JPH0289803A - Hydraulically-operated device for civil engineering construction equipment - Google Patents

Hydraulically-operated device for civil engineering construction equipment

Info

Publication number
JPH0289803A
JPH0289803A JP23750588A JP23750588A JPH0289803A JP H0289803 A JPH0289803 A JP H0289803A JP 23750588 A JP23750588 A JP 23750588A JP 23750588 A JP23750588 A JP 23750588A JP H0289803 A JPH0289803 A JP H0289803A
Authority
JP
Japan
Prior art keywords
pressure
control
valve
valves
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23750588A
Other languages
Japanese (ja)
Other versions
JP2735580B2 (en
Inventor
Toichi Hirata
東一 平田
Genroku Sugiyama
玄六 杉山
Yusuke Kajita
勇輔 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP63237505A priority Critical patent/JP2735580B2/en
Publication of JPH0289803A publication Critical patent/JPH0289803A/en
Application granted granted Critical
Publication of JP2735580B2 publication Critical patent/JP2735580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

PURPOSE:To stabilize drive of a flow division compensating valve and to improve composite operability by a method wherein a pilot relief pressure having the same opening direction is fed to the drive part of the one of flow division compensating valves, and a control force in a closing direction is exerted on the other drive part. CONSTITUTION:Flow division compensating valves 35-40 are provided on the inflow side of direction control valves 29-34 to control an oil pressure fed to actuators 23-28. An oil pressure from a pilot pump 61a and a relief valve 61b is introduced in an opening direction through a piping 61c to the one drive parts 35a-40a thereof. The pressures of solenoid valves 62a-62f actuated by means of signals (a)-(f) from a controller 59 are introduced in a closing direction to the other drive parts 35b-40b. A signal from a detecting device 53 for a differential pressure between the output oil pressure of a main hydraulic pump 22a and maximum load pressures of the actuators 23-28 is inputted to the controller 59. This constitution stabilizes working of the flow division compensating valves 35-40 despite of a change in a tank pressure, and enables ensurance of excellent control precision and composite operability.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、主油圧ポンプの圧油を複数の分流補償弁を介
してこの分流補償弁に対応して設けられるアクチュエー
タのそれぞれに分流して供給し、これらのアクチュエー
タを複合駆動して所望の複合操作をおこなうことができ
る土木・建設機械の油圧駆動装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a system for dividing pressure oil of a main hydraulic pump through a plurality of division compensation valves to each of actuators provided corresponding to the division compensation valves. The present invention relates to a hydraulic drive system for civil engineering and construction machinery that can perform desired combined operations by supplying these actuators and driving these actuators in a combined manner.

〈従来の技術〉 第6図は、この種の従来の土木・建設機械の油圧駆動装
置の一例として挙げた油圧ショベルの油圧駆動装置を示
す回路図である。
<Prior Art> FIG. 6 is a circuit diagram showing a hydraulic drive system for a hydraulic excavator, which is cited as an example of a conventional hydraulic drive system for civil engineering and construction machines of this type.

この第6図に示す油圧駆動装置は、原動機1と、この原
動機1によって駆動する可変容量油圧ポンプすなわち主
油圧ポンプ2と、この主油圧ポンプ2から吐出される圧
油によって駆動し、図示しない旋回体を旋回させる旋回
モータ3、及び図示しないブームを回動させるブームシ
リンダ4を含むアクチュエータとを備えている。
The hydraulic drive device shown in FIG. 6 includes a prime mover 1, a variable displacement hydraulic pump, that is, a main hydraulic pump 2, which is driven by the prime mover 1, and a turning movement (not shown) that is driven by pressure oil discharged from the main hydraulic pump 2. It is equipped with a turning motor 3 that turns the body, and an actuator including a boom cylinder 4 that turns a boom (not shown).

また、主油圧ポンプ2がら旋回モータ3に供給される圧
油の流れを制御する流量制御弁、すなゎち旋回用方向制
御弁5と、この旋回用方向制御弁5の前後差圧を制御す
る分流補償弁6と、主油圧ポンプ2からブームシリンダ
4に供給される圧油会 の流れを制御する流量制御弁、すなわちブーム用方向制
御弁7と、このブーム用方向制御弁7の前後差圧を制御
する分流補償弁8とを備えている。
In addition, the main hydraulic pump 2 controls the flow rate control valve that controls the flow of pressure oil supplied to the swing motor 3, that is, the swing direction control valve 5, and the differential pressure across the swing direction control valve 5. A flow rate control valve that controls the flow of pressure oil supplied from the main hydraulic pump 2 to the boom cylinder 4, that is, a boom directional control valve 7, and a front-back difference between the boom directional control valve 7. A branch compensating valve 8 for controlling pressure is provided.

分流補償弁6の一方の駆動部6aはタンクに連絡されて
おり、またこの一方の駆動部6aには、ばね6Cの力と
負荷圧による力の合計された制御力Falが当該分流補
償弁が開くように与えられ、他方の駆動部6bには、こ
の分流補償弁6の下流側の圧力とシャトル弁9.10を
介して導かれる回路の最大負荷圧とによる制御力Fa2
が、当該分流補償弁6が閉じるように与えられる。同様
に、分流補償弁8の一方の駆動部8aはタンクに連絡さ
れており、またこの一方の駆動部8aには、ばね8cの
力と負荷圧による力の合計された制御力Fb、が、当該
分流補償弁8が開くように与えられ、他方の駆動部8b
には、この分流補償弁8の下流側の圧力と回路の最大負
荷圧とによる制御力Fb2が当該分流補償弁8が閉じる
ように与えられる。
One driving part 6a of the shunt compensation valve 6 is connected to the tank, and a control force Fal, which is the sum of the force of the spring 6C and the force due to the load pressure, is applied to the one driving part 6a. The other drive part 6b is given a control force Fa2 due to the downstream pressure of this branch compensation valve 6 and the maximum load pressure of the circuit led via the shuttle valve 9.10.
is applied so that the branch compensating valve 6 is closed. Similarly, one drive section 8a of the branch compensating valve 8 is connected to the tank, and this one drive section 8a receives a control force Fb, which is the sum of the force of the spring 8c and the force due to the load pressure. The branch compensation valve 8 is provided to open, and the other drive section 8b
A control force Fb2 based on the pressure on the downstream side of this branch compensating valve 8 and the maximum load pressure of the circuit is applied to close the branch compensating valve 8.

なお、主油圧ポンプ2の押しのけ容積は、主油圧ポンプ
2の吐出圧と回路の最大負荷圧との差圧に応じて切換え
られる流量調整弁11によって駆動する制御用アクチュ
エータ12によって制御される。
The displacement of the main hydraulic pump 2 is controlled by a control actuator 12 driven by a flow rate regulating valve 11 that is switched according to the differential pressure between the discharge pressure of the main hydraulic pump 2 and the maximum load pressure of the circuit.

そして、アクチュエータの単独駆動時1例えば図示しな
い旋回体を作動させるため旋回モータ3を駆動しようと
して旋回用方向制御弁5を切換えた時には、主油圧ポン
ダ2から吐出される圧油が分流補償弁6、旋回用方向制
御弁5を介して旋回モータ3に供給されるが、旋回モー
タ3の負荷圧に変化を生じた場合にはその負荷圧が分流
補償弁6の一方の駆動部6aに導かれ、これによって分
流補償弁6の絞り量が適宜調整され、したがって旋回用
方向制御弁5の前後差圧が一定に保たれるように制御さ
れる。すなわち、分流補償弁6は圧力補償の機能を有し
ている。このことは、ブームシリンダ4に係る分流補償
弁8等においても同様である。
When the actuator is driven independently (1), for example, when the swing direction control valve 5 is switched in order to drive the swing motor 3 to operate a swing structure (not shown), the pressure oil discharged from the main hydraulic ponder 2 is transferred to the branch compensation valve 6. , is supplied to the swing motor 3 via the swing directional control valve 5, but when a change occurs in the load pressure of the swing motor 3, the load pressure is guided to one drive part 6a of the branch compensation valve 6. As a result, the amount of throttling of the branch compensating valve 6 is adjusted as appropriate, and therefore the differential pressure across the swing direction control valve 5 is controlled to be kept constant. That is, the branch compensating valve 6 has a pressure compensating function. This also applies to the branch compensating valve 8 and the like related to the boom cylinder 4.

