JPH0285697A - Plate-type heat exchanger - Google Patents

Plate-type heat exchanger

Info

Publication number
JPH0285697A
JPH0285697A JP23626888A JP23626888A JPH0285697A JP H0285697 A JPH0285697 A JP H0285697A JP 23626888 A JP23626888 A JP 23626888A JP 23626888 A JP23626888 A JP 23626888A JP H0285697 A JPH0285697 A JP H0285697A
Authority
JP
Japan
Prior art keywords
stainless steel
heat transfer
heat exchanger
coating
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23626888A
Other languages
Japanese (ja)
Inventor
Kenjiro Ito
伊東 建次郎
Masahiro Kinugasa
衣笠 雅普
Tsuguyasu Yoshii
吉井 紹泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP23626888A priority Critical patent/JPH0285697A/en
Publication of JPH0285697A publication Critical patent/JPH0285697A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent crevice corrosion from occurring at a gap construction part and enhance durability of an apparatus by depositing a film of Zn or a Zn alloy on a surface for contact with a liquid medium, of stainless steel heat transfer surfaces at least one of which is used as the surface for contact with the liquid medium. CONSTITUTION:A seawater passage 2 and a passage 3 for water to be cooled are provided in gaps between a multiplicity of plates 1 disposed in parallel, and the seawater and the water to be cooled are brought into heat exchange with each other through the plates 1 as heat transfer surfaces. Gaskets 4 are placed between the plates 1, along the peripheral edges of the plates. A multiplicity of gaps are inevitably generated in the vicinity of the gaskets, in the vicinity of liquid inlet and output ports, etc. Stainless steel surfaces 12a, 12b for contact with a liquid, facing the gap 13, are coated with plates layers 14a, 14b of Zn or a Zn alloy. With Zn thus present, corrosion of stainless steel is prevented even when Zn is converted into zinc hydroxide, so that it is possible to prevent crevice corrosion and to enhance reliability of an apparatus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は渇水等の02−を多く含む液を液媒として利用
できるようにしたステンレス鋼製のプレート式熱交換器
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plate heat exchanger made of stainless steel that can use a liquid containing a large amount of 02-, such as from drought, as a liquid medium.

〔発明の背景〕[Background of the invention]

熱交換器の伝熱面をステンレス鋼で構成するステンレス
wJ製熱交換器が普及しているが、海水用としては汎用
化されていない。これはステンレス鋼でも海水を通液し
た場合には隙間腐蝕を起こすからである。
Stainless steel WJ heat exchangers, in which the heat transfer surface of the heat exchanger is made of stainless steel, are popular, but they have not been widely used for seawater. This is because even stainless steel suffers from crevice corrosion when seawater passes through it.

ステンレス鋼は非常に優れた耐食材料であり。Stainless steel is an extremely corrosion resistant material.

耐食性を有することから水環境で使用される各種形成の
熱交換機器に汎用されているが1機器として組み立てた
場合、溶接、かしめ、ガスケット部などで部分的に隙間
構造となることが避けられない。ステンレス鋼は一般の
平坦な部位では耐食性が優れるものの、隙間構造となる
と、使用環境によっては腐食、いわゆる隙間腐食を起こ
すことがある。ステンレス鋼の隙間腐食は、水に含まれ
る塩素イオンによって誘発されるもので、C2−濃変が
高いほど、また温度が高いほど隙間腐食性が強くなる。
Due to its corrosion resistance, it is widely used in various types of heat exchange equipment used in water environments, but when assembled as a single device, it is inevitable that there will be gaps in parts due to welding, caulking, gasket parts, etc. . Stainless steel has excellent corrosion resistance in general flat parts, but if it has a structure with gaps, it may corrode, so-called crevice corrosion, depending on the usage environment. Crevice corrosion of stainless steel is induced by chlorine ions contained in water, and the higher the C2 concentration and the higher the temperature, the stronger the crevice corrosion becomes.

従って例えば高温水を海水によって冷却するような用途
向きに適用した場合には短時間で該隙間部が腐食してし
まうことが多い。
Therefore, when used for purposes such as cooling high-temperature water with seawater, the gaps often corrode in a short period of time.

ステンレス鋼の隙間腐蝕の防止に対しては、外部電源に
よる電気防食法或いは犠牲陽極法などの対策が温水器な
どでは広く適用されているが、熱交換器のように隙間部
が多枝にわたり構造が複雑なものでは2その全通液路に
設置することが困難であったり、設置したとしても充分
な効果を発揮できない場合も多くまた費用も窩むことに
なる。
To prevent crevice corrosion in stainless steel, measures such as cathodic protection using an external power source or sacrificial anode method are widely applied in water heaters, etc. If the system is complex, it may be difficult to install it in all the liquid passages, or even if it is installed, it may not be sufficiently effective, and it will also be costly.

このため、Moを添加したりCr含存量を著しく高めた
ような高価な材料を使用して隙間腐蝕に対応しているが
完全ではなく、現在のところ海水熱交換器として隙間腐
蝕が発生せず半永久的に機能し得るものは、一般のステ
ンレス鋼を使用した汎用機器として出現していないと言
える。
For this reason, expensive materials with Mo added or with significantly increased Cr content are used to prevent crevice corrosion, but this is not perfect, and as of now seawater heat exchangers are free from crevice corrosion. It can be said that no general-purpose equipment using ordinary stainless steel has appeared that can function semi-permanently.

〔発明の目的〕[Purpose of the invention]

本発明は、高価な耐食性元素を多量に含有させた特殊な
ステンレス鋼を使用しなくても汎用ステンレス鋼で隙間
腐蝕に耐える熱交換器を得ることを目的としたものであ
り、特に経済的な海水熱交換器を提供しようとするもの
である。
The purpose of the present invention is to obtain a heat exchanger that is resistant to crevice corrosion using general-purpose stainless steel without using special stainless steel containing a large amount of expensive corrosion-resistant elements, and is particularly economical. The aim is to provide a seawater heat exchanger.

