JPH0287469A - Manufacture of porous sintered material for fuel cell - Google Patents

Manufacture of porous sintered material for fuel cell

Info

Publication number
JPH0287469A
JPH0287469A JP63238599A JP23859988A JPH0287469A JP H0287469 A JPH0287469 A JP H0287469A JP 63238599 A JP63238599 A JP 63238599A JP 23859988 A JP23859988 A JP 23859988A JP H0287469 A JPH0287469 A JP H0287469A
Authority
JP
Japan
Prior art keywords
powder
size distribution
particle size
pores
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63238599A
Other languages
Japanese (ja)
Inventor
Masahiro Watanabe
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP63238599A priority Critical patent/JPH0287469A/en
Publication of JPH0287469A publication Critical patent/JPH0287469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To control two kinds of a large and small pore size distribution as required by mixing two kinds of powder which are different in particle size distribution at a specified mixing rate, temporarily sintering them at comparatively low temperatures so as to be reduced into powder while being classified, regulating temporarily sintered powder with comparatively large size, having it formed into a sheet, and thereby permanently sintering it thereafter. CONSTITUTION:Powder of a single kind, or raw powder of at least two kinds which are different in the peak of particle size distribution is knealed using binder aqeous solution, or is sufficiently mixed by a rocking mixer and the like as it has been powder. Then, the mixture is temporarily sintered at comparatively low temperatures so that primary pores are formed. Following which, they are reduced into powder by a mixer so as to be sifted while being classified so that secondary powder with a definite particle size containing the primary pores inside, is obtained. Then, binder aqeous solution is added to it so as to be mixed as uniformly as possible. In the second place, the aforesaid temporarily sintered secondary powder mixed with one kind or more than two kinds of powder in a paste condition, is formed into a sheet, and is dried while being sintered at high temperatures so that secondary pores are newly formed among secondary powder particles. By this constitution, a porous material can be formed wherein two kinds of pores; large and small ones together with small pores (primary pores) are formed in the porous material for a fuel cell.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大小2種類の細孔径分布を有し、かつその細
孔径分布を任意に調節した燃料電池用多孔質焼成体を製
造するための方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is for producing a porous fired body for fuel cells that has two types of pore size distribution, large and small, and in which the pore size distribution is arbitrarily adjusted. Regarding the method.

(従来技術とその問題点) 溶融炭酸塩型燃料電池においては、アノードにニッケル
微粉末を焼結した多孔質体を、又カソードにはリチウム
をドープしながら酸化した酸化ニッケル多孔質体等が用
いられ、両電極間に、リチウムアルミネート微粉末に共
晶組成の炭酸リチウム、炭酸カリウムの混合溶融塩等を
含浸したマトリックス層をはさみ、前記アノード及びカ
ソードの外面より燃料及び酸化剤である空気を供給して
電池が構成される。そしてこのアノード及びカソードに
前記マ)IJックス層から溶融塩が供給され、その電極
多孔質体中に電解液のネットワークが形成され、残りの
多孔質体中の細孔がガス供給ネットワークを形成する。
(Prior art and its problems) In molten carbonate fuel cells, a porous material made by sintering fine nickel powder is used for the anode, and a porous nickel oxide material doped with lithium and oxidized is used for the cathode. A matrix layer made of lithium aluminate fine powder impregnated with a mixed molten salt of lithium carbonate and potassium carbonate having a eutectic composition is sandwiched between the two electrodes, and air, which is a fuel and an oxidizing agent, is introduced from the outer surfaces of the anode and cathode. A battery is constructed by supplying it. Molten salt is supplied to the anode and cathode from the IJx layer, an electrolyte network is formed in the electrode porous body, and the pores in the remaining porous body form a gas supply network. .

電池の高性能化において、多孔質体内の液体及び気体と
電極構成体の固体とが共存するメニスカス部分いわゆる
三相帯を最大量形成することが重要である。そのために
は、電極多孔質体の電解液の吸収力(P)を制御する必
要がある。このPと多孔質体の平均細孔径(D)との間
には第1図に示す関係があり、このDを任意に制御でき
れば電解液の吸収力も制御可能となる。その結果、三相
帯領域の制御も可能になり、電池の高性能化が可能にな
る。
In order to improve the performance of a battery, it is important to form the maximum amount of a meniscus region, a so-called three-phase zone, in which the liquid and gas in the porous body and the solid of the electrode structure coexist. For this purpose, it is necessary to control the electrolyte absorption power (P) of the electrode porous body. There is a relationship between this P and the average pore diameter (D) of the porous body as shown in FIG. 1, and if this D can be controlled arbitrarily, the electrolyte absorption capacity can also be controlled. As a result, it becomes possible to control the three-phase band region, making it possible to improve the performance of the battery.