また、アクチュエータの複合駆動時、例えば駆動圧の大
きさの異なる旋回モータ3とブームシリンダ4の複合駆
動時において、旋回用方向制御弁5とブーム用方向制御
弁7との操作によってこれらの旋回用方向制御弁5とブ
ーム用方向制御弁7の要求流量、すなわち通過可能流量
の合計が主油圧ポンプ2の最大容量を越えようとすると
き、それぞれのアクチュエータの自己圧と回路の最大負
荷圧とによって分流補償弁6.8の絞り量が調整され、
旋回用方向制御弁5に導かれる流量とブーム用方向制御
弁7に導かれる流量とが一定の流量比に保たれ、しかも
これらの流量の合計が主油圧ポンプ2の最大容量を越え
ないように制御され、旋回用方向制御弁5とブーム用方
向制御弁7の前後差圧が同等に保たれ、主油圧ポンプ2
から吐出される圧油を分流して旋回モータ3及びブーム
シリンダ4に供給でき、旋回とブーム上げ等の複合操作
を実現させることができる。
In addition, when the actuator is driven in a combined manner, for example, when the swing motor 3 and the boom cylinder 4, which have different driving pressures, are driven in combination, the swing direction control valve 5 and the boom direction control valve 7 can be operated to control the swing direction control valve 5 and the boom cylinder 4. When the required flow rate of the directional control valve 5 and the boom directional control valve 7, that is, the total allowable flow rate, is about to exceed the maximum capacity of the main hydraulic pump 2, it is determined by the self pressure of each actuator and the maximum load pressure of the circuit. The amount of restriction of the shunt compensation valve 6.8 is adjusted,
The flow rate guided to the swing directional control valve 5 and the flow rate guided to the boom directional control valve 7 are maintained at a constant flow rate, and the total of these flow rates does not exceed the maximum capacity of the main hydraulic pump 2. The differential pressure between the swing direction control valve 5 and the boom direction control valve 7 is maintained at the same level, and the main hydraulic pump 2
The pressure oil discharged from the pump can be divided and supplied to the swing motor 3 and the boom cylinder 4, thereby realizing combined operations such as swing and boom raising.

〈発明が解決しようとする課題〉 ところで、上記した従来の土木・建設機械の油圧駆動装
置にあっては、分流補償弁6.8のそれぞれの一方の駆
動部6a、8aがタンクに連絡されていることから、旋
回モータ3やブームシリンダ4の戻り油がタンクに流入
するときなどのタンク圧の変化に応じて分流補償弁6.
8の駆動状態が変化し、それ故、安定した制御精度を得
がたい。
<Problems to be Solved by the Invention> By the way, in the above-described conventional hydraulic drive system for civil engineering and construction machinery, one drive section 6a, 8a of each of the flow compensation valves 6.8 is connected to the tank. Therefore, the flow compensation valve 6.
8 changes, and therefore it is difficult to obtain stable control accuracy.

また、ばね6C18Cの力を介して分流補償弁6.8を
駆動させるようにしてあり、ばね6C18C間には製作
精度のバラツキを生じやすいことから、分流補償弁6.
8間の駆動誤差を生じやすく、したがってこのばね6C
18Cの製作精度のバラツキに伴って所望の分流比が得
られない事態を招くことがあり、複合操作性が低下する
ことがある。
In addition, since the shunt compensating valve 6.8 is driven by the force of the spring 6C18C, variations in manufacturing accuracy tend to occur between the springs 6C18C.
8, and therefore this spring 6C
Due to variations in the manufacturing accuracy of 18C, a situation may arise in which a desired split flow ratio cannot be obtained, and the combined operability may deteriorate.

本発明は、上記した従来技術における実情に鑑みてなさ
れたもので、その目的は、タンク圧の変化にかかわらず
分流補償弁の安定した駆動が得られ、しかも分流補償弁
間の駆動誤差をほとんど生じることのない土木・建設機
械の油圧駆動装置を提供することにある。
The present invention has been made in view of the actual situation in the prior art described above, and its purpose is to obtain stable driving of the shunt compensating valves regardless of changes in tank pressure, and to minimize driving errors between the shunt compensating valves. The object of the present invention is to provide a hydraulic drive device for civil engineering and construction machinery that does not cause such problems.

く課題を解決するための手段〉 この目的を達成するために、本発明は、主油圧ポンプと
、この主油圧ポンプから供給される圧油によって駆動す
る複数のアクチュエータと、これらのアクチュエータに
供給される圧油の流れを制御する流量制御弁と、これら
の流量制御弁の前後差圧をそれぞれ制御する分流補償弁
と、主油圧ポンプから吐出される流量を制御する流量制
御手段とを備え、主油圧ポンプの圧油を、分流補償弁、
流量制御弁のそれぞれを介してそれぞれのアクチュエー
タに供給し、これらのアクチュエータの複合駆動が可能
な土木・建設機械の油圧駆動装置において、分流補償弁
のそれぞれの一方の駆動部に、これらの分流補償弁が開
く方向に作動するように同じパイロットリリーフ圧力を
供給するパイロット圧供給手段を設けるとともに、分流
補償弁のそれぞれの他方の駆動部に、これらの分流補償
弁が閉じる方向に作動するように制御力を与える制御力
付加手段を設けた構成にしである。
Means for Solving the Problems To achieve this object, the present invention includes a main hydraulic pump, a plurality of actuators driven by pressure oil supplied from the main hydraulic pump, and a plurality of actuators driven by pressure oil supplied to these actuators. The main hydraulic pump is equipped with a flow rate control valve that controls the flow of pressure oil, a branch flow compensation valve that controls the differential pressure across these flow rate control valves, and a flow rate control means that controls the flow rate discharged from the main hydraulic pump. Hydraulic pump pressure oil, shunt compensation valve,
In a hydraulic drive system for civil engineering and construction machinery that supplies flow control valves to each actuator and is capable of combined driving of these actuators, one drive section of each of the flow compensation valves is supplied with flow compensation for these flow control valves. Providing a pilot pressure supply means for supplying the same pilot relief pressure so that the valves operate in the opening direction, and controlling the other driving section of each of the division compensation valves so that these division compensation valves operate in the closing direction. This configuration includes a control force adding means for applying force.

く作用〉 本発明の土木・建設機械の油圧駆動装置は、以上のよう
に、パイロット圧供給手段によって複数の分流補償弁の
それぞれの一方の駆動部に同じパイロットリリーフ圧力
を供給する・ようにしであることから、何らタンク圧の
影響を受けることなくこれらの分流補償弁を駆動でき、
したがってタンク圧の変化にかかわらず分流補償弁の安
定した駆動が得られる。また、ばねの力を介在させるこ
となく分流補償弁を駆動でき、しかも同じパイロットリ
リーフ圧力によって複数の分流補償弁を駆動することか
ら、分流補償弁間の駆動誤差をほとんど生じることがな
い。
Function> As described above, the hydraulic drive system for civil engineering and construction machinery of the present invention is capable of supplying the same pilot relief pressure to one drive section of each of the plurality of branch compensating valves by the pilot pressure supply means. Because of this, these diverter compensation valves can be driven without being affected by tank pressure in any way.
Therefore, stable driving of the branch compensating valve can be obtained regardless of changes in tank pressure. Further, since the branch flow compensation valves can be driven without intervening spring force, and since the plurality of branch flow compensation valves are driven by the same pilot relief pressure, there is almost no driving error between the branch flow compensation valves.

〈実施例〉 以下、本発明の土木・建設機械の油圧駆動装置を図に基
づいて説明する。
<Example> Hereinafter, a hydraulic drive system for civil engineering/construction machinery according to the present invention will be explained based on the drawings.