〔発明の構成〕[Structure of the invention]

伝熱面をステンレス鋼で形成し、該伝熱面の少なくとも
一方の面を液媒体の接液面とする熱交換器において1本
発明は。
One aspect of the present invention relates to a heat exchanger in which a heat transfer surface is formed of stainless steel, and at least one surface of the heat transfer surface is a surface in contact with a liquid medium.

(1)該ステンレス鋼製伝熱面の接液側表面にZnまた
はZn合金の被膜を密着させてなるステンレス鋼製プレ
ート式熱交換器。
(1) A stainless steel plate heat exchanger in which a Zn or Zn alloy coating is adhered to the liquid contact side surface of the stainless steel heat transfer surface.

(2)該ステンレス鋼製伝熱面の接液側表面にZnまた
はZn合金の被膜を密着させ、さらにこの被膜ノ表面に
クロメート被膜を被着させてなるステンレス鋼製プレー
ト式熱交換器。
(2) A plate heat exchanger made of stainless steel, in which a Zn or Zn alloy coating is adhered to the surface of the stainless steel heat transfer surface in contact with liquid, and a chromate coating is further applied to the surface of this coating.

(3)該ステンレス鋼製伝熱面の接液側表面にZnまた
はZn合金の被膜を密着させ、さらにこの被膜の表面に
水酸化亜鉛被膜を被着させてなるステ〉ルス鋼製プレー
ト式熱交換器、および。
(3) A stainless steel plate heat exchanger made of a Zn or Zn alloy coating adhered to the liquid contact side surface of the stainless steel heat transfer surface, and a zinc hydroxide coating further applied to the surface of this coating. exchanger, and.

(4)該ステンレス鋼製伝熱面の接液側表面に水酸化亜
鉛被膜を被着させてなるステンレス鋼製プレート式熱交
換器、を提供するものである。
(4) A plate heat exchanger made of stainless steel is provided, in which a zinc hydroxide coating is deposited on the liquid-contacting surface of the heat transfer surface made of stainless steel.

本発明のプレート式熱交換器は、耐隙間腐蝕性が極めて
良好であり、汎用ステンレス鋼を用いた場合でも海水熱
交換器として充分に使用することができる。本発明の熱
交換器は伝熱面をステンレス鋼で形成した伝熱面の一方
に液が流れる液−液熱交換器または気−液熱交換器とし
て使用する場合に好適であり、伝熱面が大きなプレート
式熱交換器として構成する場合にその効果が大きい。
The plate heat exchanger of the present invention has extremely good crevice corrosion resistance, and can be satisfactorily used as a seawater heat exchanger even when general-purpose stainless steel is used. The heat exchanger of the present invention is suitable for use as a liquid-to-liquid heat exchanger or a gas-to-liquid heat exchanger, in which the heat transfer surface is made of stainless steel and liquid flows on one side. The effect is great when the heat exchanger is configured as a large plate heat exchanger.

(発明の詳述〕 第1図は高温水(被冷却水)を海水と熱交換して冷却す
るプレート式熱交換器の構造例を示したものである0図
示の例では平行に配置した多数のプレートlの間隙に海
水通路2と被冷却水通路3とが形成され、各プレートl
を伝熱面として両者が熱交換される。各プレート1の間
にはパツキン部材(ガスケット)4がプレート周縁を廻
るように介装され、各通路2に海水を導入する海水供給
路5と各通路2から排水を取り出す海水導出路6゜並び
に各通路3に被冷却水を導入する温水供給路7と各通路
4から被冷却水を取り出す温水導出路7が接続され、各
々の海水通路2と被冷却水通路3は互いに反対方向の流
れをもつ通水路が形成されている。かような対向流式の
プレート式熱交換器自身の構造は良く知られており、伝
熱面となるプレートをステンレス鋼で構成するステンレ
ス鋼製熱交換器も知られているが、ガスケット周囲。
(Detailed Description of the Invention) Figure 1 shows an example of the structure of a plate heat exchanger that cools high-temperature water (water to be cooled) by exchanging heat with seawater. A seawater passage 2 and a cooled water passage 3 are formed in the gap between the plates l, and each plate l
Heat is exchanged between the two using the surface as the heat transfer surface. A gasket 4 is interposed between each plate 1 so as to go around the periphery of the plate, and includes a seawater supply passage 5 for introducing seawater into each passage 2, a seawater outlet passage 6 for taking out waste water from each passage 2, and A hot water supply passage 7 that introduces water to be cooled into each passage 3 and a hot water outlet passage 7 that takes out water to be cooled from each passage 4 are connected, and each seawater passage 2 and water passage 3 to be cooled flow in opposite directions. A water passageway has been formed. The structure of such a counterflow type plate heat exchanger itself is well known, and stainless steel heat exchangers are also known in which the plates serving as the heat transfer surface are made of stainless steel, but the surroundings of the gasket.

液出入口周囲などには多数の隙間が不可避的に生する、
また伝熱面となるプレートも波板やエンボス板等を使用
してその伝熱面積を多くすると共に液の流れを乱流化し
て熱交換効率を高めるようにしているが、この場合には
一層その隙間の量が多くなる。
Many gaps inevitably occur around the liquid inlet and outlet.
In addition, the plates that serve as heat transfer surfaces are made of corrugated plates, embossed plates, etc. to increase the heat transfer area and to make the flow of liquid turbulent to increase heat exchange efficiency. The amount of gap increases.

