JPH0285728A - Infrared detecting device - Google Patents

Infrared detecting device

Info

Publication number
JPH0285728A
JPH0285728A JP63237422A JP23742288A JPH0285728A JP H0285728 A JPH0285728 A JP H0285728A JP 63237422 A JP63237422 A JP 63237422A JP 23742288 A JP23742288 A JP 23742288A JP H0285728 A JPH0285728 A JP H0285728A
Authority
JP
Japan
Prior art keywords
infrared
infrared detection
detection element
liquid nitrogen
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63237422A
Other languages
Japanese (ja)
Other versions
JP2750354B2 (en
Inventor
Tetsuo Tamura
哲雄 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP63237422A priority Critical patent/JP2750354B2/en
Publication of JPH0285728A publication Critical patent/JPH0285728A/en
Application granted granted Critical
Publication of JP2750354B2 publication Critical patent/JP2750354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To surely prevent an infrared detecting element in a cooling device from being damaged by serially connecting a superconductor with the element in the cooling device. CONSTITUTION:An electric current supplied from a power source terminal 8 through a constant-current circuit 6 is supplied to a superconductor line 21 from a seal terminal 22 and outputted to another seal terminal 23 through a semiconductor infrared detecting element 5. In a state where the element 5 is cooled with liquid nitrogen, the resistance value of the line 21 is zero and the electric current from the circuit 6 makes a bias current to flow to the element 5. When the liquid nitrogen evaporates from the container or filling up of the container with liquid nitrogen is forgotten, the line 21 shows a high resistance value. Therefore, the element 5 is surely protected and is not damaged, since the bias current from the circuit 6 is cut off.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被測定物体が放射する赤外線を検出する赤外線
検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared detection device that detects infrared rays emitted by an object to be measured.

〔発明の概要〕[Summary of the invention]

本発明は被測定物体が放射する赤外線を検出する赤外線
検出装置に関し、冷却装置内に配設された赤外線検出素
子により被測定物が放射する赤外線を検出するようにし
た赤外線検出装置に於いて。
The present invention relates to an infrared detection device for detecting infrared rays emitted by an object to be measured, and in an infrared detection device configured to detect infrared rays emitted by the object to be measured using an infrared detection element disposed within a cooling device.

冷却装置内の赤外線検出素子に直列に超伝導体を接続す
ることにより、赤外線検出素子の熱による破損を簡単な
構成で確実に防止する様にしたものである。
By connecting a superconductor in series with the infrared detection element in the cooling device, damage to the infrared detection element due to heat can be reliably prevented with a simple configuration.

〔従来の技術〕[Conventional technology]

従来から被測定物体例えば、人体等から放射する赤外線
を検出する赤外1m検出装置として第4図に示す如きも
のが提案されている。この第4図に、  於いて、冷却
装置(以下フライ」スタットと記す)は真′!2室+1
1を有し、この真空室(1)により有底円筒形の容器(
21を形成する。この真空室(1)により形成された容
器(2)はマホーピンと同様に構成されたものである。
2. Description of the Related Art Conventionally, an infrared 1m detection device as shown in FIG. 4 has been proposed for detecting infrared rays emitted from an object to be measured, such as a human body. In this Figure 4, the cooling device (hereinafter referred to as "fly" stat) is true! 2 rooms + 1
1, and this vacuum chamber (1) creates a bottomed cylindrical container (
21 is formed. The container (2) formed by this vacuum chamber (1) is constructed similarly to the Mahopin.