ところで、多孔質体の細孔径は焼結前の原料微粉末の平
均粒径によってほぼ決定される。例えば市販の単一微粉
末体I NCO255及びI NC0123を焼結した
多孔質体では、その細孔径ピークはそれぞれ13μm及
び6μmに現れる。そして13μmと6μmの中間の領
域の細孔分布を得るためには、前記両lNC0微粉末体
の中間の粒径を有する微粉末体を用意する必要がある。
Incidentally, the pore diameter of the porous body is approximately determined by the average particle diameter of the raw material fine powder before sintering. For example, in porous bodies obtained by sintering commercially available single fine powders I NCO255 and I NC0123, the pore diameter peaks appear at 13 μm and 6 μm, respectively. In order to obtain a pore distribution in the intermediate region between 13 μm and 6 μm, it is necessary to prepare a fine powder having a particle size intermediate between the two lNC0 fine powders.

しかしこのような任意の粒径を有する微粉末体を有する
原料を市販品中に求めることは困難でありかつ非常に割
高になり、実質上不可能である。
However, it is difficult to obtain such a raw material having a fine powder having an arbitrary particle size in a commercially available product, and it is extremely expensive, making it virtually impossible.

又任意の粒径分布ピークを有する多孔質体が製造できた
場合には、該多孔質体が第2図に模式的に示すように大
小2種類の細孔径分布を有すれば、マトリックス電解液
層1に接しているガス拡散層2の小径細孔部分2aが強
い電解液吸収力を示して電解液ネットワークとなり、他
方大径細孔部分2bは弱い吸収力を示してガス供給ネッ
トワークとなるため電解液保持量の調節が容易になる。
In addition, if a porous body having an arbitrary particle size distribution peak can be produced, and if the porous body has two types of pore size distribution, large and small, as schematically shown in FIG. The small-diameter pore portion 2a of the gas diffusion layer 2 in contact with the layer 1 exhibits a strong electrolyte absorption power and becomes an electrolyte network, while the large-diameter pore portion 2b exhibits a weak absorption power and becomes a gas supply network. The amount of electrolyte retained can be easily adjusted.

(発明の目的) 本発明は、人手可能な粉末から、大小2種類の細孔径分
布を有し、かつそれぞれの細孔径分布を任意に制御した
多孔質体を製造するための方法を提供することを目的と
する。
(Objective of the Invention) The present invention provides a method for manufacturing a porous body having two types of pore size distributions, large and small, and in which each pore size distribution is arbitrarily controlled, from powder, which can be done manually. With the goal.

(問題点を解決するための手段) 本発明は、1種類の粉末、又は粒径分布ピークの異なる
少なくとも2種以上の粉末(これらを−次粉末と呼ぶ)
を所定割合で混合した後、比較的低温で仮焼成して比較
的小径の任意の孔径分布の細孔(これを−次孔と呼ぶ)
を有する仮焼成粉末を調製し、これを粉砕分級して、少
なくとも一次扮末粒径より大きな粉体(これを二次粉末
と呼ぶ)を作る。これを、より高温で本焼成し、大小2
種類の細孔径分布を有する燃料電池用多孔質焼成体を製
造する方法である。
(Means for Solving the Problems) The present invention provides one type of powder or at least two or more types of powders having different particle size distribution peaks (these are referred to as -order powders).
are mixed in a predetermined ratio, and then calcined at a relatively low temperature to form relatively small pores with an arbitrary pore size distribution (this is called a secondary pore).
A pre-calcined powder is prepared, and this is crushed and classified to produce a powder (referred to as a secondary powder) that is at least larger in particle size than the primary powder. This is then fired at a higher temperature to produce two sizes of
This is a method for manufacturing a porous fired body for fuel cells having different pore size distributions.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の製造方法では、まず小径細孔の粉末を調製する
ために、1種類の粉末、又は粒径分布ピークの異なる市
販の少なくとも2種類の原料粉末の混合物(−次粉末)
を比較的低温で予備焼成する。前記粒径分布ピークは、
前記粉末の粒径分布の最大値を意味するが、前記粉末の
粒径の大きさを示す便宜的な値であり、前記粉末の粒径
の大きさは平均粒径等により表すごさもできる。
In the production method of the present invention, first, in order to prepare a powder with small diameter pores, one type of powder or a mixture of at least two types of commercially available raw material powders having different particle size distribution peaks (secondary powder) are used.
is prefired at a relatively low temperature. The particle size distribution peak is
Although it means the maximum value of the particle size distribution of the powder, it is a convenient value indicating the size of the particle size of the powder, and the size of the particle size of the powder can also be expressed by the average particle size or the like.

本発明に使用する上述の混合粉末は3種以上を1吏用し
てもよいが、2種の粉末を使用することが最も好ましい
。これらの粉末の粒径分布ピークの差異は大きいほど好
ましく、本発明により単独の粉末で得られ、る細孔分布
ピークに対してその中間領域のほぼ全体に亘る細孔径分
布ピークを有する多孔質焼結体を得ることができる。
Although three or more kinds of the above-mentioned mixed powders used in the present invention may be used, it is most preferable to use two kinds of powders. The larger the difference between the particle size distribution peaks of these powders, the better. You can get a solid body.

該粉末としては、従来の燃料電池の粉末として使用され
ている任意の材料、例えば金属や金属酸化物等を使用す
ることができる。前記2種類以上の粉末として種類の異
なる金属や金属酸化物を使用してもよい。該粉末の粒径
分布ピークや平均粒径は0.1μmから100μmの範
囲とすることが好ましい。
As the powder, any materials used as powders in conventional fuel cells, such as metals and metal oxides, can be used. Different types of metals or metal oxides may be used as the two or more types of powder. The particle size distribution peak and average particle size of the powder are preferably in the range of 0.1 μm to 100 μm.

前記2種類以上の粉末の粒径分布幅はせまいことが望ま
しく、この粉末を後述のバインダー水溶液をよく混練す
るか、または粉体のままロツ、キングミキサー等でよく
混合する。この混合物を比較的低温で仮焼結し、先ず一
次孔を形成させる。これをミキサーにより粉砕し、つい
でふるいで分級し、−次孔を内部にもった一定粒径の二
次粉末を得る。これにバインダ水溶液を加え、できるだ
け均一に混合する。該バインダどしては後述する焼成温
度で分解し、除去できるものであることが望ましい。
It is desirable that the width of the particle size distribution of the two or more types of powders is narrow, and the powders are thoroughly kneaded with an aqueous binder solution, which will be described later, or are thoroughly mixed in the powder state using a Rotsu mixer, a King mixer, or the like. This mixture is pre-sintered at a relatively low temperature to first form primary pores. This is pulverized with a mixer and then classified with a sieve to obtain a secondary powder with a constant particle size and internal holes. Add the binder aqueous solution to this and mix as uniformly as possible. It is desirable that the binder can be decomposed and removed at the firing temperature described below.

次いで、該1種類又は2種類以上の混合粉末の仮焼結二
次粉末のペースト状のものをシート化し、乾燥後、高温
で焼成して二次粉末粒子間に新たに二次孔を生ぜしめる
。かくして、前述の小細孔(−次孔)と合わせ大小の2
種の細孔が多孔体中に形成された燃料電池用多孔質体を
製造することができる。なお二次孔孔!蚤は二次粉末粒
径の大きいものを用いれば大きくできる。該焼成の温度
は特に限定されず、前記粉末が互いに強固に結合される
温度であればよい。前記原料粉末として金属酸化物を使
用した場合はもちろん金属単体を使用した場合でも、前
記焼成により前記粉末は金属酸化物となっている。その
ため、アンモニア分解ガス等の還元剤を使用して該金属
酸化物を金属単体に還元する。
Next, a paste of the pre-sintered secondary powder of the one or more mixed powders is formed into a sheet, dried, and then fired at a high temperature to create new secondary pores between the secondary powder particles. . Thus, together with the aforementioned small pores (-secondary pores), there are two large and small pores.
It is possible to produce a porous body for fuel cells in which seed pores are formed in the porous body. In addition, there is a secondary hole! The size of fleas can be increased by using a secondary powder with a large particle size. The firing temperature is not particularly limited, and may be any temperature at which the powders are firmly bonded to each other. When a metal oxide is used as the raw material powder, and even when an elemental metal is used, the powder becomes a metal oxide by the calcination. Therefore, the metal oxide is reduced to an elemental metal using a reducing agent such as ammonia decomposition gas.

以下に本発明の実施例を記載するが、該実施例は本発明
を限定するものではない。
Examples of the present invention are described below, but the examples are not intended to limit the present invention.

(実施例) 蒸留水50m1に、消泡剤0.03gとバインダである
メトローズ0.5gを分散混合し、この液に後述する電
極材料である単独又は2種混合のニッケル粉末を添加し
て撹拌した。このように作製したペーストを、室温及び
120℃でそれぞれ半日及び3時間乾燥し、その後約6
00℃で前記バインダを酸化分解し、−次孔を有する一
次粉末の凝集体を作った。
(Example) 0.03 g of an antifoaming agent and 0.5 g of Metrose as a binder are dispersed and mixed in 50 ml of distilled water, and nickel powder, which will be described later as an electrode material, is added alone or in combination of two types and is stirred. did. The paste thus prepared was dried at room temperature and 120°C for half a day and 3 hours, respectively, and then dried for about 6 hours.
The binder was oxidatively decomposed at 00° C. to form a primary powder aggregate having pores.

前記ニッケル原料粉末は、粒子同士が鎖状につながった
形状の粒径の大きいlNCO255と、粒子1個1個が
バラバラに独立した形状の粒径が比較的小さいI NC
OL 23とを使用した。前述の通りlNCO255及
びlNC0123の粒径ピークはそれぞれ13μm及び
6μmであり、各実験において、このように粒径の異な
る両lNC0微粉末体の単味の混合比を変えて前記電極
を作製し、水銀ポロシメータを使用してその細孔径分布
のピーク値を測定した。その結果を第3図に示す。
The nickel raw material powder is composed of lNCO255, which has a large particle size in which the particles are connected in a chain shape, and INC255, which has a relatively small particle size in which each particle is individually separated.
OL 23 was used. As mentioned above, the particle size peaks of lNCO255 and lNC0123 are 13 μm and 6 μm, respectively, and in each experiment, the electrodes were prepared by changing the single mixing ratio of both lNC0 fine powders having different particle sizes, and The peak value of the pore size distribution was measured using a porosimeter. The results are shown in FIG.

粒径の分布ピークが約13μmであるI NCO255
に、粒径の分布ピークが約6μmであるそれぞれ50.
75.85及び95重量%のlNC0123を加えて焼
結し電極を作製することにより、該電極中の焼結体の粒
径分布ピークは順次小径側に移動しlNC0123単味
の分布ピークである約6μmに近付いた。焼結温度を前
記850℃から、750℃、800℃及び950℃に変
化させて同様に粒径の分布ピークに対する影響を調べた
が、いずれの温度でも同様の分布ピークを示し、温度変
化による分布ピークへの影響は殆ど見られなかった。得
られる微粉末焼結体の細孔径と前記lNCO255とl
NC0123の混合比との関係を第4図に示す。
I NCO255 whose particle size distribution peak is about 13 μm
50.5 μm, respectively, with a particle size distribution peak of about 6 μm.
By adding 75.85% and 95% by weight of lNC0123 and sintering to produce an electrode, the particle size distribution peak of the sintered body in the electrode gradually shifts to the smaller diameter side, and the peak of the particle size distribution of lNC0123 alone shifts to approximately It approached 6 μm. The effect on the particle size distribution peak was similarly investigated by changing the sintering temperature from 850°C to 750°C, 800°C, and 950°C, but the same distribution peak was observed at each temperature, and the distribution due to temperature change was Almost no effect on the peak was observed. The pore diameter of the obtained fine powder sintered body and the above lNCO255 and l
The relationship with the mixing ratio of NC0123 is shown in FIG.

これらの中から、混合比が50 : 50である両lN
C0の混合物を580℃で仮焼成した後、粉砕分級し平
均粒径が約58μmである比較的大径の二次粉末体を調
製した。該粉末を850℃で本焼成したところ、第5図
に示す通りの粒径分布を有する多孔質体が得られた。第
5図から分かるように、該多孔質体は、約6μmと約6
0μmに細孔径分布ピークを有する大小2f!!類の細
孔径分布を有していた。
Among these, both lN with a mixing ratio of 50:50
After calcining the C0 mixture at 580°C, it was pulverized and classified to prepare a relatively large secondary powder having an average particle size of about 58 μm. When this powder was main fired at 850° C., a porous body having a particle size distribution as shown in FIG. 5 was obtained. As can be seen from FIG. 5, the porous body has a diameter of about 6 μm and about 6 μm.
Size 2f with pore size distribution peak at 0μm! ! It had a similar pore size distribution.