例えば第2図は、波板プレートlaとlbを、その波の
方向がクロスするように、そして各波の稜線で接するよ
うにして交互に積層し、ジグザグ状の海水通路2と被冷
却水通路3とが両プレートの間に形成されるようにした
例をその−m1面で示したものであるが、このような波
板をクロスさせる場合には、そのクロス点において無数
の隙間が生ずる。すなわち、熱交換効率を高めるべく、
伝熱面に凹凸を持たせたり波板として伝熱面積の拡大と
乱流化を意図すればするほど隙間の数は増大することに
なり、性能のよい熱交換器はどその隙間の量は多くなる
と言える。このことは、逆に言えば性能のよい熱交換器
はど隙間腐蝕が甚大となることを示している。本発明は
、かような隙間を多量にもつステンレス鋼製プレート式
熱交換器の隙間腐蝕の防止に成功したものである。
For example, in Fig. 2, corrugated plates la and lb are stacked alternately so that their wave directions cross and are in contact at the ridge lines of each wave, forming a zigzag-shaped seawater passage 2 and a cooled water passage. 3 is formed between both plates, as shown in the -m1 plane. When such corrugated plates are crossed, countless gaps are created at the crossing points. In other words, in order to increase heat exchange efficiency,
The more uneven the heat transfer surface is, or the corrugated plate is used to expand the heat transfer area and create turbulence, the more gaps there will be. I can say that there will be more. Conversely, this indicates that even a heat exchanger with good performance suffers from serious crevice corrosion. The present invention has successfully prevented crevice corrosion in stainless steel plate heat exchangers that have a large number of crevices.

第3〜6図は熱交換器の該隙間部分に対する本発明の隙
間腐蝕防止構造を図解的に示したものである。これらの
図において、11a、llbはステンレス鋼の伝熱面、
 12a、]、2bは該伝熱面の接液側の表面。
3 to 6 schematically show the gap corrosion prevention structure of the present invention for the gap portion of the heat exchanger. In these figures, 11a and llb are stainless steel heat transfer surfaces,
12a, ], 2b are the surfaces of the heat transfer surfaces on the liquid contact side.

13は液側での隙間を示している。13 indicates a gap on the liquid side.

第3図は前記(1)に対応する本発明の基本構成を示し
たもので、隙間13に面するステンレス鋼の接液側表面
12a、 12bを、ZnまたはZn合金のめっき層1
4a、14b(好ましくは膜厚が0.5g/m”以上)
で覆ったものである。伝熱面11a、 llbの他方の
面15a、15bも接液面である場合(液−液熱交換器
である場合)には同様の被膜を形成するのがよいが。
FIG. 3 shows the basic configuration of the present invention corresponding to the above (1).
4a, 14b (preferably film thickness of 0.5 g/m" or more)
It is covered with When the other surfaces 15a and 15b of the heat transfer surfaces 11a and llb are also surfaces in contact with liquid (in the case of a liquid-liquid heat exchanger), it is preferable to form a similar coating.

図には省略しである(以下の第4〜6図も同様)。It is omitted from the figure (the same applies to Figures 4 to 6 below).

すなわち、隙間13を形成している最外表面(液と接す
る面)はステンレス鋼製伝熱面11a、llbに密着し
ためっき層14a、 14bからなっている。めっき層
14a、 14bは隙間13を形成している伝熱面の全
表面に密着していることが必要である。隙間13を形成
していない伝熱表面、従って隙間腐蝕が問題とはならな
いステンレス鋼伝熱面については本発明の目的から外れ
るが2機器製造の都合上めっき層で覆うことが有利な場
合には覆っておけばよい。
That is, the outermost surface (the surface in contact with the liquid) forming the gap 13 consists of plating layers 14a and 14b that are in close contact with the stainless steel heat transfer surfaces 11a and llb. It is necessary that the plating layers 14a and 14b are in close contact with the entire surface of the heat transfer surface forming the gap 13. Heat transfer surfaces that do not form gaps 13, and therefore stainless steel heat transfer surfaces where crevice corrosion is not a problem, are outside the scope of the present invention, but in cases where it is advantageous to cover them with a plating layer for convenience of device manufacturing. Just cover it.

また、この隙間13の表面とは外れた表面にZnまたは
Zn合金のめっき府が存在すると、この部分が犠牲陽極
として作用し、またここで形成した水酸化亜鉛被膜が酸
素還元のバリヤーとなって自然電位の上昇を抑え、隙間
腐蝕の防止に有利に作用する。したがって、隙間を形成
しているステンレス鋼伝熱表面と、この表面以外の表面
にも同様のめっき層を形成しておくことは隙間腐蝕の防
止に一層有利に作用する。しかし、少なくとも隙間を形
成しているステンレス鋼伝熱面の接液側表面には該めっ
き層を密着させておくことが必要である。
Furthermore, if a Zn or Zn alloy plating layer exists on a surface other than the surface of this gap 13, this portion acts as a sacrificial anode, and the zinc hydroxide film formed here acts as a barrier for oxygen reduction. It suppresses the rise in natural potential and has an advantageous effect on preventing crevice corrosion. Therefore, forming a similar plating layer on the stainless steel heat transfer surface forming the gap and on other surfaces is more advantageous in preventing gap corrosion. However, it is necessary to keep the plating layer in close contact with at least the liquid-contacting surface of the stainless steel heat transfer surface forming the gap.

第4図は前記(2)に対応する本発明の伝熱面の被膜構
造を示したもので、隙間13に面するステンレス鋼伝熱
表面12a、 12bを、ZnまたはZn合金のめっき
層14a、 14bと、その表面に形成したクロメート
被膜16a、 16bとで覆ったものである。すなわち
、隙間13に面するステンレス鋼表面12a、 12b
をZnまたはZn合金のめっき層14a、 14bで密
着させたうえ、このめっき層14a、14bの接液側表
面にクロメート処理被膜16a、16bを形成させたも
のである。
FIG. 4 shows the coating structure of the heat transfer surface of the present invention corresponding to (2) above, in which the stainless steel heat transfer surfaces 12a, 12b facing the gap 13 are coated with a Zn or Zn alloy plating layer 14a, 14b, and chromate films 16a and 16b formed on the surface thereof. That is, the stainless steel surfaces 12a, 12b facing the gap 13
are adhered with plating layers 14a, 14b of Zn or Zn alloy, and chromate treatment films 16a, 16b are formed on the surfaces of the plating layers 14a, 14b on the liquid contact side.