第1図は本発明の土木・建設機械の油圧駆動装置の第1
の実施例を示す回路図である。この第1の実施例は油圧
ショベルに適用したもので、原動機21と、この原動機
21によって駆動する定容量油圧ポンプ、すなわち主油
圧ポンプ22aと、この主油圧ポンプ22aから吐出さ
れる圧油によって駆動する複数のアクチュエータ、すな
わち旋回モータ23と、左走行モータ24と、右走行モ
ータ25と、ブームシリンダ26と、アームシリンダ2
7と、パケットシリンダ28とを備えている。なお、旋
回モータ23は図示しない旋回体を駆動し、左走行モー
タ24、右走行モータ25は図示しない履帯を駆動し、
ブームシリンダ26、アームシリンダ27、パケットシ
リンダ28は。
FIG. 1 shows the first hydraulic drive system for civil engineering and construction machinery of the present invention.
It is a circuit diagram showing an example of. This first embodiment is applied to a hydraulic excavator, and includes a prime mover 21, a constant capacity hydraulic pump driven by the prime mover 21, that is, a main hydraulic pump 22a, and a hydraulic oil pump 22a driven by the pressure oil discharged from the main hydraulic pump 22a. a plurality of actuators, namely, a swing motor 23, a left travel motor 24, a right travel motor 25, a boom cylinder 26, and an arm cylinder 2.
7 and a packet cylinder 28. Note that the swing motor 23 drives a swinging body (not shown), the left running motor 24 and the right running motor 25 drive crawlers (not shown),
Boom cylinder 26, arm cylinder 27, and packet cylinder 28.

それぞれ図示しないブーム、アーム、パケットを駆動す
る。
Each drives a boom, arm, and packet (not shown).

また、旋回モータ23、左走行モータ24、右走行モー
タ25、ブームシリンダ26、アームシリンダ27、パ
ケットシリンダ28のそれぞれに供給される圧油の流れ
を制御する流量制御弁、すなわち旋回用方向制御弁29
、左走行用方向制御弁30、右走行用方向制御弁31、
ブーム用方向制御弁32、アーム用方向制御井33、パ
ケット用方向制御弁34と、これらの流量制御弁に対応
して設けられる分流補償弁35.36.37.38.3
9.40とを備えている。
Also, a flow control valve, that is, a swing direction control valve, controls the flow of pressure oil supplied to each of the swing motor 23, left travel motor 24, right travel motor 25, boom cylinder 26, arm cylinder 27, and packet cylinder 28. 29
, left travel direction control valve 30, right travel direction control valve 31,
Boom directional control valve 32, arm directional control well 33, packet directional control valve 34, and branch flow compensation valves 35, 36, 37, 38, 3 provided corresponding to these flow rate control valves.
9.40.

また、上述した主油圧ポンプ22aの押しのけ容積は、
管路43aを介して導かれるポンプ圧と管路44aを介
して導かれる最大負荷圧との差圧Δptsに応じて駆動
する流量制御手段、すなわち流産調整弁42aによって
制御する。
Moreover, the displacement volume of the main hydraulic pump 22a mentioned above is
It is controlled by a flow rate control means, that is, the miscarriage regulating valve 42a, which is driven according to the differential pressure Δpts between the pump pressure led through the pipe line 43a and the maximum load pressure led through the pipe line 44a.

また、上述した分流補償弁35〜40のそれぞれの一方
の駆動部35a〜40aに、これらの分流補償弁35〜
40が開く方向に作動するように同じパイロットリリー
フ圧力を供給するパイロット圧供給手段を設けてあり、
このパイロット圧供給手段は、例えば、パイロットポン
プ61aと、このパイロットポンプ61aから吐出され
るパイロット圧の大きさを規定するリリーフ弁61bと
、パイロットポンプ61aと分流補償弁35〜40のそ
れぞれの一方の駆動部35a〜40aとを連絡する管路
61cとを含む構成にしである。
In addition, one of the driving parts 35a to 40a of each of the above-described branch compensation valves 35 to 40 is provided with the branch compensation valves 35 to 40, respectively.
40 is provided with a pilot pressure supply means for supplying the same pilot relief pressure so as to operate in the opening direction,
This pilot pressure supply means includes, for example, a pilot pump 61a, a relief valve 61b that regulates the magnitude of pilot pressure discharged from the pilot pump 61a, and one of the pilot pump 61a and the branch compensation valves 35 to 40. The configuration includes a conduit 61c that communicates with the drive units 35a to 40a.

さらに、分流補償弁35〜40のそれぞれの他方の駆動
部35b〜40bに、これらの分流補償弁35〜40が
閉じる方向に作動するように制御力を与える制御力付加
手段52を設けてあり、この制御力付加手段52は、例
えば主油圧ポンプ22aから吐出される圧油の圧力とア
クチュエータの最大負荷圧との差圧Δptsを検出する
差圧検出装置53と、この差圧検出装置53に接続され
、あらかじめ差圧と制御力との関数関係を記憶する記憶
部57と、入力部55、演算部56、出力部58を有す
るコントローラ59と、このコントローラ59から出力
される制御力信号に応じてアクチュエータに対応して設
けられる分流補償弁35〜40の他方の駆動部35b〜
40bに与えられる制御圧力を発生させる制御圧力発生
手段60aとを含む構成にしである。
Furthermore, a control force adding means 52 is provided to the other driving portion 35b to 40b of each of the branch compensating valves 35 to 40, which applies a control force so that the branch compensating valves 35 to 40 operate in the closing direction. The control force adding means 52 includes, for example, a differential pressure detecting device 53 that detects a differential pressure Δpts between the pressure of the pressure oil discharged from the main hydraulic pump 22a and the maximum load pressure of the actuator, and is connected to the differential pressure detecting device 53. and a controller 59 having a storage section 57 that stores the functional relationship between the differential pressure and the control force in advance, an input section 55, a calculation section 56, and an output section 58, and a control force signal output from the controller 59. The other driving portion 35b of the branch compensation valves 35 to 40 provided corresponding to the actuators
40b, and a control pressure generating means 60a for generating a control pressure applied to the control pressure 40b.

上述した制御圧力発生手段60aは、分流補償弁35〜
40のそれぞれに対応して設けられる6つの電磁弁62
a、62b、62c、62d、62e、62fと、これ
らの電磁弁62a 〜62fにパイロット圧を供給する
前述のパイ四ツ1〜ポンプ61aと、このパイロットポ
ンプ61aから出力されるパイロット圧の大きさを規定
する前述のリリーフ弁61bとを含む構成になっている
。なお、電磁弁62aと分流補償弁35の駆動部35b
とは管路51aを介して連絡され、同様に電磁弁62b
〜62fのそれぞれと分流補償弁36〜40の駆動部3
6b〜40bのそれぞれとは管路51b〜51fのそれ
ぞれを介して連絡されている。また、電磁弁62a〜6
2fはコントローラ59の出力部58から出力される駆
動信号a、b、c、d、e、fのそれぞれに応じて駆動
するようになっており、また、これらの電磁弁62aの
駆動部には、リリーフ弁61bの戻り背圧を共通の背圧
として受けるようにしである。そして、この制御圧力発
生手段60aの構成要素のうち、リリーフ弁61bと電
磁弁62a〜62fを含む部分は2点鎖線で示すように
、1つのブロック化した横遺体に形成してあり、管路5
1a〜51fの長さ寸法をほぼ同等の長さ寸法に設定し
である。また、上述のブロック化に伴い、各分流補償弁
35〜40のそれぞれの一方の駆動部35a〜40aに
連絡される管路61cの長さ寸法もほぼ同等の長さ寸法
に設定しである。
The above-mentioned control pressure generating means 60a includes the branch compensation valves 35 to
6 solenoid valves 62 provided corresponding to each of the 40
a, 62b, 62c, 62d, 62e, 62f, the above-mentioned pie four pump 61a that supplies pilot pressure to these solenoid valves 62a to 62f, and the magnitude of the pilot pressure output from this pilot pump 61a. The configuration includes the above-mentioned relief valve 61b that defines the above-mentioned relief valve 61b. Note that the solenoid valve 62a and the drive section 35b of the branch compensation valve 35
is connected to the solenoid valve 62b via the conduit 51a.
~62f and the drive unit 3 of the shunt compensation valves 36 to 40
6b to 40b are connected to each other via conduits 51b to 51f, respectively. In addition, solenoid valves 62a to 6
2f is adapted to be driven in accordance with each of the drive signals a, b, c, d, e, f output from the output section 58 of the controller 59, and the drive section of these solenoid valves 62a is , the return back pressure of the relief valve 61b is received as a common back pressure. Of the components of the control pressure generating means 60a, the parts including the relief valve 61b and the electromagnetic valves 62a to 62f are formed into one horizontal block as shown by the two-dot chain line, and the pipe line 5
The length dimensions of 1a to 51f are set to substantially the same length dimensions. In addition, due to the above-mentioned blocking, the lengths of the pipes 61c connected to one drive section 35a to 40a of each of the branch compensating valves 35 to 40 are also set to approximately the same length.

