JPH0287682A - Semiconductor radiation detector and manufacture thereof - Google Patents

Semiconductor radiation detector and manufacture thereof

Info

Publication number
JPH0287682A
JPH0287682A JP63240108A JP24010888A JPH0287682A JP H0287682 A JPH0287682 A JP H0287682A JP 63240108 A JP63240108 A JP 63240108A JP 24010888 A JP24010888 A JP 24010888A JP H0287682 A JPH0287682 A JP H0287682A
Authority
JP
Japan
Prior art keywords
film
single crystal
crystal substrate
radiation detector
hydrogenated amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63240108A
Other languages
Japanese (ja)
Inventor
Ryuma Hirano
龍馬 平野
Yoshio Mito
三戸 美生
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63240108A priority Critical patent/JPH0287682A/en
Publication of JPH0287682A publication Critical patent/JPH0287682A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor radiation detector which is manufactured at a low temperature and is superior in junction characteristics and the, has a high energy resolution by forming hydrogenated amorphous Si film comprising Si as a main ingredient on a single crystal substrate, thereby installing heterojunction. CONSTITUTION:A hydrogenated amorphous Si film 2 comprising Si as a main ingredient is formed on a GaAs single crystal substrate 1 and heterojunction is installed. The hydrogenated amorphous Si film 2 is manufactured with an electric discharge process (ECRCVD process and the like) by the use of a material gas including Si. Its film 2 is easily manufactured through an electric discharge of the material gas (for example silane) at a low temperature of 400 deg.C or lower and its manufacturing fits mass production. Especially, in the manufacturing by the use of the ECRCVD process, the film is not heavily damaged by high energy ions in plasma and its discharge is so highly active that the film 2 which is superior in characteristics is formed at a low substrate temperature of 200 deg.C or lower without destroying crystalline property of the GaAs single crystal substrate 1. Further, damages caused by surplus hydrogen radicals or ions to the substrate are decreased by using only a silane gas in the ECRCVD process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特にGaAs単結晶基板を用いた半導体放射線
検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention particularly relates to a semiconductor radiation detector using a GaAs single crystal substrate.

従来の技術 従来、GaAs単結晶基板を用いた半導体放射線検出器
は特開昭81−152083号公報に示されているよう
に、第3図のような構造になっている。
2. Description of the Related Art Conventionally, a semiconductor radiation detector using a GaAs single crystal substrate has a structure as shown in FIG. 3, as shown in Japanese Patent Application Laid-open No. 81-152083.

すなわちGaAs単結晶基板21上にアンドープGaA
sJff122をエピタキシャル成長して、その上に金
電極13を形成し、GaAs単結晶基板21のもう一方
の面には金−ゲルマニウム電極24を形成した構造にな
っている。
That is, undoped GaA is formed on the GaAs single crystal substrate 21.
The structure is such that sJff 122 is epitaxially grown, a gold electrode 13 is formed thereon, and a gold-germanium electrode 24 is formed on the other surface of the GaAs single crystal substrate 21.

アンドープGaAs層22のエピタキシャル成長はアル
シンとトリメチルガリウムとを用いた何機金属熱分解法
(MOCVD)で行っている。そのときのGaAs単結
晶基板21の加熱温度は800℃であった。
The epitaxial growth of the undoped GaAs layer 22 is performed by MOCVD using arsine and trimethyl gallium. The heating temperature of the GaAs single crystal substrate 21 at that time was 800°C.