第5図は前記(3)に対応する本発明の伝熱面の被膜構
造を示したもので、隙間13に面するステンレス鋼伝熱
表面12a、 12bを、ZnまたはZn合金のめっき
N 14a、 14bと、その表面に形成した水酸化並
鉛被IQ17a、17bとで覆ったものである。すなわ
ち、隙間13に面するステンレス鋼表面12a、 12
bをZnまたはZn合金のめっき層14a、 14bで
密着させたうえ、このめっき層14a、14bの接液側
表面に水酸化亜鉛被膜17a、 17t+を形成させた
ものである。この水酸化並鉛被l1i17a、17bは
めっき層14a、 14bを形成させたあと、そのめっ
き亜鉛の表面部を化学反応によって水酸化亜鉛に変えて
水酸化亜鉛被膜を形成するのがよい。
FIG. 5 shows the coating structure of the heat transfer surface of the present invention corresponding to (3) above, in which the stainless steel heat transfer surfaces 12a and 12b facing the gap 13 are coated with Zn or Zn alloy plating N 14a, 14b and IQs 17a and 17b formed on the surface of the same lead hydroxide coating. That is, the stainless steel surfaces 12a, 12 facing the gap 13
b is closely adhered with plating layers 14a, 14b of Zn or Zn alloy, and zinc hydroxide coatings 17a, 17t+ are formed on the liquid-contacting surfaces of these plating layers 14a, 14b. After the plating layers 14a, 14b are formed on the lined lead hydroxide coatings 11i17a and 17b, the surface portion of the plated zinc is preferably converted into zinc hydroxide by a chemical reaction to form a zinc hydroxide coating.

第6図は前記(4)に対応する本発明の伝熱面の被膜構
造を示したもので、隙間13に面するステンレス鋼伝熱
面12a、12bを水酸化亜鉛被膜17a、 17bで
覆ったものである。この水酸化亜鉛被膜17a、17b
は前記(3)の構造におけるめっき層の全厚みを水酸化
亜鉛に化学変化させることによって形成するのがよい、
これによってステンレス鋼表面12a、12bに対して
水酸化亜鉛被膜17a、 17bを形成させることがで
きる。
FIG. 6 shows the coating structure of the heat transfer surface of the present invention corresponding to (4) above, in which the stainless steel heat transfer surfaces 12a, 12b facing the gap 13 are covered with zinc hydroxide coatings 17a, 17b. It is something. These zinc hydroxide coatings 17a, 17b
is preferably formed by chemically changing the entire thickness of the plating layer in the structure of (3) above to zinc hydroxide,
As a result, zinc hydroxide coatings 17a, 17b can be formed on the stainless steel surfaces 12a, 12b.

これらいずれの構造(1)〜(4)においても、伝熱面
の接液側の隙間はステンレス鋼表面同士で形成される場
合のほか、隙間を形成する一方の面だけがステンレス鋼
である場合でもそのステンレス鋼の接液側表面に前記の
構造の被膜を形成させることによってその伝熱面の隙間
腐蝕を防止することができる。また、隙間の形状は図示
の例に限らず。
In any of these structures (1) to (4), the gap on the liquid contact side of the heat transfer surface is formed between two stainless steel surfaces, or when only one surface forming the gap is made of stainless steel. However, by forming a coating having the above-described structure on the surface of the stainless steel in contact with liquid, it is possible to prevent crevice corrosion on the heat transfer surface. Further, the shape of the gap is not limited to the illustrated example.

隙間腐蝕を起こすような隙間であれば全て本発明の構造
が適用できる。そのさい被膜はステンレス鋼の接液側表
面に密着して形成されていることが必要であり、該被膜
が隙間以外のステンレス鋼接液側表面に形成されていて
も特に問題はなく、むしろ好ましい場合が多い。
The structure of the present invention can be applied to any gap that causes crevice corrosion. In this case, the coating must be formed in close contact with the liquid-wetted surface of the stainless steel, and there is no particular problem if the coating is formed on the liquid-wetted surface of the stainless steel other than the gap, and it is preferable. There are many cases.

従来より、Zn被覆は一般に普通鋼の腐食を防止するた
めに用いられてきた。普通鋼においてはZnが犠牲溶解
し、金属Znが消耗すると直ちに腐食することから、金
属Znとして残存する期間が耐久性の指標となっている
。Znが犠牲溶解してなくなる現象は普通鋼のZn被覆
材と同様にZn被覆ステンレス鋼においても推察される
。すなわち、ステンレス鋼上のZnが溶解して無くなる
と普通鋼と同じようにZnによる防食効果は無くなると
考えるのが普通である。
Traditionally, Zn coatings have generally been used to prevent corrosion of common steel. In ordinary steel, Zn sacrificially melts and corrodes immediately when metal Zn is consumed, so the period of time that metal Zn remains is an indicator of durability. The phenomenon in which Zn disappears through sacrificial melting can be assumed to occur in Zn-coated stainless steel as well as in Zn-coated materials for ordinary steel. That is, it is common to think that once Zn on stainless steel dissolves and disappears, the anticorrosive effect of Zn disappears, just like ordinary steel.