そして、コントローラ59の記憶部57には、例えば旋
回モータ23に係る分流補償弁35に対応して第2図に
示すような差圧Δptsと制御力Fとの関数関係、すな
わち差圧ΔPLsの増加に応じて制御力Fが比例的に減
少する特性線が記憶され、また、図示しないが、左走行
モータ24、右走行モータ25、ブームシリンダ26、
アームシリンダ27、パケットシリンダ28に係る分流
補償弁36〜40に対応して第2図に示す特性線と適宜
傾きの異なる特性線、すなわち差圧Δptsと制御力F
との関数関係がそれぞれ個別に記憶されている。上述し
た各特性線の傾きは、各種の作業を実施するに好適な各
アクチュエータ速度の組合せを考慮して設定される。
The storage unit 57 of the controller 59 stores, for example, the functional relationship between the differential pressure Δpts and the control force F as shown in FIG. A characteristic line in which the control force F decreases proportionally in response to
Corresponding to the branch compensating valves 36 to 40 related to the arm cylinder 27 and the packet cylinder 28, the characteristic lines shown in FIG.
The functional relationships with each other are individually stored. The slope of each characteristic line described above is set in consideration of the combination of actuator speeds suitable for performing various tasks.

さらに、この実施例では、どのアクチュエータが駆動さ
れようとしているか検出する作動検出手段、例えば各方
向制御弁29〜34に対応してそれぞれ設けられ、これ
らの方向制御弁29〜34の駆動を検知してコントロー
ラ59に信号を出力する駆動検知器80a、80b、8
0c、80d、80e、80fを設けである。
Further, in this embodiment, an operation detection means for detecting which actuator is about to be driven is provided, for example, corresponding to each of the directional control valves 29 to 34, and detects the driving of these directional control valves 29 to 34. Drive detectors 80a, 80b, 8 that output signals to the controller 59
0c, 80d, 80e, and 80f are provided.

このように構成しである第1の実施例にあっては、アク
チュエータの単独駆動時、例えば旋回モータ23を駆動
しようとして旋回用方向制御弁2つを切換えようとした
時には、駆動検知器80aから旋回用方向制御弁2つが
操作されたことが検出され、その信号に応じてコントロ
ーラ5つの記憶部57で記憶された第2図の関数関係が
読み出され、この演算部56で第2図の関数関係と、差
圧検出装置53で検出され、入力部55を介して演算部
56に入力された差圧ΔPL5とから制御力Fが求めら
れ、この制御力Fに相当する制御信号aが電磁弁62a
の駆動部に出力される。これにより、電磁弁62aが制
御力Fに応じた量作動し、パイロットポンプ61aによ
るパイロット圧を適宜調整した制御圧力が管路51aを
介して分流補償弁35の他方の駆動部35bに導かれ、
この分流補償弁35を閉じる方向に作動させようとする
In the first embodiment configured as described above, when the actuator is driven alone, for example, when the two swing direction control valves are switched in order to drive the swing motor 23, the drive detector 80a It is detected that the two turning direction control valves have been operated, and in response to the signal, the functional relationship shown in FIG. The control force F is determined from the functional relationship and the differential pressure ΔPL5 detected by the differential pressure detection device 53 and inputted to the calculation unit 56 via the input unit 55, and the control signal a corresponding to this control force F is electromagnetic. Valve 62a
output to the drive unit. As a result, the solenoid valve 62a operates by an amount corresponding to the control force F, and the control pressure obtained by appropriately adjusting the pilot pressure by the pilot pump 61a is guided to the other driving part 35b of the branch compensation valve 35 through the pipe 51a.
An attempt is made to operate this branch compensating valve 35 in the closing direction.

ところが、上記したパイロットポンプ61aによるパイ
ロット圧が一定圧力として管路61cを介して分流補償
弁35の一方の駆動部35aに上述の制御圧力と対抗す
るように導かれ、この分流補償弁35を開く方向に作動
させようとする。したがって1分流補償弁35は、旋回
モータ23の負荷圧の変化と、主油圧ポンプ22aの吐
出圧と当該負荷圧との差である差圧ΔPL5の変化とに
応じて、その絞り量を調整され、これにより旋回用方向
制御弁29の前後差圧が一定に保たれ、旋回用方向制御
弁29の操作量に応じた流量が旋回モータ23に供給さ
れて、所望の旋回モータ23の単独駆動、すなわち、図
示しない旋回体の旋回をおこなわせることができる。
However, the pilot pressure from the pilot pump 61a mentioned above is guided as a constant pressure to one driving part 35a of the branch compensating valve 35 through the pipe line 61c so as to oppose the above-mentioned control pressure, and this branch compensating valve 35 is opened. Try to operate in the direction. Therefore, the first branch flow compensation valve 35 has its throttle amount adjusted according to changes in the load pressure of the swing motor 23 and changes in the differential pressure ΔPL5, which is the difference between the discharge pressure of the main hydraulic pump 22a and the load pressure. As a result, the differential pressure across the swing direction control valve 29 is kept constant, and a flow rate corresponding to the operation amount of the swing direction control valve 29 is supplied to the swing motor 23, thereby independently driving the swing motor 23 as desired. In other words, it is possible to make the rotating body (not shown) turn.

