al. Microspectroscopy in the mid-infrared
JP2943236B2 (en) Total reflection absorption spectrum measurement device
JPS62133339A (en) Luminescence measuring instrument
JP2001174708A (en) Infrared microscope
JPH04116452A (en) Microscopic infrared atr measuring apparatus
JPH10142177A (en) Photothermal-conversion spectroscopic analyzer
CN212255076U (en) Four-channel confocal Raman spectrum enhancement device based on interference effect
CN113359288B (en) Dark field scattering microscopic imaging and spectrum testing system
RU213486U1 (en) Solid transparent sample holder for scanning spectrophotometer
CN211477403U (en) High detection accuracy spectrum appearance
JP2002022656A (en) Spectrophotometer
JPH087331B2 (en) Infrared absorption spectrum measurement microscope device
JP2573938Y2 (en) Fourier transform infrared spectrometer
JPH0613480Y2 (en) Microscopic infrared reflection absorption spectrum analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13