この真空室(1)により形成された容器(2)内に冷却
液例えば沸点が一196℃の液体窒素(3)を注入する
。この真空室(1)の液体室3A+3)に接触している
内側9!(la)の所定位置を囲む如く前方に絞りを構
成する赤外線通過孔(4a)を有する、例えば銅板より
成るコールドシールド室(4)を設け、こ、  のコー
ルドシールド室(4)内の液体窒素(3)と接触する内
側壁(la)に例えばホトコンダクティブタイプの半導
体赤外線検出素子(5)を接置固定する。この場合この
半導体赤外線検出素子り5)は液体窒素(3)と接触す
る内側壁(1a)に接着されると共にコールドシールド
室(4)内に配されているので、この半導体赤外線検出
素子(5)の温度はこの液体窒素(3)の湧点、例えば
−196℃と略同じ温度となり、この半導体赤外線検出
素子(5)自体及びその近辺より赤外線は殆んど放射さ
れず、この半導体赤外線検出素子(5)はその周辺より
の赤外線の照射は殆んどなくそれだけ雑言の影響が少な
くなる。このホトコンダクティブタイプの半導体赤外線
検出素子(5)は照射される赤外線の檄に応じて抵抗値
が小さくなるもので、例えば第5図に示す如く定電流回
路(6)よりスイッチ(7)を介して、この半導体赤外
線検出素子(5)に一定電流を流しておき、この半導体
赤外線検出素子(5)の両端間に得られる電圧をプリア
ンプ(9)を介して出力端子(10)に導出して検出し
、これにより赤外線の址、即ち温度を検出する様にする
。この@5図に於いて、(8)は直流電圧が供給される
電源端子である。この様な電源端子(8)と出力端子(
10)は真空室(L)の外側壁(lb)に配設したシー
ル端子(11) 、  (12)に接続されている。
A cooling liquid, for example liquid nitrogen (3) having a boiling point of 1196° C., is injected into the container (2) formed by the vacuum chamber (1). The inside 9 that is in contact with the liquid chamber 3A+3) of this vacuum chamber (1)! A cold shield chamber (4) made of, for example, a copper plate is provided, which has an infrared passing hole (4a) constituting an aperture in the front so as to surround a predetermined position of (la), and the liquid nitrogen in this cold shield chamber (4) is provided. For example, a photoconductive type semiconductor infrared detecting element (5) is placed and fixed on the inner wall (la) in contact with (3). In this case, this semiconductor infrared detection element (5) is glued to the inner wall (1a) that contacts the liquid nitrogen (3) and is placed in the cold shield chamber (4). ) is approximately the same temperature as the spring point of this liquid nitrogen (3), for example -196°C, and almost no infrared rays are emitted from this semiconductor infrared detection element (5) itself or its vicinity, and this semiconductor infrared detection element (5) The element (5) is hardly irradiated with infrared rays from its surroundings, and the influence of noise is accordingly reduced. This photoconductive type semiconductor infrared detection element (5) has a resistance value that decreases according to the intensity of the infrared rays irradiated.For example, as shown in Fig. 5, it is Then, a constant current is caused to flow through this semiconductor infrared detection element (5), and the voltage obtained across this semiconductor infrared detection element (5) is derived to the output terminal (10) via the preamplifier (9). This detects the temperature of the infrared rays. In this diagram @5, (8) is a power supply terminal to which DC voltage is supplied. This kind of power terminal (8) and output terminal (
10) are connected to seal terminals (11) and (12) arranged on the outer wall (lb) of the vacuum chamber (L).

シール端子(11) 、  (12)はハーメチック端
子の如きもので真空室(1)内を真空に保ったまま電気
信号を入出力させることが出来る。
The sealed terminals (11) and (12) are like hermetic terminals, and can input and output electrical signals while maintaining the vacuum inside the vacuum chamber (1).

更に従来の赤外線検出装置ではバイアス電流を流して使
用するがこの周囲温度が十分に冷却されていないと自己
過熱で破tiする。この様な破損を防止するために赤外
線検出素子(5)の近傍に温度センサ(13)を設け、
赤外線検出素子近傍の冷却温度を検出し、その検出信号
が所定値以上になるとシール端子(15) 、  (1
6)から取り出し°ζバイアス電流制御回路(14)を
通してスイッチ(7)を“オフ”させて赤外線検出素子
にバイアス電流を流さない様にしていた。
Furthermore, conventional infrared detection devices use a bias current, but if the ambient temperature is not sufficiently cooled, they will self-overheat and fail. In order to prevent such damage, a temperature sensor (13) is provided near the infrared detection element (5),
The cooling temperature near the infrared detection element is detected, and when the detection signal exceeds a predetermined value, the sealed terminals (15), (1
The switch (7) was turned off through the bias current control circuit (14) to prevent bias current from flowing through the infrared detection element.

クライオスタンドを構成する容器(2)のコールドシー
ルド室(4)の赤外線通過孔(48)に対向するこの真
空室+1)の外側壁(1b)に赤外線ウィンド(20)
を設ける。この赤外線ウィンド(20)は略赤外線だけ
を通過するゲルマニウム仮により構成する。
An infrared window (20) is installed on the outer wall (1b) of this vacuum chamber (+1) facing the infrared passing hole (48) of the cold shield chamber (4) of the container (2) constituting the cryostand.
will be established. This infrared window (20) is made of germanium material that passes approximately only infrared rays.

斯る従来の赤外線検出装置に於いて測定物体(17)の
温度分布を検出するときは真空室(11の外と測定物体
(1’?)との間に配された水平及び垂直操作用のミラ
ーより成る検出点操作糸(18)及びレンズ系(19)
を介して得られる検出点の赤外線を赤外線ウィンド(2
0) 、赤外線通過孔(4a)を通して半導体赤外線検
出素子(5)に照射する如くして行っていた。
In such a conventional infrared detection device, when detecting the temperature distribution of the measuring object (17), a horizontal and vertical operating chamber is placed between the outside of the vacuum chamber (11) and the measuring object (1'?). Detection point operation string (18) consisting of a mirror and lens system (19)
The infrared rays of the detection point obtained through the infrared window (2
0), the semiconductor infrared detecting element (5) was irradiated with the infrared rays through the infrared passing hole (4a).

〔発明がIW決しようとする課題〕[The problem that the invention attempts to solve]

断る従来の赤外線検出装置に於いては赤外線検出素子(
5)の価格はかなり高価なために温度センサ(13)や
バイアス電流制御回路(14)を用いて赤外線検出素子
(5)の破損防止を行なっているが、定′fJi流回路
(6)と赤外線検出素子(5)間には周囲温度上昇時に
バイアス電流を流すことを停止させるためのスイッチ(
7)を設けなければならないだけでなく、クライオスタ
ンドの真空室(1)内に温度センサ(13)を設けたり
、バイアス電流制御回路(14)を設けなければならず
、もしこのバイアス電流制御回路(14)が誤動作する
と赤外線検出素子(5)は破損してしまう問題があった
In conventional infrared detection devices, the infrared detection element (
5) is quite expensive, so a temperature sensor (13) and a bias current control circuit (14) are used to prevent damage to the infrared detection element (5), but the constant 'fJi current circuit (6) and Between the infrared detection elements (5) is a switch (
7), it is also necessary to install a temperature sensor (13) in the vacuum chamber (1) of the cryostand and a bias current control circuit (14), and if this bias current control circuit There is a problem in that if (14) malfunctions, the infrared detection element (5) will be damaged.

本発明ば斯る点に麺み簡単な構成で確実にこの赤外線検
出素子の破損を防止できるようにした赤外線検出装置を
得ることを目的とするものである。
SUMMARY OF THE INVENTION In view of this, it is an object of the present invention to provide an infrared detecting device which has a simple structure and can reliably prevent damage to the infrared detecting element.

〔課題を解決するための手段〕[Means to solve the problem]

本考案の赤外線検出装置は例えば第1図及び第2図に示
す如く、冷却装置内に配設された赤外線検出素子(5)
により被測定物体(17)よりの赤外線を検出するよう
にした赤外線検出装置回路に於いて、冷却装置内の赤外
線検出素子(5)に直列に超伝導体(21)を接続した
ものである。
The infrared detecting device of the present invention has an infrared detecting element (5) disposed in a cooling device, as shown in FIGS. 1 and 2, for example.
In an infrared detection device circuit designed to detect infrared rays from an object to be measured (17), a superconductor (21) is connected in series to an infrared detection element (5) in a cooling device.

〔作用〕[Effect]

本発明によればクライオスタンド内の超伝導体(21)
によって周囲温度が上昇すれば直ちに抵抗値は上宵して
バイアス電流が赤外線検出素子(5)に流れるのを阻止
して赤外線検出素子の破損を防止し得る。
According to the invention, a superconductor (21) in a cryostand
As soon as the ambient temperature rises, the resistance value increases to prevent the bias current from flowing to the infrared detection element (5), thereby preventing damage to the infrared detection element.