また、アクチュエータの複合駆動時、例えば旋回モータ
23とブームシリンダ26の複合駆動時においては、駆
動検知器80a、80dからの信号がコントローラ5つ
の入力部55を介して演算部56に入力され、これらの
信号に基づいて差圧検出装置53で検出された差圧ΔP
Lsに応じた分流補償弁35に対応する制御力、及び分
流補償弁36に対応する制御力がコントローラ59の演
算部56で個別に求められ、コントローラ5つの出力部
58から制御力信号aが電磁弁62aに出力され、制御
力信号dが電磁弁62dに出力され、これらの電磁弁6
2a、62dが駆動する。これに伴い、分流補償弁35
.38の一方の駆動部35a、38aにはパイロットポ
ンプ61aによる一定の圧力であるパイロット圧が導か
れ、分流補償弁35の他方の駆動部35bには電磁弁6
2aを介して第2図の関数関係に対応する制御力Fに応
じた制御圧力が導かれ、分流補償弁38の他方の駆動部
38bには電磁弁62dを介して第2図の関数関係と傾
きを異ならせた図示しない特性線に対応する制御力Fに
応じた制御圧力が導かれ、これにより、分流補償弁35
.38の絞り量が適宜調整され、すなわち負荷圧の小さ
い側の分流補償弁の絞り量が負荷圧の大きい側の分流補
償弁の絞り量に比べて大きくなるように調整され、旋回
用方向制御弁35に流れる流量と、ブーム用方向制御弁
38に流れる流量とが所定の流量比で、しかも、これら
の流量の合計が主油圧ポンプ22aの押しのけ容積を越
えないように制御され、旋回モータ23とブームシリン
ダ26の複合駆動を実施でき、所望の旋回とブームの複
合操作をおこなわせることができる。
Furthermore, during combined drive of the actuator, for example, during combined drive of the swing motor 23 and the boom cylinder 26, signals from the drive detectors 80a and 80d are input to the calculation unit 56 via the input units 55 of the five controllers. The differential pressure ΔP detected by the differential pressure detection device 53 based on the signal of
The control force corresponding to the shunt compensating valve 35 and the control force corresponding to the shunt compensating valve 36 according to Ls are individually determined by the calculation section 56 of the controller 59, and the control force signal a is output from the output section 58 of the five controllers. The control force signal d is output to the solenoid valve 62d, and the control force signal d is output to the solenoid valve 62d.
2a and 62d are driven. Along with this, the shunt compensation valve 35
.. 38, a constant pilot pressure from a pilot pump 61a is introduced to one of the driving parts 35a and 38a, and the other driving part 35b of the branch compensating valve 35 is supplied with a solenoid valve 6.
2a, a control pressure corresponding to the control force F corresponding to the functional relationship shown in FIG. A control pressure is derived in accordance with the control force F corresponding to a characteristic line (not shown) with a different slope, and as a result, the flow compensation valve 35
.. 38 is adjusted appropriately, that is, the amount of restriction of the branch flow compensation valve on the side where the load pressure is lower is adjusted to be larger than the amount of restriction of the flow distribution compensation valve on the side where the load pressure is higher. 35 and the flow rate flowing to the boom directional control valve 38 are controlled such that the flow rate is a predetermined flow rate, and the total of these flow rates does not exceed the displacement volume of the main hydraulic pump 22a. The boom cylinder 26 can be driven in combination, and a desired combination of turning and boom operation can be performed.

なお、アクチュエータの複合駆動は上記した旋回モータ
23とブームシリンダ26の組合せに限られず、いずれ
のアクチュエータの組合せであっても、上述と同様の動
作がおこなわれる。
Note that the combined actuator drive is not limited to the above-described combination of the swing motor 23 and the boom cylinder 26, and the same operation as described above is performed with any combination of actuators.

このように構成した第1の実施例では、分流補償弁35
〜40のそれぞれの一方の駆動部35a〜40aに管路
61cを介して同じパイロットリリーフ圧力を供給する
ようにしであることから、アクチュエータからの戻り油
等に伴うタンク圧の変化の影響を分流補償弁35〜40
の駆動に与えることがなく、したがって、タンク圧の変
化にかかわらず分流補償弁35〜40を安定して駆動さ
せることができ、優れた制御精度が得られる。
In the first embodiment configured in this way, the shunt compensation valve 35
Since the same pilot relief pressure is supplied to one drive unit 35a to 40a of each of the actuators 35a to 40 through the conduit 61c, the effect of changes in tank pressure due to oil returned from the actuator, etc. can be compensated for by the shunt flow. Valve 35-40
Therefore, the branch compensation valves 35 to 40 can be stably driven regardless of changes in tank pressure, and excellent control accuracy can be obtained.

また、分流補償弁35〜40の一方の駆動部35a〜4
0aにばねの力を介在させることなく分流補償弁35〜
40を駆動でき、しかも同じパイロットリリーフ圧力に
よってこれらの分流補償弁35〜40を駆動するので、
分流補償弁35〜40相互間の駆動誤差をほとんど生じ
ることがなく、所望の分流比が得られ、優れた複合操作
性が得られる。
Moreover, one drive part 35a-4 of the branch compensation valves 35-40
Diversion compensation valve 35~ without intervening spring force in 0a
40, and these branch compensating valves 35 to 40 are driven by the same pilot relief pressure.
Almost no driving error occurs between the flow compensating valves 35 to 40, a desired flow ratio is obtained, and excellent combined operability is obtained.

また、リリーフ弁61bと電磁弁62a〜62fとを1
つの構造体としてブロック化してあり、しかも各分流補
償弁35〜40の一方の駆動部35a〜40aに連絡さ
れるそれぞれの管路61cをほぼ同等の長さ寸法に設定
しであることから、管路61cの圧力損失による各分流
補償弁35〜40の相互間の駆動誤差を生じることがな
く、これによっても優れた複合操作性が得られる。
Also, the relief valve 61b and the solenoid valves 62a to 62f are connected to one
In addition, the pipes 61c connected to one of the driving parts 35a to 40a of each of the branch compensating valves 35 to 40 are set to have approximately the same length. There is no drive error between the branch compensating valves 35 to 40 due to pressure loss in the passage 61c, and this also provides excellent combined operability.

さらに、上述のようにリリーフ弁61bと電磁弁62a
〜62fとを1つの構造体としてブロック化してあり、
電磁弁62a〜62fの駆動部に同じリリーフ弁61b
の戻り背圧を与えるようにし、しかも管路51a〜51
fの長さ寸法をほぼ同等に設定しであることから、電磁
弁62a〜62fの相互間の駆動誤差を生じることがな
く、したがってこれらの電磁弁62a〜62fの駆動に
伴う各分流補償弁35〜40相互間の駆動誤差を生じる
ことがなく、また、管路51a〜51fの圧力損失によ
る各分流補償弁35〜40相互間の駆動誤差を生じるこ
とがなく、これらによっても1憂れた複合操作性が得ら
れる。
Furthermore, as described above, the relief valve 61b and the solenoid valve 62a
~62f are blocked as one structure,
The same relief valve 61b is used as the drive part of the solenoid valves 62a to 62f.
In addition, the pipes 51a to 51
Since the length dimensions of f are set to be almost the same, there is no drive error between the solenoid valves 62a to 62f, and therefore each branch compensating valve 35 due to the drive of these solenoid valves 62a to 62f. There is no driving error between the valves 35 to 40, and there is no driving error between the branch compensating valves 35 to 40 due to pressure loss in the pipes 51a to 51f. Provides ease of use.

なお、上記第1の実施例にあっては、駆動検知器80a
〜80fから出力される信号に対応させて電磁弁62a
〜62fのいずれかを駆動するように構成しであるが、
このような駆動検知器80a〜80fを設けず、また6
つの電磁弁62a〜62fの代わりに単に1つの電磁弁
を設け、分流補償弁35〜40の他方の駆動部35b〜
40bのそれぞれに同じ制御圧力を与えるように構成す
ることもできる。このように構成したものにあっては、
各分流補償弁35〜40を介して各方向制御弁29〜3
4に供給される流量の分流比が一義的に設定され、すな
わち上記した第1の実施例におけるように作業の種類に
応じた任意の分流比に変更することができないものの、
掘削等の特定の作業を比較的簡単な構造でおこなわせる
ことができる。
Note that in the first embodiment, the drive detector 80a
The solenoid valve 62a corresponds to the signal output from ~80f.
It is configured to drive either of ~62f,
Such drive detectors 80a to 80f are not provided, and 6
Only one solenoid valve is provided instead of the two solenoid valves 62a to 62f, and the other drive parts 35b to 35b of the branch compensation valves 35 to 40 are provided.
40b can also be configured to apply the same control pressure to each. With this configuration,
Each direction control valve 29-3 via each branch compensation valve 35-40
Although the dividing ratio of the flow rate supplied to No. 4 is uniquely set, that is, it cannot be changed to an arbitrary dividing ratio depending on the type of work as in the first embodiment described above.
Specific operations such as excavation can be performed with a relatively simple structure.