ところが1本発明者らはステンレス鋼にZn被覆した場
合の防食効果について、Znの溶解後についてもさらに
細部にわたって種々の面から検討した結果、Znが存在
しているときはもちろんのこと、Znが腐食し水酸化亜
鉛となった際にもステンレス鋼の腐食を防止する作用の
あることを見出した。また、Znの消耗量も普通鋼に比
ベステンレス鋼のほうが少ないこともわかった。したが
って1本発明のプレート式熱交換器は金属Znが無くな
ったあとでも水酸化亜鉛が防食効果を発運し、長期にわ
たって隙間腐蝕を防止することができる点で、その効果
は格段のものがある。この防食効果を示す水酸化亜鉛被
膜は予め形成させておいてもよいし、熱交換器使用中に
Zn被膜が水酸化亜鉛被膜に変性したものでもよい。ま
たクロメート処理を最外層に形成しておくと一層防食効
果が良好となる。 隙間での防食機構としては、第一に
、隙間内のZnは溶出し難<、Znがある間は犠牲溶解
による防食効果が働き、さらに隙間内で溶解し腐食生成
物となった水酸化亜鉛が隙間内でのpHの低下を抑制し
て、素地の腐食を防止する作用として働くものと考えら
れる。第二に、隙間外部でのZnはもちろん犠牲防食の
役目をし。
However, the present inventors investigated the anticorrosion effect of coating stainless steel with Zn from various aspects in more detail, including after dissolving Zn. It was discovered that it has the effect of preventing corrosion of stainless steel even when it corrodes and becomes zinc hydroxide. It was also found that the amount of Zn consumed was smaller in stainless steel than in ordinary steel. Therefore, the plate heat exchanger of the present invention has a remarkable effect in that the zinc hydroxide exerts its anticorrosion effect even after the metallic Zn is used up, and can prevent crevice corrosion over a long period of time. . The zinc hydroxide coating exhibiting this anticorrosion effect may be formed in advance, or the Zn coating may be modified into a zinc hydroxide coating during use of the heat exchanger. Furthermore, if the outermost layer is chromate treated, the anticorrosion effect will be even better. As for the anticorrosion mechanism in the crevice, firstly, Zn in the crevice is difficult to elute, and while Zn is present, the anticorrosion effect by sacrificial dissolution works, and furthermore, zinc hydroxide dissolves in the crevice and becomes a corrosion product. It is thought that this works to suppress the decrease in pH within the gap and prevent corrosion of the substrate. Second, Zn outside the gap naturally acts as sacrificial corrosion protection.

Znが溶けて水酸化亜鉛となっても、この水酸化亜鉛が
酸素還元のバリヤーとなって自然電位の上昇を抑え、腐
食を防止するものと考えられる。
Even if Zn melts and becomes zinc hydroxide, it is thought that this zinc hydroxide acts as a barrier to oxygen reduction, suppresses the rise in self-potential, and prevents corrosion.

このことは、以下に示す本発明者らの行った試験結果か
ら実証され得る。
This can be demonstrated from the test results conducted by the present inventors shown below.

試験例 第7図は5US316ステンレス鋼の素材と、めっき1
4寸量をかえてZnめっきした5US316ステンレス
鋼の隙間腐食性を調べた結果を示す。隙間構造は第8図
に示したようにして形成させた。すなわち板状試験片1
8の中央に穴をあけ、これにTiボルト19を通してテ
フロンガスケット20およびTiワッシャ21を介して
Tiナツト22で固定する。これによって、テフロンガ
スケット20と試験片18の間には隙間が形成される。
Test example Figure 7 shows the material of 5US316 stainless steel and plating 1.
The results of examining the crevice corrosion of 5US316 stainless steel plated with Zn in four different sizes are shown. The gap structure was formed as shown in FIG. That is, plate-shaped test piece 1
A hole is made in the center of 8, and a Ti bolt 19 is passed through the hole and fixed with a Ti nut 22 via a Teflon gasket 20 and a Ti washer 21. As a result, a gap is formed between the Teflon gasket 20 and the test piece 18.

試験片はボルト穴をあけたあとめっきした。従って穴の
表面にもめっき層が存在する。試験は3.5χNaCl
の80°Cの水溶液にこの試験構造体を浸漬して行い、
自然電位の変化と試験片の隙間内の腐食状況を観測した
The test pieces were plated after bolt holes were drilled. Therefore, a plating layer is also present on the surface of the hole. The test is 3.5χNaCl
The test structure was immersed in an aqueous solution at 80°C.
Changes in self-potential and corrosion conditions within the gaps between the test pieces were observed.

第7図の結果から、ステンレス鋼の素材の電位は高いが
4短時間で腐食し腐食電位まで低下してくることがわか
る。一方+  Zn被覆したステンレス鋼は、Znが存
在する間は電位も低くZnの犠牲溶解による防食効果が
認められる。Znが溶解して消耗すると電位は上昇して
くる。隙間内のZnは液面との接触面積が狭く液中への
Znの拡散が抑制されZnの消耗速度は遅(なるが1時
間と共に順次なくなり2時間とともに電位も上昇する。
From the results shown in FIG. 7, it can be seen that although the potential of the stainless steel material is high, it corrodes in a short period of time and decreases to the corrosion potential. On the other hand, stainless steel coated with +Zn has a low potential while Zn is present, and an anticorrosion effect due to sacrificial dissolution of Zn is observed. As Zn dissolves and is consumed, the potential increases. Zn in the gap has a narrow contact area with the liquid surface, suppressing the diffusion of Zn into the liquid, and the rate of consumption of Zn is slow (however, it gradually disappears over 1 hour and the potential increases over 2 hours).

しかし、めっき付着量が0.5g/m”以上のものは腐
食しない、これは水酸化亜鉛のpH緩衝作用が有効に働
いてきたためと考えられる。
However, those with a coating weight of 0.5 g/m'' or more do not corrode, and this is thought to be because the pH buffering effect of zinc hydroxide has worked effectively.