〔実施例〕〔Example〕

以下第1図乃第2図を参照しながら本発明赤外線検出装
置の一実施例につき説明しよう、この第1図及び第2図
に於いてM4図及び第5図に対応する部分には同一符号
を付し、その詳m説明は雀゛略する。
Hereinafter, one embodiment of the infrared detection device of the present invention will be explained with reference to FIGS. 1 and 2. In FIGS. 1 and 2, parts corresponding to FIGS. , and the detailed explanation will be omitted.

本例に於いても第4図と同様にクライオスタンドは第2
図示の様に真空室11)により有底円筒形の′8器(2
)を形成する。この場合容i (21はマホービンと同
様に構成されたものである。この真空室(1)により形
成された容器(2)内に冷却液例えば沸点が一196℃
の液体窒素(3)を注入する。この真空室(1)の液体
窒素(3)に接触している内側壁(1a)の所定位置、
本例では内側壁(1a)の下方に前方に絞りを構成する
赤外線通過孔(4a)を有する例えば銅板より成るコー
ルドシールド室(4)を設け、このコールドシールド室
(4)内の液体窒素(3)と接触する内側壁(1a)に
例えばホトコンダクティブタイプの半導体赤外線検出素
子(5)と超伝導体よりなる超伝導体線(21)を接着
固定し、半導体赤外線検出素子+5)と超伝導体線(2
1)とを直列に接続し、その両端子をシール端子(22
) 、  (23)に接続する様に成されている。
In this example, as in Figure 4, the cryo stand is in the second position.
As shown in the figure, a bottomed cylindrical vessel (2) is formed by a vacuum chamber (11).
) to form. In this case, the container i (21 is constructed in the same manner as the Mahobin).In the container (2) formed by this vacuum chamber (1), there is a coolant with a boiling point of, for example, 1196°C.
Inject liquid nitrogen (3). a predetermined position of the inner wall (1a) in contact with the liquid nitrogen (3) of this vacuum chamber (1);
In this example, a cold shield chamber (4) made of, for example, a copper plate is provided below the inner wall (1a) and has an infrared ray passage hole (4a) constituting an aperture in the front, and the liquid nitrogen (4) in this cold shield chamber (4) is provided. For example, a photoconductive type semiconductor infrared detection element (5) and a superconductor wire (21) made of a superconductor are adhesively fixed to the inner wall (1a) in contact with the semiconductor infrared detection element +5) and the superconductor. Body line (2
1) in series, and both terminals are sealed terminals (22
), (23).

この場合この半導体赤外線検出素子(5)及び超伝導体
線(21)は液体窒素(3)と接触している内側壁(1
a)に接着されると共にコールドシールド室(4)内に
配されているので、この半導体赤外線検出素子(5)の
温度はこの液体窒素(3)の沸点例えば−196℃と略
同し温度となり、この半導体赤外線検出素子(5)自体
及びその近辺より赤外線は殆んど放射されず、この半導
体赤外線検出素子(5)はその周辺よりの赤外線の照射
は殆んどなくそれだけ雑音の影響が少なくなる。
In this case, the semiconductor infrared detection element (5) and the superconductor wire (21) are connected to the inner wall (1) in contact with the liquid nitrogen (3).
a) and placed in the cold shield chamber (4), the temperature of this semiconductor infrared detection element (5) is approximately the same as the boiling point of liquid nitrogen (3), for example -196°C. Almost no infrared rays are emitted from this semiconductor infrared detection element (5) itself or its vicinity, and this semiconductor infrared detection element (5) is hardly irradiated with infrared rays from its surroundings, so that the influence of noise is reduced accordingly. Become.

このコールドシールド室(4)の赤外iM通過T1. 
(4a)に対向するこの真空室(11の外側壁(1b)
に略赤外線だけを通過するゲルマニウム板により構成し
た赤外線ウィンド(20)を設ける二 +W3 (19a )はゲルマニウムより成る集光レン
ズである。
Infrared iM passing through this cold shield chamber (4) T1.
The outer wall (1b) of this vacuum chamber (11) opposite (4a)
2+W3 (19a) is a condensing lens made of germanium, which is provided with an infrared window (20) made of a germanium plate that passes only infrared rays.

叙上の赤外iM検出装置の構成を第1図に示す。The configuration of the above-mentioned infrared iM detection device is shown in FIG.