第3図は本発明の第2の実施例の要部を示す説明図であ
る。この第2の実施例にあっては、可変容量油圧ポンプ
からなる主油圧ポンプ22を設けであるとともに、主油
圧ポンプ22から吐出される流量を制御する流量制御手
段を、主油圧ポンプ22の押しのけ容積を制御する制御
用アクチュエータ41と、管路43を介して導かれるポ
ンプ圧と管路44を介して導かれる最大負荷圧との差圧
Δptsによって駆動して上述の制御用アクチュエータ
41を制御する流量N整弁42とらよって構成しである
。その他の構成は前述した第1の実施例と同等である。
FIG. 3 is an explanatory diagram showing the main part of the second embodiment of the present invention. In this second embodiment, a main hydraulic pump 22 consisting of a variable displacement hydraulic pump is provided, and a flow rate control means for controlling the flow rate discharged from the main hydraulic pump 22 is provided by displacing the main hydraulic pump 22. The control actuator 41 that controls the volume is driven by the differential pressure Δpts between the pump pressure led through the pipe line 43 and the maximum load pressure led through the pipe line 44 to control the above-mentioned control actuator 41. It is composed of a flow rate N regulating valve 42. The other configurations are the same as those of the first embodiment described above.

このように構成した第1の実施例にあっても、差圧ΔP
LSすなわち流量調整弁42を付勢するばねの力によっ
て決まるロードセンシング補償圧に応じた制御をおこな
うことができ、前述した第1の実施例と同等の効果を奏
する。
Even in the first embodiment configured in this way, the differential pressure ΔP
Control can be performed according to the load sensing compensation pressure determined by the force of the spring that biases the LS, that is, the flow rate adjustment valve 42, and the same effect as in the first embodiment described above can be achieved.

第4図は本発明の第3の実施例の要部を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing main parts of a third embodiment of the present invention.

この第3の実施例にあっても、主油圧ポンプ22の押し
のけ容積を制御する流量制御手段の構成を第1図に示す
第1の実施例と異ならせである。
This third embodiment also differs from the first embodiment shown in FIG. 1 in the configuration of the flow rate control means for controlling the displacement of the main hydraulic pump 22.

この第3の実施例における流量制御手段は、油圧源63
に連結され、かつ制御用アクチュエータ・11のヘッド
側とロッド側との間に連絡される電磁弁6−1と、この
電磁弁64とタンクとの開に連絡され、かつ制御用アク
チュエータ41のヘッド側に連絡される電磁弁65とを
含むとともに、ポンプ圧と最大負荷圧との差圧Δpts
を検出する差圧検出装置53に接続され、入力部66、
演算部67、記憶部68、出力部6つを含む制御装置7
0とを含んでいる。
The flow rate control means in this third embodiment is a hydraulic power source 63.
and a solenoid valve 6-1 connected to and connected between the head side and the rod side of the control actuator 11, and a solenoid valve 64 connected to the opening of the tank and connected to the head side of the control actuator 41. and a solenoid valve 65 connected to the side, and a differential pressure Δpts between the pump pressure and the maximum load pressure.
The input section 66 is connected to the differential pressure detection device 53 that detects the
Control device 7 including a calculation section 67, a storage section 68, and six output sections
Contains 0.

この流量制御手段では、制御装置70の記憶部68で、
あらかじめ望ましいポンプ圧と最大負荷圧との差圧、す
なわち前述した第1図の流量調整弁42aを付勢するば
ねのばね力に相応する差圧が設定され、この設定差圧と
差圧検出装置53で検出された値とが演算部67で比較
され、その差に応じた駆動信号がこの演算部67で求め
られ、この駆動信号が出力部69から電磁弁64.65
の駆動部に選択的に出力される。
In this flow rate control means, in the storage section 68 of the control device 70,
The differential pressure between the desired pump pressure and the maximum load pressure, that is, the differential pressure corresponding to the spring force of the spring that biases the flow rate regulating valve 42a in FIG. A calculation unit 67 compares the value detected at 53 with the value detected by the calculation unit 67, and a drive signal corresponding to the difference is determined by the calculation unit 67. This drive signal is sent from the output unit 69 to the solenoid valve 64.65.
is selectively output to the drive unit.

ここで、仮に差圧検出装置53で検出された差圧Δpt
sが設定差圧よりも大きいときには、制御装置70から
電磁弁64の駆動部に信号が出力されてこの電磁弁6・
4が下段位置に切換えられ、油圧源63の圧油が制御用
アクチュエータ711のヘッド側とロッド側の双方に供
給される。このとき制御用アクチュエータ41のヘッド
側とロッド側の受圧面積差により、制御用アクチュエー
タ41のピストンは図示左方に移動し、主油圧ポンプ2
2から吐出される流量が少なくなるように押しのけ容積
が変更され、差圧Δptsが設定差圧に近づくように小
さく制御される。また、差圧検出装置53で検出された
差圧ΔPtsが設定差圧よりも小さいときには、制御装
置7oがら電磁弁65の駆動部に信号が出力されてこの
電磁弁65が下段位置に切換えられ、制御用アクチュエ
ータ41のヘッド側とタンクとが連通し、油圧源63の
圧油が制御用アクチュエータ41のロッド側に供給され
、制御用アクチュエータ41のピストンは図示右方に移
動し、主油圧ポンプ22から吐出される流量が多くなる
ように押しのけ容積が変更され、差圧Δptsが設定差
圧に近づくように大きく制御卸される。その他の構成は
前述した第1の実施例と同等である。
Here, if the differential pressure Δpt detected by the differential pressure detection device 53 is
When s is larger than the set differential pressure, a signal is output from the control device 70 to the drive section of the solenoid valve 64, and the solenoid valve 6.
4 is switched to the lower position, and pressure oil from the hydraulic source 63 is supplied to both the head side and the rod side of the control actuator 711. At this time, due to the difference in pressure receiving area between the head side and the rod side of the control actuator 41, the piston of the control actuator 41 moves to the left in the figure, and the main hydraulic pump 2
The displacement volume is changed so that the flow rate discharged from 2 is reduced, and the differential pressure Δpts is controlled to be small so that it approaches the set differential pressure. Further, when the differential pressure ΔPts detected by the differential pressure detection device 53 is smaller than the set differential pressure, the control device 7o outputs a signal to the drive section of the solenoid valve 65, and the solenoid valve 65 is switched to the lower position. The head side of the control actuator 41 communicates with the tank, pressure oil from the hydraulic source 63 is supplied to the rod side of the control actuator 41, the piston of the control actuator 41 moves to the right in the figure, and the main hydraulic pump 22 The displacement volume is changed so that the flow rate discharged from the pump is increased, and the differential pressure Δpts is greatly controlled so as to approach the set differential pressure. The other configurations are the same as those of the first embodiment described above.

このように構成した第2の実施例にあっても、第1の実
施例におけるのと同様にロードセンシング補償圧による
制御をおこなうことができ、第1の実施例と同等の効果
を奏する。
Even in the second embodiment configured in this manner, control using the load sensing compensation pressure can be performed in the same way as in the first embodiment, and the same effects as in the first embodiment can be achieved.

第5図は本発明の第4の実施例の要部を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing the main part of the fourth embodiment of the present invention.

この第4の実施例も主油圧ポンプ22の押しのけ容積を
制御する流量制御手段の構成が第1、第2の実施例と異
ならせである。この第3の実施例における流量制御手段
は、例えば前述した第2の実施例におけるのと同等の油
圧源63、電磁弁64.65と、入力部66、演算部6
7、記憶部68、出力部69を含む制御装置70とから
なる主油圧ポンプ22の吐出量を制御する吐出量制御手
段を備えるとともに、主油圧ポンプ22の押しのけ容積
を決める傾転角を検出し、制御装置70の入力部66に
傾転角信号を出力する傾転角検出器71と、主油圧ポン
プ22の目標流産すなわち目標傾転角を指令する信号を
制御装置70の入力部66に出力する指令装置72とを
備えている。
This fourth embodiment also differs from the first and second embodiments in the configuration of the flow rate control means for controlling the displacement of the main hydraulic pump 22. The flow control means in this third embodiment includes, for example, a hydraulic power source 63, electromagnetic valves 64 and 65, an input section 66, and a calculation section 6, which are the same as those in the second embodiment described above.
7. It is equipped with a discharge amount control means for controlling the discharge amount of the main hydraulic pump 22, which is composed of a control device 70 including a storage section 68 and an output section 69, and detects a tilt angle that determines the displacement of the main hydraulic pump 22. , a tilt angle detector 71 that outputs a tilt angle signal to the input section 66 of the control device 70, and a signal that commands the target miscarriage of the main hydraulic pump 22, that is, the target tilt angle, to the input section 66 of the control device 70. A command device 72 is provided.