発明が解決しようとする課題 しかしながら、従来の構造では基板温度が600°C程
度以上ないと良質なアンドープGaAsff22のエピ
タキシャル成長ができない。そのため高純度高抵抗で低
欠陥の単結晶基板が要求される半導体放射線検出器では
GaAs単結晶基板21の加熱によるAsの蒸発や熱ス
トレスによる欠陥の増大等が特性に大きな影響をあたえ
る。また、その接合界面での界面準位密度の低いものが
得にくい。よって、従来GaAs単結晶基板を用いた半
導体放射線検出器は、その欠陥等により各々の放射線の
エネルギー分解能(FWHM)が十分にとれないことが
課題であった。また、エネルギー分解能の少し良いもの
でも、それを再現性良く得るのは困難で、歩留の高い製
造ができない。さらに、良質なエピタキシャル成長を行
うには、その成長条件の制御が複雑になり量産には適し
ていない。
Problems to be Solved by the Invention However, in the conventional structure, good quality undoped GaAsff22 cannot be epitaxially grown unless the substrate temperature is about 600° C. or higher. Therefore, in semiconductor radiation detectors that require a single crystal substrate with high purity, high resistance, and low defects, evaporation of As due to heating of the GaAs single crystal substrate 21 and increase in defects due to thermal stress have a large influence on the characteristics. Furthermore, it is difficult to obtain a material with a low density of interface states at the junction interface. Therefore, a conventional semiconductor radiation detector using a GaAs single crystal substrate has a problem in that it cannot obtain sufficient energy resolution (FWHM) of each radiation due to its defects and the like. Furthermore, even if the energy resolution is slightly better, it is difficult to obtain it with good reproducibility, and high yield production cannot be achieved. Furthermore, in order to achieve high-quality epitaxial growth, controlling the growth conditions is complicated, making it unsuitable for mass production.

本発明は、この様な課題を解決することを目的としてい
る。
The present invention aims to solve such problems.

課題を解決するための手段 上記課題を解決するために、G a A s単結晶基板
上にSiを主成分とする水素化非晶質Si膜を形成して
ヘテロ接合を設ける。その製造はSlを含む原料ガスを
用いた放電(ECRCVD法等)で行う。
Means for Solving the Problems In order to solve the above problems, a hydrogenated amorphous Si film containing Si as a main component is formed on a GaAs single crystal substrate to provide a heterojunction. Its production is performed by electric discharge (ECRCVD method, etc.) using a raw material gas containing Sl.

作用 上記した手段を用いることによって生ずる本発明の作用
は次のようなものである。水素化非晶質Si膜は非晶質
であり、水素が単結晶基板との未結合手を終端するので
界面準位の少ないヘテロ接合を形成する。また、その水
素はGaAs単結晶基板中の欠陥も補償する機能がある
。そして水素化非晶質Si膜はSiを含む原料ガス(例
えばシラン)の放電により400°C以下の低い温度で
容易に製造でき量産に適している。特にECRCVD法
ではプラズマ中の高エネルギーイオンによるダメージも
少なく、高活性な放電なので基板温度も200 ’C以
下の低温で特性の良い水素化非晶質Si膜が形成できる
のでGaAs単結晶基板の結晶性を損なうことはない。
Effects The effects of the present invention produced by using the above-mentioned means are as follows. The hydrogenated amorphous Si film is amorphous, and hydrogen terminates dangling bonds with the single crystal substrate, forming a heterojunction with few interface states. Furthermore, the hydrogen has the function of compensating for defects in the GaAs single crystal substrate. The hydrogenated amorphous Si film can be easily manufactured at a low temperature of 400° C. or less by discharging a source gas containing Si (for example, silane) and is suitable for mass production. In particular, in the ECRCVD method, there is less damage caused by high-energy ions in the plasma, and since the discharge is highly active, a hydrogenated amorphous Si film with good properties can be formed at a substrate temperature of 200'C or less, making it possible to crystallize GaAs single crystal substrates. It doesn't compromise your sexuality.

また、ECRCVD法でシランガスのみを用いることに
より余分な水素ラジカルやイオンによる基板へのダメー
ジも軽減できる。
Furthermore, by using only silane gas in the ECRCVD method, damage to the substrate caused by excess hydrogen radicals and ions can be reduced.

実施例 以下、本発明の第一の実施例について、その断面構成図
を第1図に示して説明する。実験には比抵抗10MΩ・
cm程度、面方位(100)、厚さ500μmで直径2
インチのLEC法によるInドープのGaAs単結晶基
板1を用いた。その転移密度は1000/am2以下で
あった。その製造工程は以下の通りである。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to FIG. 1, which shows a cross-sectional configuration diagram thereof. For the experiment, a resistivity of 10MΩ・
cm, surface orientation (100), thickness 500 μm, diameter 2
An In-doped GaAs single crystal substrate 1 manufactured by the LEC method was used. Its dislocation density was less than 1000/am2. The manufacturing process is as follows.

硫[のエツチング液でバッファエッチし、純水洗浄し、
十分乾燥させたGaAs単結晶基板1上に容量結合形プ
ラズマCVD装置で、SiH4ガスとCH,ガスとを用
い、そのガス混合比を7=3として基板温度200〜3
00 ’Cで水素化非晶質Si膜としての非晶質SiC
膜2を200nm堆積した。ガス圧力は0.5Toor
、  高周波電力はIW/cm2以下(13,56MH
z)で行った。
Buffer etch with sulfuric etchant, wash with pure water,
A sufficiently dried GaAs single crystal substrate 1 is coated with a capacitively coupled plasma CVD apparatus using SiH4 gas and CH gas, with a gas mixture ratio of 7=3, and a substrate temperature of 200 to 3.
Amorphous SiC as hydrogenated amorphous Si film at 00'C
Film 2 was deposited to a thickness of 200 nm. Gas pressure is 0.5Toor
, the high frequency power is less than IW/cm2 (13,56MH
I went with z).

前記非晶質SiC膜2の上にAl?I!極3を蒸着によ
り膜厚400nm堆積した後、5mm間隔て3mm角に
パターニングして形成した。また、GaAs単結晶基板
1のもう一方の裏面へのコンタクトは金−ゲルマニュウ
ム合金電極4で行った。それはスパッタリングにより膜
厚約500nm堆積した後、前記AI?I!極3と対応
するところに、同、様にして5mm間隔で3mm角にパ
ターニングして形成した。そしてNN2雰囲気中、20
0〜300°Cで30分間のアニールを行った後、5m
m角にGaAs単結晶基板1を前記金属電極3.4に沿
って切断した。
Al? on the amorphous SiC film 2? I! The poles 3 were deposited to a thickness of 400 nm by vapor deposition, and then patterned into 3 mm squares with 5 mm intervals. Further, contact to the other back surface of the GaAs single crystal substrate 1 was made using a gold-germanium alloy electrode 4. After depositing the film to a thickness of about 500 nm by sputtering, the AI? I! In the same manner, a pattern of 3 mm square was formed at 5 mm intervals at a location corresponding to pole 3. And in the NN2 atmosphere, 20
After annealing for 30 minutes at 0-300°C, 5 m
GaAs single crystal substrate 1 was cut into m square pieces along the metal electrodes 3.4.

最後に、図に示さなかったが、金a電極3.4とリード
線とを銀ペイストで接続し、樹脂で検出器の全体を封じ
た。その結果、アメリシウム(241Am)のエネルギ
ー5.49MeVのα線を室温で検出した場合、従来で
はエネルギー分解能が30〜数百KeVあったのが、2
0〜30KeVと向上した。また、そのバラツキも小さ
く、再現性が高(、歩留の良い半導体放射線検出器の製
造が容易にできるようになった。
Finally, although not shown in the figure, the gold a electrode 3.4 and the lead wire were connected with silver paste, and the entire detector was sealed with resin. As a result, when detecting α-rays of americium (241 Am) with an energy of 5.49 MeV at room temperature, the energy resolution was 2.
It improved to 0-30KeV. In addition, the variation is small, the reproducibility is high, and it has become easy to manufacture semiconductor radiation detectors with high yields.

次に、第2の実施例について第1の実施例と同じ記号と
断面構成図を用いて説明する。第2の実施例は第1の実
施例での水素化非晶質Si膜の形成を容量結合形プラズ
マCVD装置の替わりにECRCVD装置で行ったもの
で、他の製造工程は同じである。そこで、まずECRC
VD装置の構成を第2図に示して説明し、次に水素化非
晶質Si膜の形成工程だけについて述べる。プラズマ室
11でマイクロ波電源12(2,45GHz)より供給
されるマイクロ波と電磁コイル13により印加された8
75ガウスの磁界とにより、導入された原料ガス14の
放電をガス圧力2X10F−5〜5X10E−3Too
 rで行う。そして、電磁コイル13の発散磁界により
イオンをプラズマ室11から堆積室15に数十eVの加
速エネルギーで導き出し、基板ホーシダー16上に置か
れた基板に膜の堆積を行う構成である。GaAs単結晶
基板1上への水素化非晶質Si膜の形成は原料ガスに水
素希釈率を変えたシランガスのみを用いて膜厚200n
m行った。マイクロ波パワーは5O−200W1 ガス
圧力は約10 E−4To o r1基板温度は200
°C以下で・あった。
Next, a second embodiment will be described using the same symbols and cross-sectional configuration diagrams as those of the first embodiment. In the second example, the hydrogenated amorphous Si film of the first example was formed using an ECRCVD apparatus instead of the capacitively coupled plasma CVD apparatus, and the other manufacturing steps are the same. Therefore, first, ECRC
The configuration of the VD device will be explained with reference to FIG. 2, and then only the process of forming the hydrogenated amorphous Si film will be described. Microwaves supplied from a microwave power source 12 (2.45 GHz) and 8 applied by an electromagnetic coil 13 in a plasma chamber 11
The discharge of the introduced raw material gas 14 is caused by a magnetic field of 75 Gauss at a gas pressure of 2X10F-5 to 5X10E-3Too.
Do it with r. Then, ions are guided from the plasma chamber 11 to the deposition chamber 15 with an acceleration energy of several tens of eV by the divergent magnetic field of the electromagnetic coil 13, and a film is deposited on the substrate placed on the substrate holder 16. The hydrogenated amorphous Si film was formed on the GaAs single crystal substrate 1 using only silane gas with a different hydrogen dilution ratio as the raw material gas, and the film thickness was 200 nm.
I went m. Microwave power is 5O-200W1 Gas pressure is approximately 10 E-4Toor1 substrate temperature is 200
It was below °C.

その結果、水素希釈をしないで100%のシランガスの
みで水素化非晶質Si膜の形成を行った場合がリーク電
流が最小で、エネルギー分解能も20〜25KeVと第
1の実施例よりも向上した半導体放射線検出器が得られ
た。
As a result, when a hydrogenated amorphous Si film was formed using only 100% silane gas without hydrogen dilution, the leakage current was the smallest and the energy resolution was 20 to 25 KeV, which was improved compared to the first example. A semiconductor radiation detector was obtained.

発明の効果 本発明の効果は次のようなものである。Effect of the invention The effects of the present invention are as follows.

GaAs単結晶基板上にSiを主成分とする水素化非晶
質Si膜を形成してヘテロ接合を設けた構造にすること
により、従来よりも低温で製造でき、接合特性が良く、
エネルギー分解能の高い半導体放射線検出器が得られた
。また、その製造も再現性、歩留も良く容易にできるよ
うになった。
By forming a hydrogenated amorphous Si film mainly composed of Si on a GaAs single crystal substrate to create a structure with a heterojunction, it can be manufactured at a lower temperature than conventional methods, has better junction characteristics,
A semiconductor radiation detector with high energy resolution was obtained. In addition, its manufacture has become easier with good reproducibility and yield.

第2の実施例で示したように水素化非晶質Si膜の形成
にECRCVD法を用いると従来の高周波放電によるC
VD法よりも低い基板温度にすることができた。特に原
料ガスに100%のシランガスのみを用いた場合、エネ
ルギー分解能が最も良い半導体放射線検出器が得られた
As shown in the second example, when the ECRCVD method is used to form a hydrogenated amorphous Si film, C
It was possible to lower the substrate temperature than with the VD method. In particular, when only 100% silane gas was used as the raw material gas, a semiconductor radiation detector with the best energy resolution was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体放射線検出器の第1の実施例の
断面構成図、第2図は本発明の製造に用いるECRCV
D装置の構成図、第3図は従来の半導体放射線検出器の
断面構成図である。 1・・・GaAs単結晶基板、2・・・非晶質SiC膜
、3・・・AI電極、4・・・金−ゲルマニウム合金電
極、 11・・・プラズマ室、 12・・・マイクロ波
電源、13・・・電磁コイル、14・・・原料ガス、1
5・・・堆積室、16・・・基板ホールダー代理人の氏
名 弁理士 粟野重孝 はか18第 1 図 第 図 /zマイクロ俊電諒 原淫切゛ス 第 図 2.9
FIG. 1 is a sectional configuration diagram of a first embodiment of the semiconductor radiation detector of the present invention, and FIG. 2 is an ECRCV used for manufacturing the present invention.
FIG. 3 is a cross-sectional diagram of a conventional semiconductor radiation detector. DESCRIPTION OF SYMBOLS 1... GaAs single crystal substrate, 2... Amorphous SiC film, 3... AI electrode, 4... Gold-germanium alloy electrode, 11... Plasma chamber, 12... Microwave power source , 13... Electromagnetic coil, 14... Source gas, 1
5...Deposition chamber, 16...Name of substrate holder agent Patent attorney Shigetaka Awano Haka18 Figure 1 Figure/Z Micro Shunden Ryohara Inkirisu Figure 2.9