第1表は第7図で示した試験を種々の表面処理材につい
て6ケ月間行った後の腐食の状況を示したものである。
Table 1 shows the state of corrosion after conducting the test shown in FIG. 7 on various surface-treated materials for 6 months.

第1表の結果から、水酸化亜鉛になっても、Znの目付
量が0.5g/m”以上あると隙間腐食がおこらないこ
とがわかる。めっき量がこれ以下では、Znの効果が十
分に得られず隙間腐食を防止する時間は短くなる。また
、めっき量が多いほど効果的と考えられる。
From the results in Table 1, it can be seen that even if zinc hydroxide is used, crevice corrosion will not occur if the coating weight of Zn is 0.5 g/m" or more. If the coating weight is less than this, the effect of Zn is insufficient. Therefore, the time required to prevent crevice corrosion is shortened.Also, it is thought that the greater the amount of plating, the more effective it is.

第2表は鋼種を変えて同じ実験をlO日日間ったときの
結果を示す、鋼種が異なる場合にもZnの効果は十分に
認められる。
Table 2 shows the results when the same experiment was carried out for 10 days with different steel types; the effect of Zn is fully recognized even when the steel types are different.

第3表はZn合金被覆したステンレス鋼の隙間腐食性を
第1図と同じ条件で調べたものである。
Table 3 shows the crevice corrosion properties of stainless steel coated with Zn alloy, which were investigated under the same conditions as in FIG.

Zn被覆の効果はZn単独被覆のみならずZn合金被覆
においても認められる。これらの合金被覆においても付
着量が、 0.5g/a”以上であれば、隙間腐食は生
じない。
The effect of Zn coating is observed not only in Zn alone coating but also in Zn alloy coating. Even in these alloy coatings, crevice corrosion will not occur if the coating weight is 0.5 g/a'' or more.

第1表 第2表 り ! タ ノ メ イ1 第3表                  tイ1 く (! 【: イS イl 話 このように、ステンレス鋼の隙間腐食の防止に寸して水
酸化亜鉛は有効に作用している。
1st table 2nd table! Tanomei 1 Table 3 tI1 ku(! [: ISS Il Story] In this way, zinc hydroxide is effective in preventing crevice corrosion in stainless steel.

第9図は、試験片に23g7m” (D Z nめっき
を施しこうえ、そのZnめっき層の表面を水酸化亜鉛化
5理し、Zn+水酸化亜鉛被膜とした場合と、全に酸化
亜鉛被膜とした場合について、第7図の場(と同じ条件
で隙間腐食試験を行った結果を示しこものである。第9
図の結果がら、Znめっきのヒま、Znと水酸化亜鉛の
複層構造、および水酸ヒ亜鉛被膜ではそれぞれ電位の変
化は異なること;(わかる、Znめっきの表面の厚みの
一部を水酸ヒ処理した複層構造では電位の上昇する時間
は速:なるが9その後の電位の変化はZnめっきまま=
殆ど同じである。水酸化亜鉛だけの被覆構造でtZnの
犠牲溶解による防食は見られないが、電γの変化はZn
めっき材のZnの溶解後の電位の変りと同じ挙動を示す
、第4表はこの試験後の腐食(aを示したが、素材以外
のいずれの材料も隙間3食は発生していない。
Figure 9 shows a case in which a 23g7m'' (DZn plating is applied to a test piece and the surface of the Zn plating layer is treated with zinc hydroxide to form a Zn+zinc hydroxide coating, and a case in which a Zn+zinc hydroxide coating is applied to the surface of the Zn plating layer. For the case shown in Fig. 7, the results of crevice corrosion tests conducted under the same conditions as in
From the results shown in the figure, the change in potential is different for the Zn plating layer, the multilayer structure of Zn and zinc hydroxide, and the zinc hydroxide coating; In the multilayer structure treated with acid arsenic, the potential rises quickly; however, the subsequent potential change remains the same as that of Zn plating.
Almost the same. Although no corrosion protection due to sacrificial dissolution of tZn is observed in the coating structure consisting only of zinc hydroxide, the change in electric
Table 4 shows corrosion (a) after this test, which shows the same behavior as the change in potential after dissolving Zn in the plating material, but no crevice corrosion occurred in any material other than the material.

第4表 以上の試験結果は、実際の熱交換器においても本発明の
効果がf!認された。すなわち、先に第2図を参照して
説明した多数の凹凸をもつ伝熱面を重ねて海水通路2と
、被冷却水通路3を形成してなる隙間を無数にもつステ
ンレス鋼のプレート式熱交換器に対して、該伝熱面プレ
ート材料として5US316を使用し、この5US31
5の熱交プレート板にZn被覆を約40g/m”、 1
80g/m”施したもの、さらに水酸化処理やクロメー
ト処理した熱交換器を作製し、60°Cの海水を30日
間循環させ熱交換器としての耐久性試験を行った。試験
後プレートを解体して内面を調査したが5いずれの熱交
換器もプレート相互の接触面やガスケットの当り面とも
に腐食は全く認められなかった。同じ実験を5US31
6の素材のままを伝熱面とするもので行ったところ。
The test results in Table 4 and above show that the effect of the present invention is f! even in actual heat exchangers. It has been certified. In other words, the stainless steel plate type heat exchanger has countless gaps formed by overlapping the heat transfer surfaces having a large number of irregularities to form the seawater passage 2 and the cooled water passage 3, as described above with reference to FIG. For the exchanger, 5US316 is used as the heat transfer face plate material, and this 5US31
Approximately 40 g/m" of Zn coating on the heat exchanger plate of No. 5, 1
A heat exchanger with 80g/m" treatment, hydroxide treatment and chromate treatment was fabricated, and a durability test as a heat exchanger was conducted by circulating 60°C seawater for 30 days. After the test, the plate was dismantled. The inner surfaces of the heat exchangers were investigated, but no corrosion was observed on the contact surfaces between the plates or the contact surfaces of the gaskets.The same experiment was carried out using 5US31
This was done using the same material from No. 6 as the heat transfer surface.

海水路側のプレート相互の接触面やガスケットの当り面
で激しい隙間腐食を起こしていた。
Severe crevice corrosion was occurring on the contact surfaces between the plates on the sea channel side and on the contact surfaces of the gaskets.

以上説明したように5本発明のプレート式熱交換器は海
水に対しても隙間腐蝕を起こさない8本発明に従う伝熱
面の被膜構造としては、電気Znめっき、溶融Znめっ
き、蒸着ZnめっきなどでZnまたはZn合金を被覆す
る。塗布や溶射などによってZnまたはZn合金とその
水酸化物を付着させる、さらに隙間内にZnまたはZn
合金の箔または板状のものを挿入する。といった処決で
該被膜構造を形成することができ、いずれの方法におい
てもステンレス鋼伝熱面の隙間腐食の防止が達成できる
As explained above, 5 The plate heat exchanger of the present invention does not cause crevice corrosion even in seawater. 8 The coating structure of the heat transfer surface according to the present invention includes electrolytic Zn plating, hot-dip Zn plating, vapor-deposited Zn plating, etc. Zn or Zn alloy is coated with Zn or Zn alloy. Zn or Zn alloy and its hydroxide are deposited by coating or thermal spraying, and Zn or Zn is further deposited in the gap.
Insert alloy foil or plate. The coating structure can be formed by such a treatment, and either method can achieve the prevention of crevice corrosion on the stainless steel heat transfer surface.

本発明によれば、中性の水環境はもとより塩素イオンの
捲めて高い塩溶液などを対象とした場合にも隙間構造部
の隙間腐食が防止され、その結果機器の耐久性が著しく
向上することができると共に1本発明によれば、Crや
Moなどの耐食性改善元素を多くした高価な材料を用い
る必要がなく、コストの低減が可能な上1省!W源の観
点からも非常に有益である。また、ステンレス鋼素材そ
のままを伝熱面として熱交換器を構成する場合と比べて
隙間腐蝕を避けるための設計上の制約を受けないことか
ら、構造が複雑で熱交換効率のよい熱交換器を自由に構
成することができることになり、熱交換器の技術分野に
著しい貢献ができ、一般の熱交換器はもとより海水を液
媒とする工業用熱交換分野において特にその効果は甚大
である。
According to the present invention, crevice corrosion in the crevice structure is prevented not only in neutral water environments but also in salt solutions with high chlorine ions, and as a result, the durability of the equipment is significantly improved. In addition, according to the present invention, there is no need to use expensive materials containing a large amount of corrosion resistance improving elements such as Cr and Mo, resulting in cost reduction! It is also very beneficial from the point of view of W source. In addition, compared to constructing a heat exchanger using stainless steel as a heat transfer surface, it is not subject to design constraints to avoid crevice corrosion, so it is possible to create a heat exchanger with a complex structure and high heat exchange efficiency. Since it can be configured freely, it can make a significant contribution to the technical field of heat exchangers, and its effects are particularly great not only in general heat exchangers but also in the field of industrial heat exchange using seawater as a liquid medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のブレニド式熱交換器の例を示す部分略
断面図、第2図はプレート式熱交換器の隙間を説明する
ための液通路の略断面図、第3図〜第6図はいずれも本
発明に従う熱交換器の隙間部の被膜構造例を示した拡大
断面図、第7図は隙間腐蝕試験における自然電位の経時
変化を示す図。 第8図は隙間試験における隙間形成状態を示す側面図、
第9図は他の隙間試験における自然電位の経時変化を示
す図である。 l・・伝熱面を形成するプレート。 2・・海水通路、  3・・被冷却水通路。 4・・パンキン部材(ガスケット)。 11a、 llb  ・・ステンレス鋼の伝熱面。 12a、12b・・該伝熱面の接液側の表面。 13・・伝熱面の液側隙間。 14a、 14b・・ステンレス鋼製伝熱面に形成した
ZnまたはZn合金のめっき層。 16a、16b・−クロメート被膜。 17a、17b・・水酸化亜鉛被膜。
FIG. 1 is a partial schematic cross-sectional view showing an example of the blended heat exchanger of the present invention, FIG. 2 is a schematic cross-sectional view of a liquid passage for explaining the gap in the plate heat exchanger, and FIGS. Each figure is an enlarged cross-sectional view showing an example of a coating structure in a gap portion of a heat exchanger according to the present invention, and FIG. 7 is a diagram showing a change in self-potential over time in a gap corrosion test. Figure 8 is a side view showing the state of gap formation in the gap test;
FIG. 9 is a diagram showing the change in natural potential over time in another gap test. l...Plate that forms a heat transfer surface. 2. Seawater passage, 3. Cooled water passage. 4. Punkin member (gasket). 11a, llb...Stainless steel heat transfer surface. 12a, 12b: Surface of the heat transfer surface on the liquid contact side. 13...Liquid side gap on heat transfer surface. 14a, 14b... Zn or Zn alloy plating layer formed on a stainless steel heat transfer surface. 16a, 16b - Chromate coating. 17a, 17b...Zinc hydroxide coating.