この流量制御手段では、を話合装置72の操作による指
令信号の値と傾転角検出器71で検出される値とが制御
装置70の演算部67で比較され、その差に応じた駆動
信号が出力部69がら電磁弁64.65の駆動部に選択
的に出力され、指令装置72の操作量に応じた流量が主
油圧ポンプ22から出力されるようになっている。その
他の構成は前述した第1の実施例と同等である。
In this flow rate control means, the value of the command signal generated by the operation of the discussion device 72 and the value detected by the tilt angle detector 71 are compared in the arithmetic unit 67 of the control device 70, and a drive signal is generated according to the difference. is selectively output from the output section 69 to the driving section of the electromagnetic valves 64 and 65, and a flow rate corresponding to the operation amount of the command device 72 is output from the main hydraulic pump 22. The other configurations are the same as those of the first embodiment described above.

この第4の実施例では、ロードセンシング補償圧によら
ずに主油圧ポンプ22のFEltを決めることができる
。その池の効果は第1の実施例と同等である。
In this fourth embodiment, FElt of the main hydraulic pump 22 can be determined without depending on the load sensing compensation pressure. The effect of the pond is the same as in the first embodiment.

〈発明の効果〉 本発明の土木・建設機械の油圧駆動装置は、以上のよう
に構成しであることにより、タンク圧の変化にかかわら
ず分流補償弁の安定した駆動が得られ、それ故、潰れた
制御精度を確保でき、また分流補償弁間の駆動誤差をほ
とんど生じないので優れた複合操作性を有する。
<Effects of the Invention> The hydraulic drive system for civil engineering and construction machinery of the present invention is configured as described above, so that stable drive of the diversion compensation valve can be obtained regardless of changes in tank pressure, and therefore, It is possible to ensure excellent control accuracy, and there is almost no drive error between the branch compensating valves, so it has excellent combined operability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の土木・建設機械の油圧駆動装置の第1
の実施例を示す回路図、第2図は第1図に示される第1
の実施例に備えられる旋回用方向制御弁に係る分流補償
弁に対応して設定される関数関係を示す図、第3図は本
発明の第2の実施例の要部を示す説明図、第4図は本発
明の第3の実施例の要部を示す説明図、第5図は本発明
の第4の実施例の要部を示す説明図、第6図は従来の土
木・建設機械の油圧駆動装置を示す回路図である。 21・・・・・・原動機、22.22a・・・・・・主
油圧ポンプ、23・・・・・・旋回モータ、24・・・
・・・左走行モータ、25・・・・・・右走行モータ、
26・・・・・・ブームシリンダ、27・・・・・・ア
ームシリンダ、28・・・・・・パケットシリンダ、2
つ・・・・・・旋回用方向制御弁、30・・・・・・左
走行用方向制御弁、31・・・・・・右走行用方向制御
弁、32・・・・・・ブーム用方向制御弁、33・・・
・・・アーム用方向制御弁、34・・・・・・パケット
用方向制御弁、35.36.37.38.39.40・
・・・・・分流補償弁、35a、36a、37a、38
a、39a、40 a −−−−−−一方の駆動部、3
5b、36b、37b、38b、39b、40b・・・
・・・他方の駆動部、41・・・・・・制御用アクチュ
エータ、42.42a・・・・・・流量調整弁、43a
、44.44a、51a、51b、51c、51d、5
1e、51f、61C・・・・・・管路、52・・・・
・・制御力付加手段、53・・・・・・差圧検出装置、
55.66・・・・・・入力部、56.67・・・・・
・演算部、57.68・・・・・・記憶部、58.69
・・・・・・出力部、5つ・・・・・・コントローラ、
60a・・・・・・制御圧力発生装置、61a・・・・
・・パイロットポンプ、6 l b ・・−・−リリー
フ弁、62a、62b、62c、62d、62e、62
f、64.65−・−電磁弁、63・・・・・・油圧源
、70・・・・・・制御装置、71・・・・・・傾転角
検出器、72・・・・・・指令装置、80a、80b、
80c、80d、80e、80 f ・=−駆動検知器
。 第2図 第4図 6d 第5図 第 6図
FIG. 1 shows the first hydraulic drive system for civil engineering and construction machinery of the present invention.
FIG. 2 is a circuit diagram showing an embodiment of the first embodiment shown in FIG.
FIG. 3 is an explanatory diagram showing the main parts of the second embodiment of the present invention, and FIG. FIG. 4 is an explanatory diagram showing the main part of the third embodiment of the present invention, FIG. 5 is an explanatory diagram showing the main part of the fourth embodiment of the invention, and FIG. 6 is a diagram showing the main part of the fourth embodiment of the present invention. It is a circuit diagram showing a hydraulic drive device. 21... Prime mover, 22.22a... Main hydraulic pump, 23... Swing motor, 24...
...Left travel motor, 25...Right travel motor,
26...Boom cylinder, 27...Arm cylinder, 28...Packet cylinder, 2
1...Direction control valve for turning, 30...Direction control valve for left travel, 31...Direction control valve for right travel, 32...For boom Directional control valve, 33...
...Arm directional control valve, 34...Packet directional control valve, 35.36.37.38.39.40.
...Diversion compensation valve, 35a, 36a, 37a, 38
a, 39a, 40 a ----- One drive section, 3
5b, 36b, 37b, 38b, 39b, 40b...
...Other drive unit, 41...Control actuator, 42.42a...Flow rate adjustment valve, 43a
, 44.44a, 51a, 51b, 51c, 51d, 5
1e, 51f, 61C...Pipeline, 52...
... Control force adding means, 53... Differential pressure detection device,
55.66... Input section, 56.67...
- Arithmetic unit, 57.68... Storage unit, 58.69
...output section, five ...controllers,
60a... Control pressure generator, 61a...
・・Pilot pump, 6 l b ・・・・Relief valve, 62a, 62b, 62c, 62d, 62e, 62
f, 64.65--Solenoid valve, 63...Hydraulic pressure source, 70...Control device, 71...Tilt angle detector, 72...・Command device, 80a, 80b,
80c, 80d, 80e, 80f ・=-Drive detector. Figure 2 Figure 4 6d Figure 5 Figure 6

Claims (7)