第4図の様にバイアス切換スイッチ(7)と温度センサ
(13)並にバイアス電流制御回路(14)は設けられ
ず、亀#端子(8)から定電流回路(6)を通じて供給
された電流はシール端子(22)から超伝導体線(21
)に供給され、半導体赤外線検出素子(5)を通してシ
ール端子(23)に出力される。超伝導体線(21)と
してはイソトリウム−バリウム−銅酸化物からなるYB
az Cux OT等の層状ペロブスカイト構成の酸化
物系超伝導体を用い得る。YBa2Cu30〒のYをN
dの一部で置換したもの、Baの一部をStで置換した
もの、Oの一部をF又はSで置換したもの等で構成して
もよい。YBa2CLI307による超伝導体線によれ
ば伝導転移温度Tcは液体窒素の大気圧下で77.3°
Kに比べて第3図に示す様に92°に程度で抵抗値は略
無限大に近い10’Ωcm程度から10−”Ωcowに
変化して抵抗値は零となる。
As shown in Figure 4, the bias selector switch (7), temperature sensor (13), and bias current control circuit (14) are not provided, and the current is supplied from the turtle # terminal (8) through the constant current circuit (6). is from the sealed terminal (22) to the superconductor wire (21
) and output to the seal terminal (23) through the semiconductor infrared detection element (5). The superconductor wire (21) is YB made of isotrium-barium-copper oxide.
An oxide-based superconductor having a layered perovskite structure such as az Cux OT can be used. YBa2Cu30〒Y is N
It may also be constructed by replacing a part of d with St, a part of Ba with St, a part of O with F or S, etc. According to the superconductor wire made by YBa2CLI307, the conduction transition temperature Tc is 77.3° under atmospheric pressure in liquid nitrogen.
As shown in FIG. 3, the resistance value changes from about 10'Ωcm, which is close to infinity, to 10-''Ωcow, and becomes zero at about 92° as shown in FIG.

依って本例の半導体赤外線検出素子(5)が液体窒素(
3)で冷却された状態であれば超伝導体線(21)の抵
抗値は零であり定電流回路(6〉からの電流は半導体赤
外線検出素子(5)にバイアス電流を流すが、液体窒素
(3)が容W(21内から蒸発したり、或は液体窒素を
入れ忘れたりした場合には超伝導体線(21)は高抵抗
値を示j″ため定電流回路り6)からのバイアス電流は
カットされるので半導体赤外線素子(5)は確実に保護
され破…することは全(ない。
Therefore, the semiconductor infrared detection element (5) of this example is made of liquid nitrogen (
If it is cooled in step 3), the resistance value of the superconductor wire (21) is zero, and the current from the constant current circuit (6>) flows through the semiconductor infrared detection element (5) as a bias current. If (3) evaporates from inside W (21) or if you forget to add liquid nitrogen, the superconductor wire (21) exhibits a high resistance value, so the bias from the constant current circuit (6) Since the current is cut off, the semiconductor infrared element (5) is reliably protected and will not be damaged.

即ち、本例構成によれば半導体赤外線検出素子に直列に
超伝導体線を接続するだけの簡単な構成となり、従来の
様にバイアス切換スイッチ(7)や温度センサ(I3)
並にバイアス電流制御回・路(14)を必要とせず、ま
た真空室(1)からの電流を入出力するためのシール端
子の数も減少させることが出来る。
That is, according to the configuration of this example, it is a simple configuration in which the superconductor wire is connected in series to the semiconductor infrared detection element, and the bias changeover switch (7) and temperature sensor (I3) are connected as in the conventional case.
Furthermore, a bias current control circuit (14) is not required, and the number of sealed terminals for inputting and outputting current from the vacuum chamber (1) can also be reduced.