Claims (5)

【特許請求の範囲】[Claims] (1)伝熱面をステンレス鋼で形成し、該伝熱面の少な
くとも一方の面を液媒体の接液面とするプレート式熱交
換器において、該ステンレス鋼製伝熱面の接液側表面に
ZnまたはZn合金の被膜を密着させてなるステンレス
鋼製プレート式熱交換器。
(1) In a plate heat exchanger in which the heat transfer surface is formed of stainless steel and at least one surface of the heat transfer surface is a surface in contact with a liquid medium, the liquid contact side surface of the stainless steel heat transfer surface. A stainless steel plate heat exchanger made of a Zn or Zn alloy coating.
(2)伝熱面をステンレス鋼で形成し、該伝熱面の少な
くとも一方の面を液媒体の接液面とするプレート式熱交
換器において、該ステンレス鋼製伝熱面の接液側表面に
ZnまたはZn合金の被膜を密着させ、さらにこの被膜
の表面にクロメート被膜を被着させてなるステンレス鋼
製プレート式熱交換器。
(2) In a plate heat exchanger in which the heat transfer surface is formed of stainless steel and at least one surface of the heat transfer surface is a surface in contact with the liquid medium, the liquid contact side surface of the stainless steel heat transfer surface. A plate heat exchanger made of stainless steel, in which a Zn or Zn alloy coating is adhered to the base plate, and a chromate coating is further applied to the surface of this coating.
(3)伝熱面をステンレス鋼で形成し、該伝熱面の少な
くとも一方の面を液媒体の接液面とするプレート式熱交
換器において、該ステンレス鋼製伝熱面の接液側表面に
ZnまたはZn合金の被膜を密着させ、さらにこの被膜
の表面に水酸化亜鉛被膜を被着させてなるステンレス鋼
製プレート式熱交換器。
(3) In a plate heat exchanger in which the heat transfer surface is formed of stainless steel and at least one surface of the heat transfer surface is a surface in contact with the liquid medium, the liquid contact side surface of the stainless steel heat transfer surface. A plate heat exchanger made of stainless steel, in which a Zn or Zn alloy coating is adhered to the surface of the stainless steel plate, and a zinc hydroxide coating is further applied to the surface of this coating.
(4)伝熱面をステンレス鋼で形成し、該伝熱面の少な
くとも一方の面を液媒体の接液面とするプレート式熱交
換器において、該ステンレス鋼製伝熱面の接液側表面に
水酸化亜鉛被膜を被着させてなるステンレス鋼プレート
式熱交換器。
(4) In a plate heat exchanger in which the heat transfer surface is formed of stainless steel and at least one surface of the heat transfer surface is a surface in contact with the liquid medium, the liquid contact side surface of the stainless steel heat transfer surface. A stainless steel plate heat exchanger made of a zinc hydroxide coating.
(5)伝熱面の少なくとも一方の面に接して通液する液
媒体が海水である請求項1、2、3または4項に記載の
海水用ステンレス鋼製プレート式熱交換器。
(5) The stainless steel plate heat exchanger for seawater according to claim 1, 2, 3, or 4, wherein the liquid medium flowing in contact with at least one of the heat transfer surfaces is seawater.
JP23626888A 1988-09-22 1988-09-22 Plate-type heat exchanger Pending JPH0285697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23626888A JPH0285697A (en) 1988-09-22 1988-09-22 Plate-type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23626888A JPH0285697A (en) 1988-09-22 1988-09-22 Plate-type heat exchanger

Publications (1)

Publication Number Publication Date
JPH0285697A true JPH0285697A (en) 1990-03-27

Family

ID=16998265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23626888A Pending JPH0285697A (en) 1988-09-22 1988-09-22 Plate-type heat exchanger

Country Status (1)

Country Link
JP (1) JPH0285697A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720340A (en) * 1995-07-20 1998-02-24 Denso Corporation Laminated type heat exchanger
JP2008019819A (en) * 2006-07-14 2008-01-31 Nikki Co Ltd Vaporizer for gas fuel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5720340A (en) * 1995-07-20 1998-02-24 Denso Corporation Laminated type heat exchanger
JP2008019819A (en) * 2006-07-14 2008-01-31 Nikki Co Ltd Vaporizer for gas fuel engine

Similar Documents

Publication Publication Date Title
Popoola et al. Corrosion resistance through the application of anti-corrosion coatings
US3053511A (en) Clad alloy metal for corrosion resistance and heat exchanger made therefrom
JPS61184395A (en) Corrosion preventive process for aluminum heat exchanger
Shokri et al. Corrosion in seawater desalination industry: A critical analysis of impacts and mitigation strategies
US6325138B1 (en) Article exhibiting improved resistance to galvanic corrosion
JPH0285697A (en) Plate-type heat exchanger
Tait Corrosion prevention and control of chemical processing equipment
JPS5815554B2 (en) Plated steel materials for cationic electrodeposition coating
KR20000052682A (en) Advanced galvanic corrosion protection
JPS6259342A (en) Solar heat collecting panel
JP2008190771A (en) Plate fin having superior corrosion resistance
CN102337049A (en) Corrosion-resistant and anti-scaling paint used for aqueous medium heat exchange equipment and preparation method of corrosion-resistant and anti-scaling paint.
Puckorius Water corrosion mechanisms
SU1262259A1 (en) Plate heat-exchanging apparatus
CN206818053U (en) A kind of heat exchanger tube of high temperature resistant acid mist corrosion for power-plant flue gas heat exchange
JPH0285384A (en) Method for preventing crevice corrosion of stainless steel
Evans et al. Corrosion and its Prevention at Bimetallic Contacts
Walsh et al. Corrosion and protection of metals: II. Types of corrosion and protection methods
Fang et al. Corrosion Characteristics of General Materials for Aluminum Alloy Vessel
Javaherdashti et al. Technical Mitigation of Corrosion: Corrosion Management
JPH0285643A (en) Hot water supply apparatus
LaQue Qualifying aluminum and stainless alloys for OTEC heat exchangers
JPS6311696A (en) Composite plated steel sheet having high corrosion resistance
JPH0433878B2 (en)
Vicente Moraes et al. Predicting the Effectiveness of Mg-Rich Primers in Mitigating Galvanic Corrosion of Al Alloys Coupled with SS316 Fasteners Using Finite Element Modeling