【特許請求の範囲】[Claims] (1)主油圧ポンプと、この主油圧ポンプから供給され
る圧油によつて駆動する複数のアクチユエータと、これ
らのアクチユエータに供給される圧油の流れを制御する
流量制御弁と、これらの流量制御弁の前後差圧をそれぞ
れ制御する分流補償弁と、主油圧ポンプから吐出される
流量を制御する流量制御手段とを備え、主油圧ポンプの
圧油を上記分流補償弁、流量制御弁のそれぞれを介して
上記それぞれのアクチユエータに供給し、これらのアク
チユエータの複合駆動が可能な土木・建設機械の油圧駆
動装置において、上記分流補償弁のそれぞれの一方の駆
動部に、これらの分流補償弁が開く方向に作動するよう
に同じパイロツトリリーフ圧力を供給するパイロツト圧
供給手段を設けるとともに、上記分流補償弁のそれぞれ
の他方の駆動部に、これらの分流補償弁が閉じる方向に
作動するように制御力を与える制御力付加手段を設けた
ことを特徴とする土木・建設機械の油圧駆動装置。
(1) A main hydraulic pump, a plurality of actuators driven by pressure oil supplied from this main hydraulic pump, a flow rate control valve that controls the flow of pressure oil supplied to these actuators, and their flow rates. It is equipped with a diversion compensation valve that controls the differential pressure before and after the control valve, and a flow rate control means that controls the flow rate discharged from the main hydraulic pump. In a hydraulic drive system for civil engineering and construction machinery that is capable of combined driving of these actuators by supplying power to each of the above actuators through A pilot pressure supply means is provided for supplying the same pilot relief pressure so as to operate in the same direction, and a control force is applied to the other drive section of each of the branch compensating valves so that the branch compensating valves operate in the closing direction. A hydraulic drive device for civil engineering and construction machinery, characterized in that it is provided with means for applying control force.
(2)主油圧ポンプから吐出される流量を、主油圧ポン
プから吐出される圧油の圧力とアクチユエータの最大負
荷圧との差圧に応じて制御する流量制御手段を備えたこ
とを特徴とする請求項(1)記載の土木・建設機械の油
圧駆動装置。
(2) A flow rate control means for controlling the flow rate discharged from the main hydraulic pump according to the pressure difference between the pressure of the pressure oil discharged from the main hydraulic pump and the maximum load pressure of the actuator. A hydraulic drive device for civil engineering/construction machinery according to claim (1).
(3)流量制御手段が、主油圧ポンプの目標流量を指令
する指令装置と、この指令装置から出力される信号に応
じて主油圧ポンプの吐出量を制御する吐出量制御手段と
を含むことを特徴とする請求項(1)記載の土木・建設
機械の油圧駆動装置。
(3) The flow rate control means includes a command device that commands a target flow rate of the main hydraulic pump, and a discharge amount control means that controls the discharge amount of the main hydraulic pump in accordance with a signal output from the command device. A hydraulic drive device for civil engineering/construction machinery according to claim (1).
(4)パイロツト圧供給手段が、パイロツトポンプと、
このパイロツトポンプから吐出されるパイロツト圧の大
きさを規定するリリーフ弁と、上記パイロツトポンプと
分流補償弁のそれぞれの一方の駆動部とを連絡する管路
とを含むことを特徴とする請求項(1)記載の土木・建
設機械の油圧駆動装置。
(4) The pilot pressure supply means is a pilot pump,
Claim (1) characterized in that it includes a relief valve that regulates the magnitude of the pilot pressure discharged from the pilot pump, and a pipe line that connects the pilot pump and the drive section of one of the branch compensating valves. 1) Hydraulic drive device for civil engineering and construction machinery described above.
(5)制御力付加手段が、主油圧ポンプから吐出される
圧油の圧力とアクチユエータの最大負荷圧との差圧を検
出する差圧検出装置と、この差圧検出装置に接続され、
あらかじめ差圧と制御力との関数関係を記憶する記憶部
を有するコントローラと、このコントローラから出力さ
れる制御力信号に応じてアクチユエータに対応して設け
られる分流補償弁の他方の駆動部に与えられる制御圧力
を発生させる制御圧力発生手段とを含むことを特徴とす
る請求項(1)記載の土木・建設機械の油圧駆動装置。
(5) the control force adding means is connected to a differential pressure detection device that detects a differential pressure between the pressure of the pressure oil discharged from the main hydraulic pump and the maximum load pressure of the actuator, and the differential pressure detection device;
A controller has a memory unit that stores the functional relationship between differential pressure and control force in advance, and a control force signal output from the controller is applied to the other drive unit of the shunt compensation valve provided corresponding to the actuator. 2. The hydraulic drive system for civil engineering and construction machinery according to claim 1, further comprising a control pressure generating means for generating a control pressure.
(6)制御圧力発生手段が、パイロツトポンプと、この
パイロツトポンプと分流補償弁の駆動部との間に配置さ
れ、コントローラから出力される制御力信号に応じて作
動する電磁弁とを含むことを特徴とする請求項(5)記
載の土木・建設機械の油圧駆動装置。
(6) The control pressure generating means includes a pilot pump and a solenoid valve that is disposed between the pilot pump and the drive section of the branch compensation valve and operates in response to a control force signal output from the controller. A hydraulic drive device for civil engineering/construction machinery according to claim (5).
(7)電磁弁を、複数の分流補償弁のそれぞれに対応し
て複数設けたことを特徴とする請求項(6)記載の土木
・建設機械の油圧駆動装置。
(7) The hydraulic drive system for civil engineering and construction machinery according to claim (6), characterized in that a plurality of solenoid valves are provided corresponding to each of the plurality of branch compensation valves.
JP63237505A 1988-09-24 1988-09-24 Hydraulic drive for civil and construction machinery Expired - Fee Related JP2735580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63237505A JP2735580B2 (en) 1988-09-24 1988-09-24 Hydraulic drive for civil and construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63237505A JP2735580B2 (en) 1988-09-24 1988-09-24 Hydraulic drive for civil and construction machinery

Publications (2)

Publication Number Publication Date
JPH0289803A true JPH0289803A (en) 1990-03-29
JP2735580B2 JP2735580B2 (en) 1998-04-02

Family

ID=17016314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63237505A Expired - Fee Related JP2735580B2 (en) 1988-09-24 1988-09-24 Hydraulic drive for civil and construction machinery

Country Status (1)

Country Link
JP (1) JP2735580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013198A1 (en) * 1991-01-23 1992-08-06 Kabushiki Kaisha Komatsu Seisakusho Hydraulic circuit having pressure compensation valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011706A (en) * 1983-06-14 1985-01-22 リンデ・アクチエンゲゼルシヤフト Liquid pressure type apparatus having at least two working apparatuses loaded by one pump
JPS6343006A (en) * 1986-08-06 1988-02-24 Hitachi Constr Mach Co Ltd Drive control device of hydraulic circuit
JPS6469804A (en) * 1987-09-08 1989-03-15 Kobe Steel Ltd Hydraulic control apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011706A (en) * 1983-06-14 1985-01-22 リンデ・アクチエンゲゼルシヤフト Liquid pressure type apparatus having at least two working apparatuses loaded by one pump
JPS6343006A (en) * 1986-08-06 1988-02-24 Hitachi Constr Mach Co Ltd Drive control device of hydraulic circuit
JPS6469804A (en) * 1987-09-08 1989-03-15 Kobe Steel Ltd Hydraulic control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013198A1 (en) * 1991-01-23 1992-08-06 Kabushiki Kaisha Komatsu Seisakusho Hydraulic circuit having pressure compensation valve
US5409038A (en) * 1991-01-23 1995-04-25 Kabushiki Kaisha Komatsu Seisakusho Hydraulic circuit including pressure compensating valve

Also Published As

Publication number Publication date
JP2735580B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JP4338758B2 (en) Hydraulic control equipment for construction machinery
US5673558A (en) Hydraulic circuit system for hydraulic excavator
JPH10103306A (en) Actuator operating characteristic controller
JP3058644B2 (en) Hydraulic drive
WO1992018711A1 (en) Hydraulic driving system in construction machine
JP2003004003A (en) Hydraulic control circuit of hydraulic shovel
JPH1171788A (en) Control circuit for construction machine
JPH06123302A (en) Oil pressure controller of construction machine
JPH08219121A (en) Hydraulic pressure reproducing device
JP3372973B2 (en) Hydraulic control device for construction machinery
JPH0289803A (en) Hydraulically-operated device for civil engineering construction equipment
JPH08219107A (en) Oil hydraulic regenerating device for hydraulic machine
JP3056220B2 (en) Hydraulic drive
JP2740224B2 (en) Hydraulic drive for civil and construction machinery
JP2625519B2 (en) Hydraulic drive
JP2819594B2 (en) Hydraulic drive for civil and construction machinery
JP2656595B2 (en) Hydraulic drive for civil and construction machinery
JP2784188B2 (en) Hydraulic drive
JPH11229444A (en) Hydraulic controller for construction machinery and its hydraulic control method
JP3532279B2 (en) Hydraulic circuit
JP2625509B2 (en) Hydraulic drive
JP2555361B2 (en) Road sensing control hydraulic circuit device
JP3307436B2 (en) Hydraulic control device
JPH02212606A (en) Hydraulic flow control device for construction machine
JPH09209415A (en) Hydraulic driving device of construction machinery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees