JPH0288786A - Production of high purity metal or alloy - Google Patents

Production of high purity metal or alloy

Info

Publication number
JPH0288786A
JPH0288786A JP63239056A JP23905688A JPH0288786A JP H0288786 A JPH0288786 A JP H0288786A JP 63239056 A JP63239056 A JP 63239056A JP 23905688 A JP23905688 A JP 23905688A JP H0288786 A JPH0288786 A JP H0288786A
Authority
JP
Japan
Prior art keywords
anode
cathode
electrolytic bath
electrolytic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63239056A
Other languages
Japanese (ja)
Other versions
JPH0696787B2 (en
Inventor
Hideo Tamamura
玉村 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63239056A priority Critical patent/JPH0696787B2/en
Publication of JPH0288786A publication Critical patent/JPH0288786A/en
Publication of JPH0696787B2 publication Critical patent/JPH0696787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To produce a high purity metal at high efficiency by arranging a cathode so that main electrode surface facing to an electrolytic bath vessel consists of only with the cathode and executing main electrolytic reaction at between the back face of this cathode and an anode. CONSTITUTION:Fused salt 4 (for example, 50wt.% LiF-50wt.% NdF3) is arranged into the electrolytic bath vessel 3 made of austenite series stainless steel and a crucible 9 lining the inside with Ta is set at low part of the vessel 3 and on this, a dummy electrode 11 made of an electrolytic pure iron is concentrically arranged. Iron cathodes 1 are arranged at the electrolytic bath vessel 3 side in the fused salt 4 and the graphite anode 2 is arranged at between the these cathodes 1. By this constitution, the electrolysis is executed with the anode 2 and the cathode 1 and electrolytic generated Nd is allowed to react with Fe of the cathodes 1 and deposited in the crucible 9 as the drips 10 of Nd-Fe alloy to obtain the Nd-Fe alloy 5. This Nd-Fe alloy 5 is sucked up with a vacuum suction device 7 and NdF3 corresponding to consumed quantity is supplied into the fused salt 4 through a raw material supplied device 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解法により高純度金属又は合金を製造する方
法に係り、特に最近高性能磁石として注目されているN
d−Fe−B系磁石用原料のNd及びNd合金の製造に
好適な溶融塩電解法に関するものであるが、水溶液電解
及び溶融塩電解一般にも適用できるものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing high-purity metals or alloys by electrolytic method, and particularly relates to a method for producing high-purity metals or alloys by electrolytic method.
The present invention relates to a molten salt electrolysis method suitable for producing Nd and Nd alloys as raw materials for d-Fe-B magnets, but is also applicable to aqueous solution electrolysis and molten salt electrolysis in general.

(従来の技術) Nd又はNd合金を溶融塩電解法で得る方法としては、
LiF−NdFi−NdiO3系の電解浴を用いて得る
報告がある。
(Prior art) As a method for obtaining Nd or Nd alloy by molten salt electrolysis method,
There is a report on the use of a LiF-NdFi-NdiO3 electrolytic bath.

(例:モーリス他著NJ、S、Bur、M’ nRep
、Invest、No、69573〜 5%(50ppm) 、またMoライニングを施した電
解槽でMo=O,O’2%(200ppm)のNd−F
e合金を製造した実施例が示されている。
(Example: Morris et al., NJ, S., Bur, M' nRep
, Invest, No. 69573 ~ 5% (50 ppm), and Nd-F with Mo = O, O'2% (200 ppm) in an electrolytic cell with Mo lining.
Examples are shown in which e-alloys were produced.

炭素、酸素等の非金属不純物の減少方法については、本
出願人が提案した前述の溶融塩電解法により解決されC
=40ppm、O=70ppmの高純度Nd等の製造が
可能になった。この方法で使用される溶融塩としては、
LiPにネオジム金属源としてN d F 3. N 
d 203を加えたもの、すなわち、L i F  N
 d F 3系、又はこれにNd20iを混合させたL
i F  NdFi  NCl20i系、これにBaF
2.CaF2等を適宜加えた系が用いられる。また、N
dF、に代えてNd(13が使用される場合もある。
The method for reducing nonmetallic impurities such as carbon and oxygen was solved by the aforementioned molten salt electrolysis method proposed by the applicant.
It has become possible to produce high-purity Nd, etc., with O = 40 ppm and O = 70 ppm. The molten salt used in this method is
N d F as a neodymium metal source in LiP 3. N
d 203, i.e. L i F N
d F 3 system or L mixed with Nd20i
i F NdFi NCl20i system, and BaF
2. A system to which CaF2 or the like is appropriately added is used. Also, N
Nd(13) may be used instead of dF.

LiF−NdF、系の場合、96〜65m0ρ%、より
好ましくは95〜75mo(1%のLiFと4〜35m
oρ%、より好ましくは5〜25moρ%のN d F
 3とからなる組成がよいとされる。
In the case of LiF-NdF, 96-65m0ρ%, more preferably 95-75mo (1% LiF and 4-35m
oρ%, more preferably 5 to 25 moρ% N d F
It is said that a composition consisting of 3 is good.

LiF−NdF3−Nd203系の場合、上記1967
年〉 本出願人は、PCT/JP−87−01011号(特願
昭61−307,308号、特願昭62−204879
号および特願昭62−220893号の優先権主張)に
おいて、ネオジム又はネオジム合金を浴底に集め、かつ
浴上力の雰囲気に酸素ガスを含めることによって、炭素
電極から生ずるパウダー状炭素を消耗させて除去し、ま
た電解浴を安定化するとともに、少なくとも陽極に板状
電極を用いることによって、臨界電流密度を高めて高い
電流密度及び電流効率でネオジム又はネオジム合金(以
下、Nd等ということもある)を生成することを可能な
らしめることを要旨とする溶融塩電解法を提案した。
In the case of LiF-NdF3-Nd203 system, the above 1967
〉 The applicant has filed PCT/JP-87-01011 (Japanese Patent Application No. 61-307,308, Japanese Patent Application No. 62-204879)
No. 62-220893), by collecting neodymium or neodymium alloy at the bottom of the bath and including oxygen gas in the atmosphere above the bath, the powdered carbon produced from the carbon electrode is exhausted. In addition to stabilizing the electrolytic bath, by using a plate-shaped electrode at least as an anode, the critical current density can be increased and neodymium or neodymium alloy (hereinafter also referred to as Nd, etc.) can be removed with high current density and current efficiency. ) was proposed for the molten salt electrolysis method.

Nd−Fe−B永久磁石では、一般に炭素、酸素等の非
金属不純物の他に金属不純物も磁気特性を劣化するため
に、永久磁石に使用されるNd等は不純物が少ないこと
が要求されている。
In Nd-Fe-B permanent magnets, in addition to non-metallic impurities such as carbon and oxygen, metal impurities also generally degrade magnetic properties, so Nd, etc. used in permanent magnets are required to have a small amount of impurities. .

特公昭63−12947号公報によると、Wライニング
を施した電解槽でW(%)<0.00の好ましい組成の
L i F  N d F 3系にNd2O。
According to Japanese Patent Publication No. 63-12947, Nd2O is added to the L i F N d F 3 system with a preferable composition of W (%) < 0.00 in an electrolytic cell lined with W.

を数wt%添加混合した組成がよいとされる。It is said that a composition in which a few wt % of is added and mixed is good.

LiF−希土類化合物系の溶融塩を用いて希土類金属を
電解製造した場合、電解浴槽の腐蝕によって、この成分
が溶出しNd等に移行することが、Nd等への不純物混
入の原因として考えられる。かかる不純物の混入を防止
するために、一般に電解浴槽材料に要求される性質は l)高温である溶融塩に対する耐蝕性のあること。
When rare earth metals are produced electrolytically using a LiF-rare earth compound based molten salt, this component is eluted and transferred to Nd etc. due to corrosion of the electrolytic bath, which is considered to be the cause of impurity contamination with Nd etc. In order to prevent the contamination of such impurities, the properties generally required of the electrolytic bath material are: (1) Corrosion resistance against high-temperature molten salt.

2〉高温で溶融塩を保持するための高温強度があること
2> Must have high temperature strength to hold molten salt at high temperatures.

上記の要求を満たすとともに価格が安い材料としてオー
ステナイト系ステンレス鋼を使用することを本出願人が
提案した(特願昭62−233697号)。
The present applicant proposed the use of austenitic stainless steel as a material that satisfies the above requirements and is inexpensive (Japanese Patent Application No. 62-233697).

オーステナイト系ステンレス鋼を前述の浴槽材料に使用
することにより非金属元素に関し高純度のNd及びNd
−Fe合金を製造することができたが、時々製品中に電
解浴槽に用いているオーステナイト系ステンレス鋼の成
分であるNi及びCr等が混入することが判った。
By using austenitic stainless steel as the bath material, high purity Nd and Nd can be obtained with respect to non-metallic elements.
-Fe alloy could be manufactured, but it was found that Ni and Cr, which are components of austenitic stainless steel used in electrolytic baths, were sometimes mixed into the product.

(発明が解決しようとする課題) 鉄系材料製電解浴槽を使用した場合にその含有元素がN
d及びNd−Fe合金の純度を低下させることに関する
従来の報告を本発明者等は知らない。
(Problem to be solved by the invention) When an electrolytic bath made of iron-based material is used, the contained element is N.
We are not aware of any prior reports regarding reducing the purity of d and Nd-Fe alloys.

そこで、本発明者等はステンレスのCr。Therefore, the present inventors used Cr stainless steel.

Ni等の異種金属がNd等に混入する原因を究明したと
ころ、前述した高温の溶融塩に対する単なる腐蝕の他に
電気化学的原因による腐蝕があることが分かった。
When we investigated the cause of the mixing of different metals such as Ni into Nd, we found that there was corrosion due to electrochemical causes, in addition to the simple corrosion due to the high-temperature molten salt mentioned above.

よって上記1)、2)の要求を満足する材料を電解浴槽
に使用することのみによっては、高純度のNd等を製造
することができない。
Therefore, it is not possible to produce high-purity Nd or the like only by using a material that satisfies the above requirements 1) and 2) for the electrolytic bath.