向、本発明は上述の実施例に限定されることなく、本発
明の要旨を逸説しない範囲で種々の変形が可能であるこ
とは勿論である。
However, it goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば赤外線検出素子の俵用を、簡単な構成で
確実に防止することができる利益がある。
According to the present invention, there is an advantage that it is possible to reliably prevent the infrared detection element from being used as a bale with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外線検出装置の一実hb例を示す回
路図、第2図は本発明の赤外線検出装置の一実施例を示
す断面図、第3図は超伝導体線の抵抗−温度特性図、第
4図は従来の赤外線[*小装置の例を示す断面図、第5
図は赤外線検出装置の説明に供する接続図である。 +11は真空電、(la)は内側壁、(lb)は外側壁
、(2)は容器、(3)は冷却液、(4)はコールドシ
ールド室、(5)は半導体赤外線検出素子、(■0)は
赤外線ウィンド、(21)は超伝導体線である。
FIG. 1 is a circuit diagram showing an example of an infrared detection device according to the present invention, FIG. 2 is a sectional view showing an embodiment of the infrared detection device according to the present invention, and FIG. 3 is a resistance diagram of a superconductor wire. Temperature characteristic diagram, Figure 4 is a conventional infrared ray [*Cross-sectional view showing an example of a small device, Figure 5
The figure is a connection diagram for explaining the infrared detection device. +11 is the vacuum electric, (la) is the inner wall, (lb) is the outer wall, (2) is the container, (3) is the cooling liquid, (4) is the cold shield chamber, (5) is the semiconductor infrared detection element, ( (2) 0) is an infrared wind, and (21) is a superconductor wire.

Claims (1)

【特許請求の範囲】 冷却装置内に配設された赤外線検出素子により被測定物
体が放射する赤外線を検出するようにした赤外線検出装
置に於いて、 上記冷却装置内の赤外線検出素子に直列に超伝導体を接
続したことを特徴とする赤外線検出装置。
[Claims] In an infrared detection device configured to detect infrared rays emitted by an object to be measured using an infrared detection element disposed in a cooling device, an infrared detection device arranged in series with the infrared detection device in the cooling device includes An infrared detection device characterized by connecting conductors.
JP63237422A 1988-09-21 1988-09-21 Infrared detector Expired - Lifetime JP2750354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63237422A JP2750354B2 (en) 1988-09-21 1988-09-21 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63237422A JP2750354B2 (en) 1988-09-21 1988-09-21 Infrared detector

Publications (2)

Publication Number Publication Date
JPH0285728A true JPH0285728A (en) 1990-03-27
JP2750354B2 JP2750354B2 (en) 1998-05-13

Family

ID=17015124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63237422A Expired - Lifetime JP2750354B2 (en) 1988-09-21 1988-09-21 Infrared detector

Country Status (1)

Country Link
JP (1) JP2750354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607300B2 (en) * 2000-08-30 2011-01-05 日置電機株式会社 Cooling device and light detection device
CN105043558A (en) * 2015-06-06 2015-11-11 中国科学院云南天文台 Shielding method and apparatus for infrared radiation measurement of high-reflection surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607300B2 (en) * 2000-08-30 2011-01-05 日置電機株式会社 Cooling device and light detection device
CN105043558A (en) * 2015-06-06 2015-11-11 中国科学院云南天文台 Shielding method and apparatus for infrared radiation measurement of high-reflection surface

Also Published As

Publication number Publication date
JP2750354B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US4319233A (en) Device for electrically detecting a liquid level
US4331888A (en) Temperature detecting apparatus
EP0301652A3 (en) Radiation detector arrangements and methods
KR101774299B1 (en) apparatus for firing alarm and smoke sensor using the same
SE432155B (en) CLUTCH DEVICE WITH A RADIO DETECTOR ELEMENT OF PYROELECTRIC MATERIAL
JP2735394B2 (en) Temperature compensated overload trip level semiconductor relay
WO2013027965A2 (en) Mit device molded with clear compound epoxy and fire detection device including same
JPH0285728A (en) Infrared detecting device
US4625128A (en) Integrated circuit temperature sensor
US3965396A (en) Condition responsive control circuit
EP0217620B1 (en) Temperature sensor
JPS59142427A (en) Heat sensor
JPS59104515A (en) Detector for liquid level
US3483359A (en) Temperature control circuit
US3440536A (en) Passive circuit including a thermistor for providing high level voltage variations in response to low level current variations
US5467651A (en) Drive control apparatus for microsensor
JPS63223552A (en) Semiconductor type gas sensor
IL34849A (en) Ionization type fire detector
JPS597229A (en) Detector of temperature
JPS6311610B2 (en)
WO2020105250A1 (en) Wireless sensor
GB2190254A (en) Condition responsive switching circuit
JPH0266415A (en) Infrared ray detecting device
JPH1132428A (en) Low voltage arrester
JPH04102365A (en) Diode