Claims (4)

【特許請求の範囲】[Claims] (1)GaAs単結晶基板上にSiを主成分とする水素
化非晶質Si膜を形成してヘテロ接合を設けたことを特
徴とする半導体放射線検出器。
(1) A semiconductor radiation detector characterized in that a hydrogenated amorphous Si film containing Si as a main component is formed on a GaAs single crystal substrate to provide a heterojunction.
(2)GaAs単結晶基板上にSiを主成分とする水素
化非晶質Si膜を少なくともSiを含む原料ガスの放電
により堆積してヘテロ接合を形成したことを特徴とする
半導体放射線検出器の製造方法。
(2) A semiconductor radiation detector characterized in that a hydrogenated amorphous Si film containing Si as a main component is deposited on a GaAs single crystal substrate by discharging a source gas containing at least Si to form a heterojunction. Production method.
(3)放電をマイクロ波と磁場の印加による電子サイク
ロトロン共鳴(ECR)により発生させることを特徴と
する特許請求の範囲第2項記載の半導体放射線検出器の
製造方法。
(3) The method for manufacturing a semiconductor radiation detector according to claim 2, characterized in that the discharge is generated by electron cyclotron resonance (ECR) by applying microwaves and a magnetic field.
(4)少なくともSiを含む原料ガスがシランガスのみ
であることを特徴とする特許請求の範囲第2項記載の半
導体放射線検出器の製造方法。
(4) The method for manufacturing a semiconductor radiation detector according to claim 2, wherein the source gas containing at least Si is only silane gas.
JP63240108A 1988-09-26 1988-09-26 Semiconductor radiation detector and manufacture thereof Pending JPH0287682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63240108A JPH0287682A (en) 1988-09-26 1988-09-26 Semiconductor radiation detector and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240108A JPH0287682A (en) 1988-09-26 1988-09-26 Semiconductor radiation detector and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0287682A true JPH0287682A (en) 1990-03-28

Family

ID=17054609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240108A Pending JPH0287682A (en) 1988-09-26 1988-09-26 Semiconductor radiation detector and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0287682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208575A (en) * 1990-12-03 1992-07-30 Matsushita Electric Ind Co Ltd Hetero junction diode and radiation detector using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208575A (en) * 1990-12-03 1992-07-30 Matsushita Electric Ind Co Ltd Hetero junction diode and radiation detector using the same

Similar Documents

Publication Publication Date Title
US4481229A (en) Method for growing silicon-including film by employing plasma deposition
US5270263A (en) Process for depositing aluminum nitride (AlN) using nitrogen plasma sputtering
JPH0794431A (en) Substrate for amorphous semiconductor, amorphous semiconductor substrate having the same, and manufacture of amorphous semiconductor substrate
JPH076950A (en) Manufacture of structural parts for electron, lightning and optical constituent
JPS63194326A (en) Manufacture of semiconductor device
US7939434B2 (en) Method for fabricating polysilicon film
US3463715A (en) Method of cathodically sputtering a layer of silicon having a reduced resistivity
JPH0287682A (en) Semiconductor radiation detector and manufacture thereof
US5382549A (en) Method of manufacturing polycrystalline silicon having columnar orientation
JPH05283361A (en) Diamond semiconductor device and its manufacture
JP2577544B2 (en) Method for manufacturing semiconductor device
JP2722716B2 (en) Manufacturing method of single crystal diamond
JPH06179968A (en) High frequency sputtering device
JPH03197385A (en) Preparation of substrate for depositing diamond thin film
JP2647849B2 (en) Method for manufacturing silicon nitride film
JP2003243314A (en) Method of manufacturing diamond film and method of manufacturing electronic device using it
JPH0242731A (en) Semiconductor device and manufacture thereof
JP3112796B2 (en) Chemical vapor deposition method
JP3399050B2 (en) Hall element and method of manufacturing epitaxial wafer for the hall element
JP3859782B2 (en) Method for gas phase synthesis of diamond cold cathode and method for producing the same
JP2771667B2 (en) Method for manufacturing semiconductor device
JPH03146673A (en) Method and device for depositing thin film
JPH02292831A (en) Manufacture of semiconductor device
JP2644764B2 (en) Method for manufacturing heterojunction device
JPH01228124A (en) Manufacture of semiconductor integrated circuit device