したがって、本発明は鉄系材料、特にステンレス鋼、を
電解浴槽の材料に使用する電解法において、そのFe以
外の金属成分が電解金属に混入する量を少なくする希土
類金属又は合金の電解法を提供することを目的とする。
Therefore, the present invention provides an electrolytic method for rare earth metals or alloys that reduces the amount of metal components other than Fe mixed into the electrolytic metal in an electrolytic method using iron-based materials, particularly stainless steel, as the material for the electrolytic bath. The purpose is to

す、 その第2は、電解浴槽内に陽極と陰極を配置し、電解に
より金属又は合金を製造する方法に於て、電解浴槽に面
するおもな電極面が陽極のみで構成されており該陽極の
表面と陰極間で主たる電解反応を行なわせることを特徴
とする方法であり、 その第3は、電解浴槽内に陽極と陰極を配置し、電解に
より金属又は合金を製造する方法に於て、電解浴槽に面
するおもな電極面が陽極と陰極により構成されており、
該陽極の裏面と該陰極の裏面間で主たる電解反応を行な
わせる電極の形状及び配置をもち、かつ前記陽極と電解
槽間に導電性遮蔽体を配置して電解を行なうことを特徴
とする方法であり、 その第4は、電解浴槽内に陽極と陰極を配置し電解によ
り金属又は合金を製造する方法に於て、電解浴槽に面す
るおもな電極面が陽極と陰極により構成されており、該
陽極の裏面と該陰極の裏面で主たる電解反応を行なわせ
る電極の形状及さらに、本発明は、Ag2O3等のセラ
ミック材料及びMo、Ta、Wなどの難溶融性金属等を
電解浴槽に使用する溶融電解法において、従来よりも不
純物混入量を少なくすることができる希土類金属又は合
金の溶融電解法を提供することを目的とする。
The second method is to place an anode and a cathode in an electrolytic bath and manufacture metals or alloys by electrolysis. This method is characterized by causing the main electrolytic reaction to occur between the surface of the anode and the cathode.The third method is a method for producing metals or alloys by electrolysis by placing an anode and a cathode in an electrolytic bath. , the main electrode surface facing the electrolytic bath consists of an anode and a cathode,
A method characterized in that the electrode has a shape and arrangement that allows the main electrolytic reaction to occur between the back surface of the anode and the back surface of the cathode, and that electrolysis is performed by disposing a conductive shield between the anode and the electrolytic cell. The fourth method is to produce metals or alloys by electrolysis by arranging an anode and a cathode in an electrolytic bath, in which the main electrode surface facing the electrolytic bath is composed of the anode and the cathode. , the shape of the electrode that causes the main electrolytic reaction to occur on the back surface of the anode and the back surface of the cathode, and furthermore, the present invention uses ceramic materials such as Ag2O3 and refractory metals such as Mo, Ta, and W in the electrolytic bath. An object of the present invention is to provide a melting electrolytic method for rare earth metals or alloys that can reduce the amount of impurities mixed in than conventional methods.

(課題を解決するための手段) 本発明者等は、Ndに混入する電解浴槽材料溶解原因を
種々研究した結果、陽極と陰極及び電解浴槽の電位の変
化により、電解浴槽の材料が電蝕することを見出し、そ
の対策を検討し、そして本発明を完成した。
(Means for Solving the Problems) As a result of various studies on the causes of dissolution of the electrolytic bath material mixed into Nd, the present inventors found that the material of the electrolytic bath undergoes electrolytic corrosion due to changes in the potential of the anode, cathode, and electrolytic bath. They discovered this, studied countermeasures, and completed the present invention.

この電蝕の防止策として高純度金属を製造できかつ電解
浴槽を損傷しない方法として次の方法を提供する。
As a measure to prevent this electrolytic corrosion, the following method is proposed as a method that can produce high-purity metal and does not damage the electrolytic bath.

その第1は、電解浴槽内に陽極と陰極を配置し、電解に
より金属または合金を製造する方法に於て、電解浴槽に
面するおもな電極面が陰極のみで構成されており該陰極
の裏面と陽極間で主たる電解反応を行なわせることを特
徴とする方法であび配置をもち、かつ前記陰極と電解槽
間に導電性遮蔽体を配置して電解を行なうことを特徴と
する方法であり、 その第5は、電解浴槽内に陽極と陰極を配置し電解によ
り金属又は合金を製造する方法に於て、電解浴槽に面す
るおもな電極面が陽極と陰極により構成されており、該
陽極の裏面と該陰極の裏面で主たる電解反応を行なわせ
る電極の形状及び配置をもち、かつ前記各陽極、各陰極
と電解槽間に導電性遮蔽体を配置した電解浴槽に於て電
解を行なうことを特徴とする方法である。
The first is a method for producing metals or alloys by electrolysis by placing an anode and a cathode in an electrolytic bath, in which the main electrode surface facing the electrolytic bath consists only of the cathode. The method is characterized in that the main electrolytic reaction is carried out between the back surface and the anode, and the method is characterized in that the electrolysis is carried out by having a slotted arrangement and by arranging a conductive shield between the cathode and the electrolytic cell. , Fifth, in a method of manufacturing metals or alloys by electrolysis by placing an anode and a cathode in an electrolytic bath, the main electrode surface facing the electrolytic bath is composed of an anode and a cathode, and Electrolysis is performed in an electrolytic bath having a shape and arrangement of electrodes that allow the main electrolytic reaction to occur on the back surface of the anode and the back surface of the cathode, and in which a conductive shield is arranged between each of the anodes, each cathode, and the electrolytic bath. This method is characterized by the following.

上記の第1〜第5の方法は後で詳しく述べるが原理的に
は主たる反応面以外に洩れた陽イオン及び陰イオンと電
解浴槽とが反応し電蝕によるトラブルの原因となるので
あるが、 第1の方法は、電極の形状及び配置により陽イオンによ
る反応を防ぐものであり、 第2の方法は電極の形状及び配置により陰イオンによる
反応を防ぐものである。つまり第1、第2の方法は電極
の形状及び配置を主体とした解決方法である。
The above methods 1 to 5 will be described in detail later, but in principle, the cations and anions leaked to areas other than the main reaction surface react with the electrolytic bath, causing troubles due to electrolytic corrosion. The first method is to prevent reactions caused by cations by changing the shape and arrangement of the electrodes, and the second method is to prevent reactions caused by anions by changing the shape and arrangement of the electrodes. In other words, the first and second methods are solutions based mainly on the shape and arrangement of the electrodes.

これに対して第3〜第5の方法は電極の形状及び配置を
解決手段とするものではなく、導電性遮蔽体を電解浴槽
と電極間に配置することを解決手段とするものであって
、 第3の方法は陽イオンによる反応を防ぐものであり、 第4の方法は陰イオンによる反応を防ぐものであり、 第5の方法は陽イオン及び陰イオンの両方の反応を防ぐ
ものである。
On the other hand, in the third to fifth methods, the solution is not the shape and arrangement of the electrodes, but the solution is to place a conductive shield between the electrolytic bath and the electrodes. The third method is to prevent reactions caused by cations, the fourth method is to prevent reactions caused by anions, and the fifth method is to prevent reactions by both cations and anions.

つまり第5の方法が完全な解決方法であるが種々の電解
反応においては陽イオン及び陰イオン反応の両方がトラ
ブルの原因であるとは限らず、このうち一方の反応によ
るトラブルを解決すれば経済的に充分であることもある
からである。
In other words, the fifth method is a complete solution, but in various electrolytic reactions, both cationic and anionic reactions are not necessarily the cause of troubles, and solving problems caused by one of these reactions can be economical. This is because it may be sufficient in some cases.

第1の方法において電極配置の具体的なものとして(イ
)中空の円筒又は角筒状の陰極の中心の中空部分に陽極
を入れた形状又はこれらの電極を同心円状に配置するも
の、(ロ)陰極を板状型となる。陽極又は陰極を接地し
ないで通電すると、陽極と陰極の電位差は7■であるが
、陽極及び陰極の電位は電解浴槽、整流器その他の回路
の絶縁性その他の理由により変化することとなる。
Specific examples of electrode arrangement in the first method include (a) a hollow cylindrical or rectangular cylindrical cathode with an anode placed in the center of the cathode, or a configuration in which these electrodes are arranged concentrically; ) The cathode is plate-shaped. When electricity is applied without grounding the anode or cathode, the potential difference between the anode and cathode is 7μ, but the potential of the anode and cathode will change depending on the insulation of the electrolytic bath, rectifier, and other circuits, and other reasons.

従って陽極と陰極間の電位差は7Vと一定であるが、陽
極と電解浴槽及び陰極と電解浴槽間の電位差は絶縁物の
劣化等の理由により変化することとなる。
Therefore, the potential difference between the anode and the cathode is constant at 7V, but the potential difference between the anode and the electrolytic bath and between the cathode and the electrolytic bath will change due to reasons such as deterioration of the insulator.

今かりに、大地(アース〉に対して陽極と陰極の電位が
+5■と一2■で下記の条件でNd−Fe合金を製造す
る電気分解を行なったとする。この場合電解浴槽の電位
は接地していないと+5Vと一2Vの間であるので、仮
にIVであったとして以下に詳しく説明する。
Let us now assume that electrolysis is carried out to produce a Nd-Fe alloy under the following conditions, with the potentials of the anode and cathode being +5 and -2 with respect to the earth.In this case, the potential of the electrolytic bath is grounded. If it is not, it will be between +5V and -2V, so a detailed explanation will be given below assuming that it is IV.

L iF  N d F 3系溶融塩中で黒鉛陽極と鉄
製陰極を用いてNdF3を電気分解すると、(1)陽極
での反応は C+  nI”  −+CF、+ne−(1)(2)陰
極での反応は Fe+Nd”+3e−+Nd−Fe合金(2)極とし、
陽極を陰極ではさむ配置とするものが可能である。(イ
)の場合、陰極、陽極及び(ロ)の場合の陽極の形状は
板状円柱、角柱、多角柱その他いずれでも良い。(ロ)
の場合の陰極は陽極を両側から、三角形もしくは四角形
の各辺の位置で、あるいはその他の輪郭ではさむことが
可能である。
When NdF3 is electrolyzed in LiF N d F 3-based molten salt using a graphite anode and an iron cathode, (1) the reaction at the anode is C+ nI” −+CF, +ne− (1) (2) the reaction at the cathode is The reaction is conducted using Fe+Nd''+3e-+Nd-Fe alloy (2) as the pole.
An arrangement in which the anode is sandwiched between the cathodes is possible. In the case of (a), the cathode and the anode, and in the case of (b), the anode may have any shape such as a plate-shaped cylinder, a prism, a polygonal prism, or the like. (B)
In this case, the cathode can be sandwiched between the anode from both sides, at each side of a triangle or square, or at other contours.

Nd等の溶融塩電解に於ける電解浴槽材料としては、前
述した1)、2)の要求を満足する材料により、高温の
溶融塩に対する腐蝕は解決するのであるが、電解浴槽、
陽極、陰極の電位により電解浴槽が電蝕を受けることが
判った。次に電解浴槽の電蝕に関連する電解浴槽、陽極
、陰極の電位について述べる。なお、電解浴槽は通常接
地されていないので、その電位は陽極電圧と陰極電圧の
間の電位にあることになる。
As for electrolytic bath materials in molten salt electrolysis such as Nd, corrosion caused by high-temperature molten salt can be solved by materials that satisfy the requirements 1) and 2) mentioned above.
It was found that electrolytic baths are subject to electrolytic corrosion due to the potentials of the anode and cathode. Next, we will discuss the potentials of the electrolytic bath, anode, and cathode related to electrolytic corrosion of the electrolytic bath. Note that since the electrolytic bath is usually not grounded, its potential is between the anode voltage and the cathode voltage.

仮に陰極と#41i間に7Vの直流電圧をかけたとする
と、陽極と陰極間の電位差は7■となる。
If a DC voltage of 7V is applied between the cathode and #41i, the potential difference between the anode and the cathode will be 7■.

陽極を接地すると陽極が0■で陰極は一7vとなり、陰
極を接地すると陽極は+7■で陰極はOVとなる。
When the anode is grounded, the anode becomes 0■ and the cathode becomes -7V, and when the cathode is grounded, the anode becomes +7■ and the cathode becomes OV.

(11式により、陽極にCF、が発生し、陰極反応(2
)式により陰極ではNd−Fe合金が生成する。これら
(+1. +21が電解での主たる反応である。この反
応以外に陽極と電解浴槽及び陰極と電解浴槽の間に漏れ
出たF−とNd3+イオンが下記のように挙動する副反
応が考えられる。これがトラブルの原因となる。
(By Equation 11, CF is generated at the anode, and the cathode reaction (2
), a Nd-Fe alloy is generated at the cathode. These (+1. +21) are the main reactions in electrolysis. In addition to this reaction, there are also side reactions in which F- and Nd3+ ions leaked between the anode and the electrolytic bath and between the cathode and the electrolytic bath behave as shown below. .This causes trouble.

(3)陽極と電解槽の間で起こる副反応以下、図面(第
2図及び第3図)を参照として副反応を説明する。
(3) Side reactions that occur between the anode and the electrolytic cell The side reactions will be explained below with reference to the drawings (FIGS. 2 and 3).

図中、1は陽極、2は陰極、3は電解浴槽、4は電解浴
、5はNd−Fe合金である。
In the figure, 1 is an anode, 2 is a cathode, 3 is an electrolytic bath, 4 is an electrolytic bath, and 5 is a Nd-Fe alloy.

陽極1が+5■と電解浴槽3の+1■に対して高電位で
あるので、電解浴槽3が相対的に低電位となり、洩れ出
たNd3+が相対的に低電位である電解浴槽材料と反応
する。(なお、陽極が相対的に高電位であるので陽極と
電解槽の間に漏れたF−イオンは陽極側と反応し電解槽
と反応しない。)この結果、斜線で示した部分(3′)
で電解浴槽3のステンレス鋼中の成分がNdと反応しF
e、Cr、Ni等が溶出し、Nd−Fe−B合金5中に
取り込まれる。
Since the anode 1 has a high potential with respect to +5■ and the electrolytic bath 3 with +1■, the electrolytic bath 3 has a relatively low potential, and the leaked Nd3+ reacts with the electrolytic bath material that has a relatively low potential. . (Note that since the anode has a relatively high potential, F- ions leaking between the anode and the electrolytic cell react with the anode side and do not react with the electrolytic cell.) As a result, the shaded area (3')
The components in the stainless steel in the electrolytic bath 3 react with Nd and F
E, Cr, Ni, etc. are eluted and incorporated into the Nd-Fe-B alloy 5.

(4)陰極と電解浴槽の間で起こる副反応陰極2(第3
図)が−2Vと電解浴槽3の+IVに対し3■低電圧で
あるので電解浴槽3が相対的に高電位となり、F−が電
解浴槽材料と反応する。(なお、陰極は一2■と相対的
に低電位であるので、陰極と電解槽の間に漏れたNd3
+は陰極側と反応し電解槽と反応しない)斜線で示した
部分(3”)で電解浴槽とF−の反応が起こる。
(4) Side reactions occurring between the cathode and the electrolytic bath cathode 2 (third
(Fig.) is -2V, which is 3cm lower voltage than +IV of the electrolytic bath 3, so the electrolytic bath 3 has a relatively high potential, and F- reacts with the electrolytic bath material. (In addition, since the cathode has a relatively low potential of 12cm, Nd3 leaked between the cathode and the electrolytic tank
(+ reacts with the cathode side and does not react with the electrolytic bath) A reaction between F- and the electrolytic bath occurs in the shaded area (3'').

以上述べたように主たる反応(11,T21が起きる陽
極と陰極間の溶融塩以外の場所の溶融塩にNd”  F
−イオンが漏れると、上記の副反応(3)(4)により
これらが電解浴槽と反応し採取されるNd等の純度を低
下させるとともに、電解浴槽を損傷させる電蝕が起こる
と考えられる。
As mentioned above, Nd”
- If the ions leak, they will react with the electrolytic bath due to the side reactions (3) and (4) above, reducing the purity of the collected Nd, etc., and it is thought that electrolytic corrosion will occur that will damage the electrolytic bath.

(3)の副反応がおきると電解浴槽に用いている材料と
Nd’→イオンが反応し、電解浴槽にオーステナイト系
ステンレス鋼、例えば5US−31す、電解浴の電位設
定だけで電蝕を根本的に解決するのは難しい。この反応
は陽イオンと陰イオンが個々に陽極と電解浴槽間で起き
る反応と陰極と電解浴槽間で起きる反応が考えられるが
電蝕に関する反応のみまとめると下記のようになる。
When the side reaction (3) occurs, Nd' → ions react with the material used in the electrolytic bath, and if the electrolytic bath is made of austenitic stainless steel, such as 5US-31, electrolytic corrosion can be completely eliminated by simply setting the potential of the electrolytic bath. It is difficult to solve the problem. This reaction can be thought of as a reaction in which cations and anions individually occur between the anode and the electrolytic bath, or a reaction that occurs between the cathode and the electrolytic bath, but the reactions related to electrolytic corrosion can be summarized as follows.

1、電解浴槽の電位を陽極電位より高く設定する。1. Set the electrolytic bath potential higher than the anode potential.

陰イオン(F−)が電解浴槽材料と反応する(4)の反
応は解決できない。
Reaction (4), in which the anion (F-) reacts with the electrolytic bath material, cannot be resolved.

2、電解浴槽の電位を陽極と陰極の間に設定する。2. Set the potential of the electrolytic bath between the anode and cathode.

陽イオン(Nd3+)と陰イオン(F−)が電解浴槽材
料と反応する(3)と(4)の反応は解決できない。
Reactions (3) and (4), where cations (Nd3+) and anions (F-) react with the electrolytic bath material, cannot be resolved.

3、電解浴槽の電位を陰極の電位より低く設定する。3. Set the potential of the electrolytic bath to be lower than the potential of the cathode.

(3)の反応は解決できない。Reaction (3) cannot be resolved.

上記の理由により電解浴槽の電位を適正値に維持するこ
とのみで(3)と(4)の反応を両方防止できないので
電蝕の問題は解決しない。反応量は相O8を使用した場
合は成分のNi、Crが溶出して汚染トラブルが発生す
る。すなわちNd−Fe合金の純度が悪化し、また電解
浴槽材料の劣化が早められる。次に(4)の反応が起き
ると電解浴槽に用いている材料とF−イオンが反応し、
その損傷トラブルが発生する。例えば電解浴槽に鉄系の
材料を用いると鉄とふっ素が反応し反応生成物によるト
ラブルが起きることとなる。しかし、このトラブルはN
d3+イオンと電解浴槽との反応によるトラブルに比較
すると、軽微である。
For the above reasons, it is not possible to prevent both reactions (3) and (4) by simply maintaining the potential of the electrolytic bath at an appropriate value, so the problem of electrolytic corrosion is not solved. If phase O8 is used in the reaction amount, the components Ni and Cr will be eluted and contamination problems will occur. That is, the purity of the Nd-Fe alloy deteriorates, and the deterioration of the electrolytic bath material is accelerated. Next, when the reaction (4) occurs, the material used in the electrolytic bath reacts with F- ions,
The damage will cause trouble. For example, if iron-based materials are used in an electrolytic bath, iron and fluorine will react and problems will occur due to reaction products. However, this trouble is N
This is minor compared to the trouble caused by the reaction between d3+ ions and the electrolytic bath.

従って上記したトラブルに対処するには(3)と(4)
特にNd−Fe合金製造の場合には(3)の副反応が起
きない条件をつくるか、起きても問題のないシステムを
考える必要がある。従って、具体的電蝕防止方法として
、電解浴槽の電位を適正値に維持する方法が考えられる
Therefore, in order to deal with the above problems, (3) and (4)
Particularly in the case of manufacturing Nd-Fe alloys, it is necessary to create conditions in which the side reaction (3) does not occur, or to consider a system in which there is no problem even if it occurs. Therefore, as a specific method for preventing electrolytic corrosion, a method of maintaining the potential of the electrolytic bath at an appropriate value can be considered.

電解浴槽の電位としては相対的に下記の3水準があるの
で、これらの水準から適正値を選択することが考えられ
るが陽イオンと陰イオンの副反応が前出したとうり起こ
るので、下記の理由によ射的な電位差により決まると考
えられるので、電解浴槽の相対的電位を定めることによ
り、(3)又は(4)の反応のいずれかを防止したりま
た反応量を減少させることは可能であるが電位は相対値
でありまた絶縁状態により変化するので、電解浴槽の電
位を相対的に制御するのは経済的損失がともなう。
There are three relative levels of potential in an electrolytic bath as shown below, so it is possible to select an appropriate value from these levels, but since side reactions between cations and anions occur as mentioned above, the following The reason is thought to be determined by the radiation potential difference, so it is possible to prevent either reaction (3) or (4) or reduce the amount of reaction by determining the relative potential of the electrolytic bath. However, since the potential is a relative value and changes depending on the insulation state, relatively controlling the potential of the electrolytic bath involves economic loss.

これらの点を検討し電蝕の根本的解決策として電極形状
と電極配置による方法を開発した。
After considering these points, we developed a method based on electrode shape and electrode arrangement as a fundamental solution to electrolytic corrosion.

この方法は面倒な電解浴槽の電位を制御しないで電極形
状と配置だけで問題を解決するものである。請求項の第
1と第2は、この電極形状及び配置による解決方法であ
り、第1の方法は、前述した電蝕メカニズムのトラブル
のうち陽イオンによるトルプルを防止する方法であり、
第2の方法は、陰イオンによるトルプルを防止する方法
である。
This method solves the problem by simply changing the shape and arrangement of the electrodes, without having to control the potential of the electrolytic bath. The first and second claims are solutions based on this electrode shape and arrangement, and the first method is a method for preventing tortuosity caused by cations among the troubles of the electrolytic corrosion mechanism described above,
The second method is to prevent torpor caused by anions.