(発明の効果) 本発明は、1種類、又は粒径分布ピークが異なる少なく
とも2種類の粉末を所定割合で混合した後、比較的低温
で仮焼成してこれを粉砕分級し、内部に小径の一次孔を
有した比較的大径の仮焼成粉末(二次粉末)を調整し、
これをバインダーを用いたドクターブレード法でシート
化した後、本焼成することにより、二次粉末の焼結部に
、その粉末径に対応した大径細孔(二次孔)を生ずるこ
とができる。かくして、大小2種類の細孔径分布を有す
る多孔質焼成体を提供することができる。
(Effects of the Invention) The present invention mixes one type of powder or at least two types of powder with different particle size distribution peaks in a predetermined ratio, then pre-calcinates the powder at a relatively low temperature, crushes and classifies the powder, and then creates a powder with a small diameter inside. Prepare a relatively large diameter pre-fired powder (secondary powder) with primary pores,
By forming this into a sheet using a doctor blade method using a binder and then performing main firing, large-diameter pores (secondary pores) corresponding to the powder diameter can be created in the sintered part of the secondary powder. . In this way, a porous fired body having two types of pore size distribution, large and small, can be provided.

これにより、電極多孔質体内に、液体及び気体と、電極
構成体の固体とが共存するメニスカス部分いわゆる三ト
目体領域の制御が可能となり、電池の高性能化を図るこ
とが可能になる。
This makes it possible to control the meniscus region, the so-called tertiary body region, where liquid and gas and the solid of the electrode structure coexist within the electrode porous body, thereby making it possible to improve the performance of the battery.

しかも本発明では、大小2種類の細孔径分布を有する多
孔質焼成体が製造され、小径細孔が強い電解液吸収力を
示し、大径細孔か弱い電解液吸収力を示すため、最適電
解液保持量の調節を容易に行うことができる。
Moreover, in the present invention, a porous fired body having two types of pore size distribution, large and small, is manufactured, and the small pores exhibit a strong electrolyte absorption ability, and the large pores exhibit a weak electrolyte absorption ability. The amount retained can be easily adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、多孔質体の電解液の吸収力(P)と該多孔質
体の平均細孔径(D)との関係を示すグラフ、第2図は
、異なちた複数の細孔径分布を有する多孔質体を示す概
略図、第3図は、r NC0123とrNcO255の
混合比を変えた場合の生成する多孔質焼結体の細孔径分
布ピークへの影響を示すグラフ、第4図は、実施例にお
いて得られた多孔質焼結体の細孔径とlNCO255と
lNC0l 23の混合比との関係を示すグラフ、第5
図は、実施例において得られた大小2種類の細孔径分布
を有する多孔質体の細孔径分布を示すグラフである。
Figure 1 is a graph showing the relationship between the electrolyte absorption capacity (P) of a porous body and the average pore diameter (D) of the porous body. FIG. 3 is a graph showing the influence on the pore size distribution peak of the porous sintered body produced when the mixing ratio of rNC0123 and rNcO255 is changed, and FIG. Graph showing the relationship between the pore diameter of the porous sintered body obtained in the example and the mixing ratio of lNCO255 and lNC0l23, No. 5
The figure is a graph showing the pore size distribution of a porous body having two types of pore size distributions, large and small, obtained in Examples.

Claims (1)

【特許請求の範囲】[Claims] (1)1種類の粉末、又は粒径分布ピークの異なる少な
くとも2種以上の粉末を所定割合で混合した後、比較的
低温で仮焼成して比較的大径の細孔径を有する仮焼成粉
末を調製し、一方1種類の粉末又は粒径分布ピークの異
なる少なくとも2種以上の粉末を所定割合で混合した後
、比較的高温で焼成して焼成粉末を調製し、前記両焼成
粉末を混合後、本焼成し、大小2種類の細孔径分布を有
する燃料電池用多孔質焼成体を製造する方法。
(1) One type of powder or at least two or more types of powder with different particle size distribution peaks are mixed in a predetermined ratio, and then calcined at a relatively low temperature to produce a calcined powder having relatively large pore sizes. After preparing one type of powder or at least two or more types of powders having different particle size distribution peaks at a predetermined ratio, firing at a relatively high temperature to prepare a fired powder, and after mixing both of the fired powders, A method of producing a porous fired body for fuel cells having two types of large and small pore size distribution through main firing.
JP63238599A 1988-09-22 1988-09-22 Manufacture of porous sintered material for fuel cell Pending JPH0287469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238599A JPH0287469A (en) 1988-09-22 1988-09-22 Manufacture of porous sintered material for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238599A JPH0287469A (en) 1988-09-22 1988-09-22 Manufacture of porous sintered material for fuel cell

Publications (1)

Publication Number Publication Date
JPH0287469A true JPH0287469A (en) 1990-03-28

Family

ID=17032587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238599A Pending JPH0287469A (en) 1988-09-22 1988-09-22 Manufacture of porous sintered material for fuel cell

Country Status (1)

Country Link
JP (1) JPH0287469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311269A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Diffusion layer for fuel cell, its manufacturing method, membrane-electrode assembly for fuel cell, and fuel cell
JP2008178349A (en) * 2007-01-25 2008-08-07 Shimano Inc Single-bearing reel
WO2013180299A1 (en) * 2012-05-31 2013-12-05 京セラ株式会社 Cell, cell stack device, electrochemical module, and electro- chemical device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311269A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Diffusion layer for fuel cell, its manufacturing method, membrane-electrode assembly for fuel cell, and fuel cell
JP2008178349A (en) * 2007-01-25 2008-08-07 Shimano Inc Single-bearing reel
WO2013180299A1 (en) * 2012-05-31 2013-12-05 京セラ株式会社 Cell, cell stack device, electrochemical module, and electro- chemical device
US10355282B2 (en) 2012-05-31 2019-07-16 Kyocera Corporation Cell, cell stack unit, electrochemical module, and electrochemical apparatus
US11450859B2 (en) 2012-05-31 2022-09-20 Kyocera Corporation Cell, cell stack unit, electrochemical module, and electrochemical apparatus
US11909051B2 (en) 2012-05-31 2024-02-20 Kyocera Corporation Cell, cell stack unit, electrochemical module, and electrochemical apparatus

Similar Documents

Publication Publication Date Title
DE69912920T2 (en) POROUS CERAMIC LAYER, METHOD FOR PRODUCING THE SAME, AND SUBSTRATE FOR USE IN THE METHOD
US8114551B2 (en) Porous structured body for a fuel cell anode
JPH0433265A (en) Manufacture of electrode for molten carbonate fuel cell
DE10031102C2 (en) Process for producing a composite body, in particular an electrode with temperature-resistant conductivity
JPH0669907B2 (en) Method for manufacturing electron conductive porous ceramic tube
JPH0287469A (en) Manufacture of porous sintered material for fuel cell
Lim et al. Characterization of core-shell structured Ni@ GDC anode materials synthesized by ultrasonic spray pyrolysis for solid oxide fuel cells
EP0063410A2 (en) Iron active electrode and method of making same
JP2004200125A (en) Electrode material, fuel electrode for solid oxide fuel cell, and the solid oxide fuel cell
KR20130124610A (en) Cathode material for lithium secondary battery and method of manufacturing the same
KR102253796B1 (en) Cathode material, manufacturing method thereof, and lithium ion battery
JPH0287468A (en) Manufacture of porous sintered material for fuel cell
JPH04193701A (en) Production of perovskite type oxide powder
JPH09202662A (en) Porous lanthanum manganite sintered molding product and its production
JP2505446B2 (en) Method for producing raw material dispersion for gas diffusion electrode reaction layer
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JPS5987767A (en) Molten salt fuel cell
JP2001093532A (en) Manufacturing method for electrode of fuel cell
JPH02288069A (en) Negative electrode for use in high temperature fuel cell and manufacture thereof
JPS62232859A (en) Manufacture of material dispersion liquid for reaction layer of gas diffusion electrode
CN117727887A (en) Composite layered oxide positive electrode material, positive electrode plate, preparation method and application thereof
JPH08138672A (en) Positive active material for non-aqueous lithium secondary battery and lithium secondary battery
JPH06349499A (en) Manufacture of electrode for molten carbonate fuel cell
JP2004043235A (en) Method for manufacturing lightweight ceramic
DE102008045286B4 (en) A method of making porous molten carbonate fuel cell anodes and green molten carbonate fuel cell anode