電解反応にともなう陽イオン又は陰イオンによる電蝕は
この方法で解決することができる。しかし、陽イオン及
び陰イオンの両方によるトラブルを上記方法では同時に
解決することはできない。
Electrolytic corrosion caused by cations or anions accompanying electrolytic reactions can be solved by this method. However, the above method cannot simultaneously solve problems caused by both cations and anions.

種々の電解反応に於ては陽イオン及び陰イオン反応の両
方がトルプルの原因であるとはかぎらず、この内一方の
反応のトラブルを解決すれば経済的に充分であることも
あり、上記の解決方法はこの意味でかなりの効果を上げ
ることができる。
In various electrolytic reactions, both cation and anion reactions are not necessarily the cause of trouble, and it may be economically sufficient to solve the problem of one of these reactions, so the above-mentioned The solution can be quite effective in this sense.

またNd−Fe合金を溶融塩電解で製造する場合は、後
述するように陽イオン(Ndイオン)によるトラブルが
大きいので第1の方法を採用することにより大巾に改善
できるのである。
Furthermore, when Nd--Fe alloys are produced by molten salt electrolysis, troubles caused by cations (Nd ions) are significant, as will be described later, so by adopting the first method, it can be greatly improved.

(作 用) つtすNd−Feを溶融塩電解で製造する場合電解浴槽
の電蝕の最大の原因である陽イオン(Nd3+)による
反応を防止するためには電解浴槽に面した電極を陰極と
すればよい。また陰イオン(F−)による電解浴槽の電
蝕を防止するためには電解浴槽に面した電極を上記の例
の反対の陽極とすればよい。電極の配置により予想され
る効果は上記のとうりであり、この方法では陰イオン又
は陽イオンの何れかの副反応は防止できるが、1 つ りを陰極で囲む本発明方法筒1の電極配置は好ましくな
いことになる(特願昭62−220893号参照)。
(Function) When producing Nd-Fe by molten salt electrolysis, it is necessary to use the electrode facing the electrolytic bath as the cathode in order to prevent the reaction caused by cations (Nd3+), which is the biggest cause of electrolytic corrosion in the electrolytic bath. And it is sufficient. Further, in order to prevent electrolytic corrosion of the electrolytic bath due to anions (F-), the electrode facing the electrolytic bath may be an anode opposite to that in the above example. The expected effects of the arrangement of the electrodes are as described above, and although this method can prevent side reactions of either anions or cations, the arrangement of the electrodes in the method tube 1 of the present invention, in which one tube is surrounded by a cathode, is This is undesirable (see Japanese Patent Application No. 62-220893).

すなわち、陰極のみが電解浴槽に面する電極配置によれ
ば、電解浴槽材料を損傷しないで高純度の金属を製造す
ることはできるが、陽極面積を大きくすることはできな
いため、生産効率が低下することになる。そこで生産効
率を上げるためには陽極面積を大きくする必要があり、
そうすると陽極の一部が電解浴槽に面することともなり
、金属の純度が下がるという相反する条件を解消するべ
く、陽極面積を大きくしたまま電解浴槽の損傷を防止で
きる方法を種々検討した結果、本発明の第3、第4、第
5の方法を見出した。
That is, according to the electrode arrangement in which only the cathode faces the electrolytic bath, it is possible to produce high-purity metal without damaging the electrolytic bath material, but the anode area cannot be increased, which reduces production efficiency. It turns out. Therefore, in order to increase production efficiency, it is necessary to increase the anode area.
In order to resolve the conflicting conditions of a part of the anode facing the electrolytic bath and reducing the purity of the metal, we investigated various ways to prevent damage to the electrolytic bath while increasing the anode area. The third, fourth, and fifth methods of the invention have been discovered.

以上述べたように洩れた陽イオンと陰イオンが電解浴槽
と反応し、電解浴槽を損傷することが原因となって、製
品中のメタル純度を悪化させることを電極の形状及び配
置以外の解決する方法としては、この洩れた陽イオンと
陰イオンを積極的に反応させる導電性遮蔽物を電解浴槽
の前に配置陰イオン、陽イオン両方の副反応を同時に防
止することはできない。
As mentioned above, the leaked cations and anions react with the electrolytic bath, damaging the electrolytic bath and deteriorating the metal purity in the product. As a method, a conductive shield is placed in front of the electrolytic bath to cause the leaked cations and anions to actively react, and side reactions of both anions and cations cannot be prevented at the same time.

しかし実際の運転に関しては両イオンのうち片方のイオ
ン(すなわち陽イオン)による反応のみ防止すれば相当
の効果を奏することができる。
However, in actual operation, a considerable effect can be achieved by preventing only the reaction caused by one of the two ions (i.e., the cation).

つまり種々の電解に於て電蝕による損失は、(3)の反
応と(4)の反応により予想される損失量は異なり、そ
の一方だけが問題となることがあるのでその電解に合っ
た配置をすることにより問題が解決できるのである。
In other words, the amount of loss due to electrolytic corrosion in various electrolysis is different depending on reaction (3) and reaction (4), and only one of them may be a problem, so the arrangement should be appropriate for that electrolysis. By doing so, the problem can be solved.

すなわち、Nd−Fe電解の場合は、電解浴槽とNd3
+イオンとの反応が電解浴槽とFイオンとの反応に比較
しメタル純度を悪化させたり、電解浴槽材料を損傷した
りする悪影響が大きいので、陽極を中心にまわりを陰極
で囲み、陽極主面と電解浴槽の直接対面を妨げる電極配
置を取るとほぼ解決することができる。
That is, in the case of Nd-Fe electrolysis, the electrolytic bath and Nd3
The reaction with + ions has a greater negative effect than the reaction between the electrolytic bath and F ions, such as deteriorating the metal purity and damaging the electrolytic bath material. This problem can be almost solved by arranging the electrodes to prevent direct contact with the electrolytic bath.

しかし、生産量が主に陽極電流密度で決まり陰極面積よ
り陽極面積を大きく取る方が生産量が大きくなるので、
この点からは陽極を中心にまわすればよいことになる。
However, the production amount is mainly determined by the anode current density, and the production amount will be larger if the anode area is larger than the cathode area.
From this point on, all you have to do is rotate around the anode.

そしてこの導電性遮蔽物として上記イオンと反応しても
製品中のメタル品位を悪化させない材料と選定すれば問
題が解決すると考えた。
We thought that the problem could be solved by selecting a material for the conductive shield that would not deteriorate the quality of the metal in the product even if it reacted with the ions.

この考え方をNd−Feの溶融塩電解に適用し説明する
This concept will be applied and explained to Nd-Fe molten salt electrolysis.

この導電性遮蔽物の電位は説明を簡単にするために電解
浴槽と同電位と仮定する。
To simplify the explanation, it is assumed that the potential of this conductive shield is the same as that of the electrolytic bath.

Ndj+イオンによる電解浴槽3の反応(第2図参照)
は陽極1と陰極2間の電極間の反応量に比較すると大巾
に少ないので、第10図に示すように陽極1と、これに
面した電解浴槽3との間に導電性の遮蔽物を取り付け、
Nd’+イオンと電解浴槽間の反応をこの遮蔽物(以下
ダミー電極と呼ぶ)で行なわせるとともに、反応生成物
が目的金属(例えばNd−Fe)の不純物とならないよ
うに、ダミー電極の材質を目的金属成分と同じにする(
例えばダミー電極をFe製とする)ことにより電解浴槽
を保護する方法を考えたものである。
Reaction in electrolytic bath 3 due to Ndj+ ions (see Figure 2)
is much smaller than the amount of reaction between the anode 1 and the cathode 2, so a conductive shield is placed between the anode 1 and the electrolytic bath 3 facing it, as shown in FIG. attachment,
The reaction between the Nd'+ ions and the electrolytic bath is carried out using this shield (hereinafter referred to as a dummy electrode), and the material of the dummy electrode is selected so that the reaction product does not become an impurity in the target metal (for example, Nd-Fe). Make it the same as the target metal component (
For example, a method was considered to protect the electrolytic bath by making the dummy electrodes made of Fe.

この場合Fe製ダミー電極はステンレス鋼はどの耐溶損
性がないから、電解中にかなり溶けて、Nd−Fe合金
中に取り込まれるが、これは製造目的とするNd−Fe
と同一であるのでこれによる純度低下の問題がない。
In this case, since stainless steel does not have any corrosion resistance, the Fe dummy electrode melts considerably during electrolysis and is incorporated into the Nd-Fe alloy.
Since it is the same as , there is no problem of a decrease in purity due to this.

ダミー電極の大きさは、陽極と電解浴槽間を遮蔽するこ
とが目的であるので陽極より大面積の方が望ましいこと
は当然である。
Since the purpose of the dummy electrode is to shield between the anode and the electrolytic bath, it is naturally desirable that the dummy electrode has a larger area than the anode.

こうしてダミー電極を陽極とこれに面した電解浴槽の間
に配置することにより陽極と電解浴の間で起こる副反応
(3)によるトラブルつまり陽イオン(Ndイオン)に
よるトラブルは解決するのである。この方法が本発明の
第3である。
In this way, by placing the dummy electrode between the anode and the electrolytic bath facing the anode, the trouble caused by the side reaction (3) occurring between the anode and the electrolytic bath, that is, the trouble caused by cations (Nd ions) is solved. This method is the third aspect of the present invention.

同様に陰イオン(F−)と電解浴槽間で起きる反応つま
り陰極と電解浴槽間で起こる副反応(4)によるトラブ
ルはダミー電極を陰極とこれに面した電解浴槽間に第1
0図のように配置することにより同様の理由で解決でき
、この方法が本発明の第4である。
Similarly, troubles caused by reactions occurring between anions (F-) and the electrolytic bath, that is, side reactions occurring between the cathode and the electrolytic bath (4), can be avoided by placing a dummy electrode between the cathode and the electrolytic bath facing it.
The problem can be solved for the same reason by arranging it as shown in Figure 0, and this method is the fourth aspect of the present invention.

上記の本発明の第3と第4はそれぞれ陽イオン(Ndイ
オン)によるトラブル(副反応3)との発明はこの意味
でがなりの効果を上げることができる。
In this sense, the third and fourth aspects of the present invention, which deal with troubles (side reaction 3) caused by cations (Nd ions), can be very effective.

またNd−Fe合金を溶融塩電解で製造する場合には前
述したように陽イオン(Ndイオン)による副反応(3
)のトラブルが大きいので第3の発明を採用することに
より大巾に改善できるのである。
In addition, when producing Nd-Fe alloys by molten salt electrolysis, side reactions (3
) is a major problem, so it can be greatly improved by adopting the third invention.

しかし陰イオンによる副反応(4)の問題も全くないと
はいえないので第5の発明を採用したほうが完全な問題
解決となる。
However, since the problem of side reaction (4) caused by anions cannot be completely eliminated, adopting the fifth invention provides a more complete solution to the problem.

つまり本発明で特に取り上げているNdFe合金を溶融
塩電解法で製造した場合には1〉電極形状及び配置の制
限がないこと2)陽イオンによる副反応(3)と陰イオ
ンによる副反応(4)の両方の問題が解決できること 3)導電性遮蔽体(この場合は鉄製板)という安価で簡
単なものを取り付けるだけで解決すること 上記の理由により第5の発明が最も適してい陰イオン(
Fイオン)によるトラブル(副反応4)を防ぐものであ
るから陽イオンによるトラブル(副反応3)と陰イオン
によるトラブル(副反応4)の両方を同時に解決するた
めには陽極と陰極の両極に面した電解浴槽内に導電性遮
蔽体を第13図のように配置すると両方のトラブルを同
時に解決することができ、この方法が本発明の第5であ
る。
In other words, when the NdFe alloy that is particularly taken up in this invention is produced by molten salt electrolysis, 1) there are no restrictions on electrode shape and arrangement, 2) side reactions due to cations (3) and side reactions due to anions (4). ). 3) The problem can be solved by simply installing a conductive shield (in this case, an iron plate), which is cheap and simple. For the above reasons, the fifth invention is the most suitable.
This is to prevent troubles caused by F ions (side reaction 4), so in order to simultaneously solve both troubles caused by cations (side reaction 3) and troubles caused by anions (side reaction 4), it is necessary to If a conductive shield is placed in the facing electrolytic bath as shown in FIG. 13, both problems can be solved at the same time, and this method is the fifth aspect of the present invention.

つまり本発明の第3、第4、第5は電極の形状及び配置
の制限なしに導電性遮蔽体を配置するという簡単な方法
で、第3の発明は陽イオンによる副反応3を解決するも
のであり、第4の発明は陰イオンによる副反応4を解決
するものであり、第5の発明は陽イオンによる副反応3
と陰イオンによる副反応4を同時に解決するものである
In other words, the third, fourth, and fifth aspects of the present invention are simple methods of arranging conductive shields without restrictions on the shape and arrangement of electrodes, and the third aspect of the present invention solves side reaction 3 caused by cations. The fourth invention solves side reaction 4 due to anions, and the fifth invention solves side reaction 3 due to cations.
and side reaction 4 due to anions are solved at the same time.

種々の電解反応に於て、トラブルの主たる原因が陽イオ
ンによる(副反応3)トラブルと陰イオンによる(副反
応4)トラブルの両方とはかぎらないため、このうちの
一方のトラブルを解決すれば経済的に充分であることも
多く、第3、第4るといえる。
In various electrolytic reactions, the main cause of trouble is not necessarily both trouble caused by cations (side reaction 3) and trouble caused by anions (side reaction 4), so if one of these troubles is solved, It is often economically sufficient and can be said to be the third or fourth category.

L i F  N d F 3系でNd−Fe合金を製
造する場合のダミー電極として鉄を使用した、場合のダ
ミー電極の作用を以下に詳しく説明する。
The operation of the dummy electrode in the case where iron is used as the dummy electrode when producing a Nd-Fe alloy using the L i F N d F 3 system will be described in detail below.

第1に陽極と陰極間での主たる反応は、前に述べたとう
りであり、 N d F 3が電気分解をうけて黒鉛陽極と反応する
主たる反応は C+nl”  −+  CFn+nC−・・・fl)鉄
陰極との反応は Fe+Nd”+3e−+Nd−Fe合金・・・(2) 第2に陽極及び陰極と鉄製ダミー電極間との電蝕防止に
関する反応は、陽極、陰極、ダミー電極との電位によっ
て下記の3通りの場合が考えられる。
First, the main reaction between the anode and the cathode is as described above, and the main reaction in which N d F 3 undergoes electrolysis and reacts with the graphite anode is C+nl" -+ CFn+nC-...fl) The reaction with the iron cathode is Fe+Nd''+3e-+Nd-Fe alloy... (2) Second, the reaction between the anode and cathode and the iron dummy electrode to prevent galvanic corrosion is caused by the potential between the anode, cathode, and dummy electrode. The following three cases are possible.

陽極も陰極もダミー電極で遮蔽された場合、陽極とダミ
ー電極間及び陰極とダミー電極間の反応であって電解槽
の電蝕の原因となる反応について判りやすく説明するた
めに以前の説明と同じく陽極と陰極の電位差を7Vとし
て、アースに対する電位を陽極が+5Vで陰極が一2V
であり、電解浴槽の電位は接地していないので+5Vと
一2Vの間になるので仮に+IVであったと仮定する。
When both the anode and the cathode are shielded by dummy electrodes, the reactions between the anode and the dummy electrode and between the cathode and the dummy electrode, which cause electrolytic corrosion in the electrolytic cell, will be explained in an easy-to-understand manner, as in the previous explanation. The potential difference between the anode and cathode is 7V, and the potential with respect to ground is +5V for the anode and 12V for the cathode.
Since the potential of the electrolytic bath is not grounded, it is between +5V and -2V, so it is assumed that it is +IV.

この場合ダミー電極の電位のとり方により陽極とダミー
電極及び陰極とダミー電極の間に洩れたNdイオンとF
イオンの挙動は異なりダミー電極の電位のとり方により
下記の3通りが考えられる。この場合の陽極とダミー電
極及び陰極のダミー電極との反応のうち電解浴槽の電蝕
の原因になる反応についてまとめると下記のようになる
と考えられる。
In this case, due to the way the potential of the dummy electrode is set, Nd ions and F leaked between the anode and the dummy electrode and between the cathode and the dummy electrode.
The behavior of ions is different, and the following three types can be considered depending on how the potential of the dummy electrode is set. Among the reactions between the anode and the dummy electrode and the dummy electrode of the cathode in this case, the reactions that cause electrolytic corrosion of the electrolytic bath are considered to be summarized as follows.

1)ダミー電極の電位が陽極より高い場合陰イオン(F
−)がダミー電極と反応する(4)の副反応は発生し、
ダミー電極の損傷は起きるが電解浴槽はダミー電極でF
−イオンに対して保護されているので電蝕の問題は起き
ない。Nd3+イオンはダミー電極と反応しないので問
題はない。
1) When the potential of the dummy electrode is higher than that of the anode, anion (F
-) reacts with the dummy electrode, the side reaction (4) occurs,
Damage to the dummy electrode occurs, but the electrolytic bath is F with the dummy electrode.
-Protected against ions so no galvanic corrosion problems occur. There is no problem because Nd3+ ions do not react with the dummy electrode.

2)ダミー電極の電位が陽極と陰極の中間になるように
設定された場合 で問題はなく、またダミー電極は反応分だけ消耗するが
電解浴槽は、ダミー電極によりNd’+イオンに対し保
護されているので問題は発生しない。
2) There is no problem if the potential of the dummy electrode is set to be between the anode and the cathode, and the dummy electrode is consumed by the amount of reaction, but the electrolytic bath is protected from Nd'+ ions by the dummy electrode. so no problem will occur.

F−イオンはダミー電極と反応しないので問題はない。There is no problem since F- ions do not react with the dummy electrode.

上記の理由によりダミー電極を設置することによっても
、電蝕による純度悪化の問題は解決できる。ダミー電極
は消耗電極となるので、激しい損傷をうけた時点、すな
わち電解浴槽が電蝕をうける状態になる前に新ダミー電
極と交換する必要がある。しかしダミー電極の消耗は主
たる電解反応による損傷ではなく、洩れイオンによる損
傷であるので損傷程度はすくない。よって交換頻度は一
般的には数ケ月に1回位の交換で充分である。
For the above reasons, the problem of purity deterioration due to electrolytic corrosion can also be solved by installing a dummy electrode. Since the dummy electrode becomes a consumable electrode, it is necessary to replace it with a new dummy electrode when it is severely damaged, that is, before the electrolytic bath is subject to electrolytic corrosion. However, the degree of damage to the dummy electrode is not small because the damage to the dummy electrode is not caused by the main electrolytic reaction but by leaked ions. Therefore, it is generally sufficient to replace the battery once every few months.

鉄製のダミー電極を用いずに電解浴槽を鉄製材料で作成
することも考えられるがこの場合は下記の問題が発生す
る。
It is also possible to create an electrolytic bath using iron material without using iron dummy electrodes, but in this case, the following problems occur.

1)鉄はNd3+イオンとの反応による製品純度上の問
題はなく、前述した溶融塩に対する耐蝕性はある程度あ
るが、溶融塩上部のガス化雰囲気中意図的にダミー電極
の電位を設定しない場合には、ダミー電極の電位は陽極
電位と陰極電位の中間になる。この状態では、副反応(
3)および(4)により、それぞれ陽イオン(Nd3+
)と、陰イオン(F〜)がダミー電極とが反応する。陰
イオン(F−)とダミー電極との反応(4)により、ダ
ミー電極は損傷し、また陽イオン(Nd3+)とダミー
電極の反応(3)によりNd−Fe合金が生成し、電解
により得られたNd−Fe合金中に取り込まれる。しか
しダミー電極との反応により生成する合金は製品のNd
−Fe合金と同一なので純度低下の問題は起きない。
1) Iron has no product purity problems due to reaction with Nd3+ ions, and has some degree of corrosion resistance against the molten salt mentioned above, but if the potential of the dummy electrode is not intentionally set in the gasification atmosphere above the molten salt, In this case, the potential of the dummy electrode is between the anode potential and the cathode potential. In this state, side reactions (
3) and (4), the cation (Nd3+
) and the anion (F~) react with the dummy electrode. The dummy electrode is damaged by the reaction between the anion (F-) and the dummy electrode (4), and the reaction between the cation (Nd3+) and the dummy electrode (3) produces an Nd-Fe alloy, which is obtained by electrolysis. Incorporated into the Nd-Fe alloy. However, the alloy produced by the reaction with the dummy electrode is
- Since it is the same as the Fe alloy, there is no problem of purity deterioration.

従って陰イオン、陽イオンいずれもダミー電極と反応す
るため電解浴槽は保護されているので電解浴槽損傷の問
題は起きない。
Therefore, since both anions and cations react with the dummy electrode, the electrolytic bath is protected and the problem of damage to the electrolytic bath does not occur.

3)ダミー電極の電位が陰極電位より低く設定された場
合 陽イオン(Nd3+)がダミー電極と反応する(3)の
反応が発生しNd−Fe合金が生成する。
3) When the potential of the dummy electrode is set lower than the cathode potential, the reaction (3) in which cations (Nd3+) react with the dummy electrode occurs, and an Nd-Fe alloy is produced.

しかし生成したNd−Fe合金は製品と同じなの〜28 で激しく腐食する。この腐蝕ははげしいため、長期間使
用に耐えなければならない電解浴槽材料として鉄は不適
切である。
However, the produced Nd-Fe alloy is the same as the product and corrodes severely. This corrosion is severe, making iron unsuitable as a material for electrolytic baths that must withstand long-term use.

以上のところから、Nd等の純度悪化及び電解浴槽の損
傷を防止しつつ、円滑な電解操業を行なうためには本発
明によるダミー電極の設置の効果が大きいことが判る。
From the above, it can be seen that the installation of the dummy electrode according to the present invention is highly effective in performing smooth electrolysis operations while preventing deterioration of the purity of Nd etc. and damage to the electrolytic bath.

電気分解による主たるイオンの移動は陽極と陰極間で発
生し、陽極と陰極間の主たる反応が起きる。これ以外の
若干のイオンが両極間の電解浴以外に洩れ、電解浴槽と
陽極又は陰極間で反応し電蝕の原因となり、電解浴槽材
料が損傷させ製造した合金の純度を悪化させる。ダミー
電極による電蝕防止方法の基本的な考え方は、洩れイオ
ンによる反応を受ける遮蔽物(ダミー電極)をイオン漏
洩領域に入れて反応を起こさせることにより洩れイオン
から電解浴槽を遮蔽し、その電蝕を防止するものである
The main movement of ions due to electrolysis occurs between the anode and the cathode, and the main reaction between the anode and the cathode occurs. Some other ions leak outside of the electrolytic bath between the two electrodes and react between the electrolytic bath and the anode or cathode, causing electrolytic corrosion, damaging the electrolytic bath material and deteriorating the purity of the manufactured alloy. The basic idea behind the electrolytic corrosion prevention method using dummy electrodes is to shield the electrolytic bath from leaked ions by placing a shield (dummy electrode) that undergoes a reaction by leaked ions into the ion leakage area and causing a reaction. It prevents erosion.

ダミー電極の電位は前述したとおり3通りが可能である
がいずれの方法でも目的は達成できるのであるから電解
浴槽に対して絶縁をとらずにセットすると電解浴槽と同
電位になるのでこの方法が一般的には最も簡単で実用的
な方法である。
As mentioned above, the potential of the dummy electrode can be set in three ways, but the purpose can be achieved with either method.If the dummy electrode is set without insulation from the electrolytic bath, it will have the same potential as the electrolytic bath, so this method is generally used. This is actually the simplest and most practical method.

ダミー電極は電極と電解浴槽の間に設置しなければなら
ないが、陽イオンの損傷だけが問題になる場合は本発明
の第3に記述したように陽極と電解浴槽の間にのみ設置
すれば良く、陰イオンの損傷だけが問題になる場合は本
発明節4に記述したように陰極と電解浴槽の間にのみ設
置すれば良く、陽イオンの両方の損傷が問題となる場合
は本発明節5に記述したように陰極と電解浴槽間と陽極
と電解浴槽間の両方に設置すれば良く、又は電解浴槽の
全周にわたって設置してもよい。
The dummy electrode must be installed between the electrode and the electrolytic bath, but if only cation damage is a problem, it is sufficient to install it only between the anode and the electrolytic bath as described in the third aspect of the present invention. If only damage to anions is a problem, it is sufficient to install it only between the cathode and the electrolytic bath as described in Section 4 of the present invention, and if damage to both cations is a problem, Section 5 of the present invention is sufficient. As described in , it may be installed both between the cathode and the electrolytic bath and between the anode and the electrolytic bath, or it may be installed over the entire circumference of the electrolytic bath.

本発明節3、第4、第5のダミー電極による電蝕防止方
法、特に本発明節5の発明は、1)電極形状及び配置の
制限がなく、自由に電解システムが設計でき 2)陽イオンによる副反応(3)と陰イオンによる副反
応(4)の両方の問題が同時に解決でき 速度の大きい腐蝕反応であることより考えると、本発明
は電解反応をともなう一般に適用できる有効な方法であ
ると言えよう。
The method for preventing galvanic corrosion using dummy electrodes according to Sections 3, 4, and 5 of the present invention, particularly the invention according to Section 5 of the present invention, has the following advantages: 1) There are no restrictions on electrode shape and arrangement, and the electrolytic system can be freely designed. 2) Cation The present invention is an effective method that can be generally applied to those involving electrolytic reactions, considering that it is a fast corrosion reaction that can solve both the problems of side reactions (3) and anions (4) at the same time. I can say that.

(実施例) 第1図(a>、(b)に本発明実施例の装置を示した。(Example) FIGS. 1(a) and 1(b) show an apparatus according to an embodiment of the present invention.

オーステナイト系ステンレス鋼(SUS−310S  
Cr=25wt% Ni=20wt%残り鉄)で作成し
た電解浴槽3(内径260mm、高さ300mm)に溶
融塩4(組成LiF5Qwj%−N d F 350 
w t%)を配置した。5US−31O8で作成した本
体の内側をTaで内張すしたメタルうけルツボ9を電解
浴槽3の下方にセットして陽極2で生成したNdFe合
金の液滴10を受けるようにした。
Austenitic stainless steel (SUS-310S
Molten salt 4 (composition LiF5Qwj%-N d F 350
wt%) were placed. A metal crucible 9 made of 5US-31O8 and lined with Ta on the inside was set below the electrolytic bath 3 so as to receive droplets 10 of the NdFe alloy produced at the anode 2.

これに黒鉛製陽極1と鉄製陰f!2をいれて電気分解を
行なうと電解生成したNdは陰極のFeと反応しNd−
Fe合金の液滴10となってメタル受はルツボ9の下方
より溜りNd−Fe合金5となる。このNd−Fe合金
5を真空吸引装置7を用いて採取する。また電気分解に
より消費され3)導電性遮蔽体(Nd−Fe製造の場合
は鉄板)という安価な材料でかつ簡単な形状のものを電
解浴槽の内側に取り付けるのみで製品純度を向上させか
つ電解浴槽の損傷を防止できる実用性、経済性に優れた
ものである。
This includes graphite anode 1 and iron negative f! When electrolyzed with 2, the electrolytically generated Nd reacts with Fe at the cathode to form Nd-
The droplets 10 of the Fe alloy accumulate in the metal receiver from below the crucible 9 and become the Nd-Fe alloy 5. This Nd-Fe alloy 5 is collected using a vacuum suction device 7. 3) A conductive shield (iron plate in the case of Nd-Fe production), which is an inexpensive material and has a simple shape, can be installed inside the electrolytic bath to improve product purity. It is highly practical and economical as it can prevent damage to the product.

本発明はNd−Feを溶融塩電解で製造する方法を例に
説明したが、記述内容より自明なように溶融塩電解一般
に適用できるものであり、また水溶液電解をも含めた電
解により金属及び非金属を製造する方法一般にも適用で
きる。
Although the present invention has been explained using a method for producing Nd-Fe by molten salt electrolysis as an example, it is obvious from the description that it can be applied to molten salt electrolysis in general, and metals and non-metals can be produced by electrolysis including aqueous solution electrolysis. It can also be applied to general methods of manufacturing metals.

Nd−Feの溶融塩電解の場合波瀾した陽イオンによる
トラブルが主たるトラブルの原因であったが、一般にハ
ロゲン化合物の電解では発生した陰イオンつまりハロゲ
ンによる腐蝕が大きいばあいが多いので本発明はこの防
止に於ても有効である。また化学反応にともなう腐蝕は
反応温度が高くなる程反応速度が大きくなり、高温で問
題となる場合が多いが、本発明で取り上げた電蝕はイオ
ンによる反応でありこれは比較的低温でも反応3 ま た分に相当するNdF3を原料供給装置8より溶融塩2
に供給する。
In the case of molten salt electrolysis of Nd-Fe, troubles caused by turbulent cations were the main cause of trouble, but in general, in the electrolysis of halogen compounds, the corrosion caused by generated anions, that is, halogens, is often large, so the present invention solves this problem. It is also effective in prevention. Corrosion caused by chemical reactions increases the reaction rate as the reaction temperature increases, and is often a problem at high temperatures. However, the electrolytic corrosion discussed in this invention is a reaction by ions, and this reaction occurs even at relatively low temperatures. In addition, NdF3 equivalent to 100% of the molten salt 2 is supplied from the raw material supply device 8.
supply to.

本実験は酸化雰囲気でつまり溶融塩4の浴面が大気中に
表出された状態で溶融塩の温度が880℃になるように
して電解を7時間行なった。幾つかの例では電蝕を防止
するための電解純鉄製ダミー電極11を電解浴槽3と電
極1.2の間に同心円状に設置した。
In this experiment, electrolysis was carried out for 7 hours in an oxidizing atmosphere, with the bath surface of the molten salt 4 exposed to the atmosphere, and the temperature of the molten salt reached 880°C. In some examples, a dummy electrode 11 made of electrolytic pure iron to prevent electrolytic corrosion was installed concentrically between the electrolytic bath 3 and the electrode 1.2.

実施例の各方法で電解した条件及び結果については表1
の一覧表にまとめて表示した。
Table 1 shows the conditions and results of electrolysis using each method in the examples.
They are summarized in a list.

結果の解析方法は、下記方法で行なった。The results were analyzed using the following method.

1、生成合金中の不純物 φ生成合金の分析による 2、電解浴槽の損傷 ・EPMA等による組織観察 ・5US−31O8は磁性をもってい るがNdのアタックをうけると磁性 がなくなる性質を利用し使用後の材 料の磁性調査 第1図(a)、(b)に示される装置を用いて、電極形
状及び電極配置に関わる実験及びダミー電極、に関わる
実験を行なった本実験の目的は電極形状及び配置とダミ
ー電極の形状及び配置による生成Nd−Fe合金純度の
変化と電解浴槽の損傷の関係を調べることであるので、
以下の説明ではメタル受はルツボ9、真空吸引装置7、
原料供給装置8は図示を省略した図を参照として説明を
行なう。
1. Impurities in the produced alloy φ Analysis of the produced alloy 2. Damage to the electrolytic bath / Structure observation using EPMA etc. 5US-31O8 has magnetism, but it loses its magnetism when attacked by Nd. Magnetic Investigation of Materials Using the equipment shown in Figures 1 (a) and (b), experiments related to electrode shape and electrode arrangement as well as experiments related to dummy electrodes were conducted.The purpose of this experiment was to investigate the electrode shape and arrangement. The objective is to investigate the relationship between changes in the purity of the produced Nd-Fe alloy due to the shape and arrangement of the dummy electrode and damage to the electrolytic bath.
In the following explanation, the metal receiver is crucible 9, vacuum suction device 7,
The raw material supply device 8 will be described with reference to figures whose illustrations are omitted.

(従来例) 第2図(a、b)に示したように、板状電極(1,2)
を1個づつ配置し、表1の例1の条件で電解したところ
、電解生成したNd−Fe中のNi、Crは2000p
pmに達した。電解浴槽の材料を調査した結果、陽極側
の材料のみが選択的に損傷しており、5NS−31O8
素材中にないNdが5US−310S中に取り込まれて
おり、一方5O3−310S中のNi、Crが素材中の
含有量に比べて減少していることが判った。
(Conventional example) As shown in Fig. 2 (a, b), plate-shaped electrodes (1, 2)
were placed one by one and electrolyzed under the conditions of Example 1 in Table 1. As a result, Ni and Cr in the electrolytically generated Nd-Fe were 2000p.
It reached pm. As a result of investigating the material of the electrolytic bath, only the material on the anode side was selectively damaged, and 5NS-31O8
It was found that Nd, which was not present in the raw material, was incorporated into 5US-310S, and on the other hand, the content of Ni and Cr in 5O3-310S was reduced compared to the content in the raw material.

陰極(2)側の電解浴槽3は陽極(1)側のような現象
は観察されなかった。しかしFと反応極を使用する実験
ては、第6図に示した両サイドに陽極1を配置し場合N
dイオンによる激しい損傷(3′)が陽極に面した電解
浴槽3で起きており、この反対の配置ては第7図に示し
たように、陽極に面した一部3′でわずかな損傷をうけ
たにとどまっていた。メタル中のNi、Crの純度も第
6図の電極配置では1500〜4500ppmに達して
いるのに対して第7図の配置では300〜500ppm
にとどまっていた。
In the electrolytic bath 3 on the cathode (2) side, the same phenomenon as on the anode (1) side was not observed. However, in experiments using F and reaction electrodes, anodes 1 are placed on both sides as shown in Figure 6, and N
Severe damage (3') due to d ions occurs in the electrolytic bath 3 facing the anode, while in the opposite arrangement, slight damage occurs in the part 3' facing the anode, as shown in Figure 7. I only received it. The purity of Ni and Cr in the metal reaches 1500 to 4500 ppm in the electrode arrangement shown in Figure 6, while it reaches 300 to 500 ppm in the arrangement shown in Figure 7.
It stayed in.

参考例3及び実施例3 第8図及び第9図に示すように、円柱状の電極を中心に
4枚の板状電極で囲んだ電極配置で実験した。
Reference Example 3 and Example 3 As shown in FIGS. 8 and 9, experiments were conducted using an electrode arrangement in which a cylindrical electrode was surrounded by four plate electrodes.

陰極を中心に4枚の陽極1で囲んだ第8図の電極配置(
参考例3)では、全周の電解浴槽3の材料がNdイオン
により損傷をうけ、メタル中のNi  Cr量は表1で
示したように2500〜4000ppmになっているの
に対して、陽極1を中心に4枚の陰極2で囲んだ第9図
(実施例3)の電極配置では、Ndイオンによる電解浴
槽3と考えられるわずかな損傷が陰極側電解浴槽に認め
られた。
The electrode arrangement shown in Figure 8, with the cathode in the center and surrounded by four anodes 1 (
In Reference Example 3), the material of the electrolytic bath 3 around the entire circumference was damaged by Nd ions, and the amount of NiCr in the metal was 2500 to 4000 ppm as shown in Table 1, whereas the anode 1 In the electrode arrangement shown in FIG. 9 (Example 3) in which the electrode is surrounded by four cathodes 2 around the electrode, slight damage was observed in the electrolytic bath on the cathode side, which was thought to be caused by Nd ions.

参考例1及び実施例1 円柱状陰極を中心にしてその周りに円筒状陽極1を配置
して実験した第4図(参考例1)電柱の配置を逆にした
第5図(実施例1)の二側について、陰極と陽極の形状
と配置を変えて実験を行なった。その代表的な例を第4
図および第5図に示し、その結果を表1の例2〜例3に
示した。
Reference Example 1 and Example 1 Figure 4 (Reference Example 1) in which the experiment was conducted with a cylindrical cathode in the center and the cylindrical anode 1 arranged around it; Figure 5 (Example 1) in which the arrangement of utility poles was reversed. Experiments were conducted by changing the shape and arrangement of the cathode and anode on the two sides. A typical example of this is shown in the fourth section.
The results are shown in Examples 2 and 3 of Table 1.

陽極1を円筒状にし、陰極2を中心に配置した第4図の
配置では、陽極1に面した電解浴槽3が全周にわたりN
dイオンによる損傷(3°)をうけた。この結果メタル
中のNi、C1−も表1に示したように1500〜40
00ppmに達した。一方、第4図の逆の電極配置であ
る第5図の配置ではNdイオンによる電解浴槽の損傷は
全くなく、またメタル中のNi、Crも表1に示したよ
うに、150ppm以下であった。
In the arrangement shown in FIG. 4, in which the anode 1 is cylindrical and the cathode 2 is placed in the center, the electrolytic bath 3 facing the anode 1 has an N
Damaged by d ions (3°). As a result, Ni and C1- in the metal were also 1500 to 40 as shown in Table 1.
It reached 00ppm. On the other hand, in the arrangement shown in Figure 5, which is the opposite electrode arrangement to that shown in Figure 4, there was no damage to the electrolytic bath due to Nd ions, and the Ni and Cr content in the metal was less than 150 ppm, as shown in Table 1. .

参考例2及び実施例2 第6図及び第7図に示した如き3枚の板状型の損傷はな
く、メタル中のNi、Cr量も150ppmとなってい
る。
Reference Example 2 and Example 2 There was no damage to the three plate-shaped molds as shown in FIGS. 6 and 7, and the amounts of Ni and Cr in the metal were 150 ppm.

以上の参考例及び実施例より、電解浴槽に面した電極を
陽極にした電極配置の場合電極浴槽の損傷が大きく、メ
タル中のNi、Cr量が多く、逆の電極配置の場合メタ
ル中のNi、Cr量が少ないのは、Ndイオンによる損
傷がFイオンによる損傷よりはるかに大きいためである
ことが判る。
From the above reference examples and examples, when the electrode arrangement is such that the electrode facing the electrolytic bath is used as the anode, the damage to the electrode bath is large and the amount of Ni and Cr in the metal is large, and when the electrode arrangement is reversed, the amount of Ni and Cr in the metal is large. It can be seen that the reason why the amount of Cr is small is that the damage caused by Nd ions is much greater than the damage caused by F ions.

電解浴槽に面した電極を陰極とする配置における平均電
流は参考例よりも少なくなっており生産の効率化と云う
点からは、この電極配置は好ましくない。
The average current in the arrangement in which the electrode facing the electrolytic bath is the cathode is lower than that in the reference example, and this electrode arrangement is not preferable from the point of view of improving production efficiency.

しかし本方法は高純度のメタルを生産する極めて効果的
な方法であることが理解されよう。
However, it will be appreciated that this method is a highly effective method of producing high purity metal.

次にダミー電極を設置した実験を行なった。Next, we conducted an experiment in which dummy electrodes were installed.

第10図〜第13図に於て電極4又は2と電解浴槽3の
間に板状(第10.11図)、曲面状(第12図)およ
び円筒状(第13図)の鉄製ダミー電極11が配置され
た。
In Figures 10 to 13, plate-shaped (Figure 10.11), curved (Figure 12) and cylindrical (Figure 13) iron dummy electrodes are shown between the electrode 4 or 2 and the electrolytic bath 3. 11 were placed.

参考例4および実施例4 陰、陽極とも板状の電極を用いて陰極側に板状のダミー
電極11を配置したのが第10図(参考例4)であり、
陽極側に配置したのが第11図(実施例4)である。第
10図では、陽極側の電解浴槽3がNdイオンによる損
傷をうけ、メタル中のNi、Crは表1の例8で示すよ
うに2000〜5000ppmに達している。しかし、
実施例1で記述した陰極側のFイオンとの反応によると
考えられる電解浴槽3のわずかな損傷は、陰極側にダミ
ー電11i11を配置したため全く観察されなかった。
Reference Example 4 and Example 4 In FIG. 10 (Reference Example 4), plate-shaped electrodes were used for both the anode and the anode, and a plate-shaped dummy electrode 11 was placed on the cathode side.
FIG. 11 (Embodiment 4) shows the arrangement on the anode side. In FIG. 10, the electrolytic bath 3 on the anode side has been damaged by Nd ions, and the Ni and Cr in the metal have reached 2000 to 5000 ppm as shown in Example 8 of Table 1. but,
The slight damage to the electrolytic bath 3, which was thought to be caused by the reaction with F ions on the cathode side described in Example 1, was not observed at all because the dummy electrode 11i11 was placed on the cathode side.

これに対して第11図で示した陽極側にダミー電極11
を配置した実施例ではNdイオンによる損傷は全く観察
されずメタル中のNi、Crも200〜300ppmに
とどまっていた。
On the other hand, a dummy electrode 11 is placed on the anode side shown in FIG.
In the example in which Nd ions were arranged, no damage due to Nd ions was observed, and the amount of Ni and Cr in the metal remained at 200 to 300 ppm.

実施例5 第12図に示すように、1枚の板状陰極1を中心に2枚
の板状陽極2を配置した電極配置を取り第5図と同じ電
極配置とした。陽極側に半白面状の2個のダミー電極1
1を配置して、Ndイオンによる浸蝕防止を狙った。簡
単な形状の円筒状ダミー電極を配置した第12図の例で
はNdイオンによる不電解浴槽の損傷はなくなり、Ni
Example 5 As shown in FIG. 12, an electrode arrangement in which two plate-shaped anodes 2 were arranged around one plate-shaped cathode 1 was adopted, and the electrode arrangement was the same as that in FIG. 5. Two half-white dummy electrodes 1 on the anode side
1 was placed to prevent corrosion caused by Nd ions. In the example shown in Fig. 12 in which a simple cylindrical dummy electrode is arranged, the non-electrolytic bath is not damaged by Nd ions, and the Ni
.

Cr量も150〜200ppmと低下しているがFイオ
ンによる若干の電蝕がダミー電極のない部分で観察され
た。
Although the amount of Cr was also reduced to 150 to 200 ppm, some electrolytic corrosion due to F ions was observed in the areas without the dummy electrode.

実施例6 第13図に示すように、1枚の板状陰極2を中心に2枚
の板状陽極1を配置し、これらの電極1.2の全体を円
筒状ダミー電極11で取り囲む電極配置を取りFイオン
、Ndイオン両方の浸蝕防止を狙った。
Example 6 As shown in FIG. 13, an electrode arrangement in which two plate anodes 1 are arranged around one plate cathode 2, and these electrodes 1.2 are entirely surrounded by a cylindrical dummy electrode 11. The aim was to prevent corrosion of both F ions and Nd ions.

第13図の電極配置ではNdイオン、Fイオンの電解浴
槽の損傷は観察されず、Ni、Cr量も50〜1100
pp以下と最も良い値を示している。また、平均電流も
高い値を示している。
With the electrode arrangement shown in Fig. 13, no damage to the electrolytic bath of Nd ions and F ions was observed, and the amount of Ni and Cr was 50 to 1100.
The best value is less than pp. Moreover, the average current also shows a high value.

以上述べたようにダミー電極を配置することによりメタ
ルの生産量を大きくし、電解浴槽の損傷を防止し、かつ
高純度メタルを製造することができる。
As described above, by arranging the dummy electrodes, the production amount of metal can be increased, damage to the electrolytic bath can be prevented, and high purity metal can be manufactured.

(発明の効果) 以上詳述したように、本発明によれば溶融塩電解法によ
り金属を製造する装置に於て、1)電極の形状及び配置 2)ダミー電極の設置 を不利用することにより以下の様な優れた効果を得るこ
とができる。
(Effects of the Invention) As detailed above, according to the present invention, in an apparatus for manufacturing metal by molten salt electrolysis, 1) shape and arrangement of electrodes 2) by not using dummy electrodes. The following excellent effects can be obtained.

1、高純度のメタルを生産することができる。1. High purity metal can be produced.

2、電解浴槽の損傷を防ぐことがてきるので安価で高純
度の製品を製造することができる。
2. Since damage to the electrolytic bath can be prevented, products with high purity can be manufactured at low cost.

3、ダミー電極の設置により電極の配置が自由にでき、
かつ高純度のメタルを高効率で製造することができる。
3. By installing dummy electrodes, you can freely arrange the electrodes.
In addition, high-purity metal can be manufactured with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図<a)、(b)は実験に用いた電解設置図、 第2図(a)、(b)及び第3図(a>(b)は従来の
電解法の説明図、 第4図(a)、(b)から第9図(a>(b)は陽極及
び陰極配置の説明図、 第10図(a>、(b)から第13図(a)(b)は陽
極、陰極及びダミー電極配置の説明図である。 各図に於て(a)は平面側であり(b)は平面図(a)
の中心線(紙面上の水平線)に沿った断面図である。
Figures 1 <a) and (b) are diagrams of the electrolysis installation used in the experiment; Figures 2 (a), (b) and Figure 3 (a> (b) are illustrations of the conventional electrolysis method; Figure 4) Figures (a), (b) to Figure 9 (a>(b) are explanatory diagrams of anode and cathode arrangement, Figures 10 (a>, (b) to Figures 13 (a) and (b) are anodes, It is an explanatory diagram of the cathode and dummy electrode arrangement. In each figure, (a) is the plane side, and (b) is the plan view (a).
FIG. 2 is a sectional view taken along the center line (horizontal line on the paper).

Claims (1)

【特許請求の範囲】 1、電解浴槽内に陽極と陰極を配置し、電解により金属
または合金を製造する方法に於て、電解浴槽に面するお
もな電極面が陰極のみで構成されており該陰極の裏面と
陽極間で主たる電解反応を行なわせることを特徴とする
高純度金属又は合金の製造方法。 2、電解浴槽内に陽極と陰極を配置し、電解により金属
又は合金を製造する方法に於て、電解浴槽に面するおも
な電極面が陽極のみで構成されており該陽極の表面と陰
極間で主たる電解反応を行なわせることを特徴とする高
純度の金属又は合金の製造方法。 3、電解浴槽内に陽極と陰極を配置し、電解により金属
又は合金を製造する方法に於て、電解浴槽に面するおも
な電極面が陽極と陰極により構成されており、該陽極の
裏面と該陰極の裏面間で主たる電解反応を行なわせる電
極の形状及び配置をもち、かつ前記陽極と電解槽間に導
電性遮蔽体を配置して電解を行なうことを特徴とする高
純度金属又は合金の製造方法。 4、電解浴槽内に陽極と陰極を配置し電解により金属又
は合金を製造する方法に於て、電解浴槽に面するおもな
電極面が陽極と陰極により構成されており、該陽極の裏
面と該陰極の裏面で主たる電解反応を行なわせる電極の
形状及び配置をもち、かつ前記陰極と電解槽間に導電性
遮蔽体を配置して電解を行なうことを特徴とする高純度
金属又は合金の製造方法。 5、電解浴槽内に陽極と陰極を配置し電解により金属又
は合金を製造する方法に於て、電解浴槽に面するおもな
電極面が陽極と陰極により構成されており、該陽極の裏
面と該陰極の裏面で主たる電解反応を行なわせる電極の
形状及び配置をもち、かつ前記各陽極、各陰極と電解槽
間に導電性遮蔽体を配置した電解浴槽に於て電解を行な
うことを特徴とする高純度金属又は合金の製造方法。 6、電解浴が溶融塩であることを特徴とする請求項1か
ら請求項5までのいずれか1項に記載の高純度金属又は
合金の製造方法。 7、電解浴が水溶液であることを特徴とする請求項1か
ら請求項5までのいずれか1項に記載の高純度金属又は
合金の製造方法。
[Claims] 1. In a method for manufacturing metals or alloys by electrolysis by arranging an anode and a cathode in an electrolytic bath, the main electrode surface facing the electrolytic bath is composed only of the cathode. A method for producing a high purity metal or alloy, characterized in that the main electrolytic reaction is carried out between the back surface of the cathode and the anode. 2. In a method of manufacturing metals or alloys by electrolysis by placing an anode and a cathode in an electrolytic bath, the main electrode surface facing the electrolytic bath consists only of the anode, and the surface of the anode and the cathode are A method for producing a high-purity metal or alloy, characterized by carrying out a main electrolytic reaction between the two. 3. In a method of manufacturing metals or alloys by electrolysis by placing an anode and a cathode in an electrolytic bath, the main electrode surface facing the electrolytic bath is composed of the anode and the cathode, and the back side of the anode A high-purity metal or alloy having an electrode shape and arrangement that allows the main electrolytic reaction to occur between the back surface of the anode and the cathode, and a conductive shield placed between the anode and the electrolytic cell to perform electrolysis. manufacturing method. 4. In a method of manufacturing metals or alloys by electrolysis by placing an anode and a cathode in an electrolytic bath, the main electrode surface facing the electrolytic bath is composed of an anode and a cathode, and the back surface of the anode and Production of a high-purity metal or alloy, which has an electrode shape and arrangement that allows the main electrolytic reaction to occur on the back surface of the cathode, and in which electrolysis is performed by disposing a conductive shield between the cathode and the electrolytic cell. Method. 5. In a method of manufacturing metals or alloys by electrolysis by placing an anode and a cathode in an electrolytic bath, the main electrode surface facing the electrolytic bath is composed of an anode and a cathode, and the back surface of the anode and Electrolysis is carried out in an electrolytic bath having a shape and arrangement of electrodes that allow the main electrolytic reaction to occur on the back surface of the cathode, and in which a conductive shield is arranged between each of the anodes, each cathode, and the electrolytic bath. A method for producing high-purity metals or alloys. 6. The method for producing a high purity metal or alloy according to any one of claims 1 to 5, wherein the electrolytic bath is a molten salt. 7. The method for producing a high purity metal or alloy according to any one of claims 1 to 5, wherein the electrolytic bath is an aqueous solution.
JP63239056A 1988-09-26 1988-09-26 Method for producing high-purity metal or alloy Expired - Fee Related JPH0696787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63239056A JPH0696787B2 (en) 1988-09-26 1988-09-26 Method for producing high-purity metal or alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63239056A JPH0696787B2 (en) 1988-09-26 1988-09-26 Method for producing high-purity metal or alloy

Publications (2)

Publication Number Publication Date
JPH0288786A true JPH0288786A (en) 1990-03-28
JPH0696787B2 JPH0696787B2 (en) 1994-11-30

Family

ID=17039214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63239056A Expired - Fee Related JPH0696787B2 (en) 1988-09-26 1988-09-26 Method for producing high-purity metal or alloy

Country Status (1)

Country Link
JP (1) JPH0696787B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335398A (en) * 2005-07-20 2005-12-08 B2:Kk Method for using sticking sheet such as receipt
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312947A (en) * 1986-07-04 1988-01-20 Sord Comput Corp Thermal conduction detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312947A (en) * 1986-07-04 1988-01-20 Sord Comput Corp Thermal conduction detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335398A (en) * 2005-07-20 2005-12-08 B2:Kk Method for using sticking sheet such as receipt
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials

Also Published As

Publication number Publication date
JPH0696787B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US8460535B2 (en) Primary production of elements
Kondo et al. Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified Flinak at static and flowing conditions
JP5469042B2 (en) Method for electrically producing alkali metal from alkali metal amalgam
SA98181043A (en) Process for the electrolytic production of metals
Lantelme et al. Electrodeposition of Tantalum in NaCl‐KCl‐K 2TaF7 Melts
US5372659A (en) Alloys of refractory metals suitable for transformation into homogeneous and pure ingots
Vogel et al. Development and research trends of the neodymium electrolysis–a literature review
Gao et al. Cathodic behavior of samarium (III) and Sm-Al alloys preparation in fluorides melts
Cvetković et al. Study of Nd deposition onto W and Mo cathodes from molten oxide-fluoride electrolyte
Gao et al. Electrode processes of uranium ions and electrodeposition of uranium in molten LiCl-KCl
Wang et al. Micro-alloyed Mg–Al–Sn anode with refined dendrites used for Mg-air battery
Xu et al. Electrochemical studies on the redox behavior of zirconium in the LiF-NaF eutectic melt
Tripathy et al. One-step manufacturing process for neodymium-iron (magnet-grade) master alloy
CN108359866A (en) A kind of fire resistant aluminum alloy sacrificial anode material and the preparation method and application thereof
Wang et al. Cathodic behavior of scandium (III) on reactive copper electrodes in LiF–CaF2 eutectic molten salt
Barhoun et al. Electrodeposition of niobium from fluoroniobate K2NbF7 solutions in fused NaCl-KCl
Guo et al. Molten salt electrolysis of spent nickel-based superalloys with liquid cathode for the selective separation of nickel
JPH0288786A (en) Production of high purity metal or alloy
Eakin et al. Electrochemical Deposition with Redox Replacement of Lanthanum with Uranium in Molten LiCl-KCl
Abbasalizadeh et al. Rare earth extraction from NdFeB magnets and rare earth oxides using aluminum chloride/fluoride molten salts
US5000829A (en) Process for preparing praseodymium metal or praseodymium-containing alloy
CN110205652A (en) A kind of preparation method and application of copper bearing master alloy
US5810993A (en) Electrolytic production of neodymium without perfluorinated carbon compounds on the offgases
Lee et al. Study on electrolysis for neodymium metal production
Diaz et al. Electrochemical behavior of neodymium in molten chloride salts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees