JPH0285690A - Temperature control for fluidized-bed furnace - Google Patents

Temperature control for fluidized-bed furnace

Info

Publication number
JPH0285690A
JPH0285690A JP23690088A JP23690088A JPH0285690A JP H0285690 A JPH0285690 A JP H0285690A JP 23690088 A JP23690088 A JP 23690088A JP 23690088 A JP23690088 A JP 23690088A JP H0285690 A JPH0285690 A JP H0285690A
Authority
JP
Japan
Prior art keywords
temperature
fluidized bed
heating chamber
heat
set temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23690088A
Other languages
Japanese (ja)
Inventor
Kenji Kawate
賢治 川手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23690088A priority Critical patent/JPH0285690A/en
Publication of JPH0285690A publication Critical patent/JPH0285690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To contrive higher productivity through a shortening of a treating time by a method wherein an upper set temperature for a heating chamber is set to be lower in the process from a step of heating a fluidized bed to a step of stabilizing the temperature of the fluidized bed. CONSTITUTION:In a heating step 22, heat is supplied from a heating chamber 3 to a fluidized bed 7', whereby the bed 7' is heated, and the temperature of a material being heated 14 is also raised accordingly. When the temperature of the fluidized bed 7 approaches a set temperature 13, the temperature of the heating chamber 3 is changed to a lower value. Thus, the quantity of heat supplied from the heating chamber 3 to the fluidized bed 7 is decreased. Therefore, the rise of the temperature of the fluidized bed 7' beyond a set temperature TB after the bed temperature reaches the set temperature is small, so that the time necessary for the over-raised temperature of the fluidized bed 7' to return to the set temperature TB is short. As a result of this effect, the temperature of the fluidized bed 7' is stabilized to a set temperature in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は内部に流動層を備えるレトルトに加熱室を付
設している流動層炉において、上記流動層内に低温の被
熱処理物を装入してからその被熱処理物の温度を所定の
温度にまで到達させる場合における流動層炉の温度制御
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a fluidized bed furnace in which a heating chamber is attached to a retort with a fluidized bed inside, and a low-temperature heat-treated material is charged into the fluidized bed. The present invention relates to a temperature control method for a fluidized bed furnace in which the temperature of the heat-treated material is then brought to a predetermined temperature.

〔従来の技術〕[Conventional technology]

第3図に示される如く、加熱室の上限設定温度TA“を
流動層の設定温度TB’ より高く設定する。
As shown in FIG. 3, the upper limit set temperature TA" of the heating chamber is set higher than the set temperature TB' of the fluidized bed.

上記流動層に被熱処理物を装入(口”)後は、上記加熱
室から上記流動層への熱の供給により流動層を昇温させ
る。流動層が設定温度に達した(へ゛)後は流動層の温
度T2’ によって加熱室の温度TI’を制御する。そ
の結果、(す゛)に示されるように流動層の温度T2°
 は次第に設定温度TB’ に近づき、その温度TB”
 で安定化(例えば±3℃)する。
After the material to be heat treated is charged into the fluidized bed, the temperature of the fluidized bed is raised by supplying heat from the heating chamber to the fluidized bed.After the fluidized bed reaches the set temperature, The temperature TI' of the heating chamber is controlled by the temperature T2' of the fluidized bed.As a result, the temperature T2° of the fluidized bed is controlled as shown in (su).
gradually approaches the set temperature TB', and the temperature TB''
Stabilize at (eg ±3°C).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の流動層炉の温度制御方法では上記温度TA’
 が温度TB” に比べ比較的高く設定される。
In this conventional temperature control method for a fluidized bed furnace, the temperature TA'
is set relatively high compared to the temperature TB''.

この為、(へ゛)の時点で流動層の温度T2°が設定温
度TB’ に達した後、温度T2’ は(ト′)の如く
太き(過上昇する。するとその温度T2’  が(チ゛
)の如く設定温度TB’ に戻るのに長時間を要する。
Therefore, after the temperature T2° of the fluidized bed reaches the set temperature TB' at the point in time (B), the temperature T2' increases (excessively rises) as shown in (T').Then, the temperature T2' becomes (CH). ), it takes a long time to return to the set temperature TB'.

その結果、そのような繰り返しを経て(す゛)の時点に
至るまでの時間(定温化工程23° の時間)が長くか
かる問題点がある。この工程23°の時間を短かくする
為には上記温度TA’ を比較的低く設定することも考
えられるが、そのようにすると加熱室から流動層への供
給熱量が少なくなって、(口′)から(へ°)までの時
間(昇温工程22゛ の時間)が長くなる問題点がある
。これらはいずれも被熱処理物を昇温し定温化させるま
での工程21” を長時間化し、生産性を損なう問題点
がある。
As a result, there is a problem in that it takes a long time (the time for the constant temperature step 23°) to reach the point (S) through such repetition. In order to shorten the time of this step 23°, it may be possible to set the temperature TA' relatively low, but in this case, the amount of heat supplied from the heating chamber to the fluidized bed will decrease ( ) to (°) (temperature raising step 22°) is problematic. All of these methods have the problem of prolonging the step 21'' from raising the temperature of the object to be heat-treated to constant temperature, which impairs productivity.

本発明は以上のような点に鑑みてなされたもので、その
目的とするところは、昇温工程も定温化工程も共に短時
間化することができて、処理時間の短縮による生産性の
向上を図ることができるようにした流動層炉の温度制御
方法を提供することである。
The present invention has been made in view of the above points, and its purpose is to shorten both the temperature raising process and the temperature constant process, thereby improving productivity by shortening the processing time. It is an object of the present invention to provide a temperature control method for a fluidized bed furnace that can achieve the following.

〔課題を解決する為の手段〕[Means to solve problems]

上記目的を達成する為に、本願発明は前記請求の範囲記
載の通りの手段を講じたものであって、その作用は次の
通りである。
In order to achieve the above object, the present invention takes the measures as described in the claims above, and its effects are as follows.

〔作用〕[Effect]

昇温工程において、加熱室から流動層に熱が供給されて
流動層が昇温し、被熱処理物の温度もそれに伴なって上
昇する。流動層の温度が設定温度に近づくと加熱室の温
度が低く変更される。従って、加熱室から流動層に供給
される熱量が減少する。この為、流動層が設定温度に達
した後、流動層の設定温度を越えての過上昇値は小さく
、その結果、過上昇した流動層の温度が設定温度に戻る
に要する時間は短い、このような作用の結果、流動層の
温度は短時間で設定温度に安定する。
In the temperature raising step, heat is supplied from the heating chamber to the fluidized bed to raise the temperature of the fluidized bed, and the temperature of the object to be heat treated also rises accordingly. When the temperature of the fluidized bed approaches the set temperature, the temperature of the heating chamber is changed to a lower temperature. Therefore, the amount of heat supplied from the heating chamber to the fluidized bed is reduced. For this reason, after the fluidized bed reaches the set temperature, the excessive rise above the set temperature of the fluidized bed is small, and as a result, the time required for the excessively raised temperature of the fluidized bed to return to the set temperature is short. As a result of these actions, the temperature of the fluidized bed stabilizes at the set temperature in a short time.

〔実施例〕〔Example〕

以下本願の実施例を示す図面について説明する。 The drawings showing the embodiments of the present application will be described below.

第1図において、■はバンチ式の流動層炉を示す。In FIG. 1, ■ indicates a bunch-type fluidized bed furnace.

2は流動層炉における炉本体で、内部には加熱室3を備
える。4は炉本体2に取付けた加熱源として例示するバ
ーナ、5は加熱室3に備えた加熱室温センサで、例えば
熱電対が用いられる6次に6は流動層炉におけるレトル
トで、その内部には流動層室7を存し、更にその下には
分散板9を隔てて圧力室8を有する。上記流動層室7に
は耐熱性の粉粒体が貯えられている。10は圧力室8に
連通ずる流動化ガスの供給口である。11は開閉自在の
蓋、12は流動層室7に備えさせた流動層温センサで、
例えば熱電対が用いられる。13は昇降杆で、図示外の
昇i’装置によって昇降するようにしである。14は被
熱処理物を示し、例えば昇降杆13に吊られたバスケッ
ト内に入れられている。
Reference numeral 2 denotes a furnace body in a fluidized bed furnace, and a heating chamber 3 is provided inside. 4 is a burner attached to the furnace body 2 as an example of a heat source; 5 is a heating room temperature sensor provided in the heating chamber 3; for example, a thermocouple is used; 6 is a retort in a fluidized bed furnace; A fluidized bed chamber 7 is provided, and a pressure chamber 8 is further provided below the fluidized bed chamber 7 with a dispersion plate 9 in between. Heat-resistant granular material is stored in the fluidized bed chamber 7. 10 is a fluidizing gas supply port communicating with the pressure chamber 8. 11 is a lid that can be opened and closed; 12 is a fluidized bed temperature sensor provided in the fluidized bed chamber 7;
For example, a thermocouple is used. Reference numeral 13 denotes a lifting rod, which is raised and lowered by means of a lifting i' device (not shown). Reference numeral 14 indicates an object to be heat-treated, which is placed in a basket suspended from the lifting rod 13, for example.

上記構成のものにあっては、バーナ4によって燃料が加
熱室3内で燃焼され、その加熱室3の温度が高温化する
。その熱はレトルト6に伝えられ、流動層室7の粉粒体
が高温化する。また供給口10から圧力室8に供給され
た流動化ガスは分散板9を通して流動層室7に吹き出し
、そのガスによって流動層室7内の上記粉粒体が流動化
され、いわゆる流動層が形成される。この状態において
、被熱処理物14が流動層7゛内に入れられると、それ
は高温化しかつ流動状態となっている粉粒体と接触し、
その粉粒体から熱を受けて自体は昇温する。
In the above-described structure, fuel is burned in the heating chamber 3 by the burner 4, and the temperature of the heating chamber 3 increases. The heat is transferred to the retort 6, and the powder and granular material in the fluidized bed chamber 7 becomes hot. Further, the fluidizing gas supplied to the pressure chamber 8 from the supply port 10 is blown into the fluidized bed chamber 7 through the dispersion plate 9, and the above-mentioned granular material in the fluidized bed chamber 7 is fluidized by the gas, forming a so-called fluidized bed. be done. In this state, when the heat-treated material 14 is put into the fluidized bed 7, it comes into contact with the granular material which is heated to a high temperature and is in a fluidized state.
The powder itself receives heat and its temperature rises.

次に上記のような動作の場合における温度制御及び各部
の温度の変化を第2図に基づき説明する。
Next, temperature control and changes in temperature of each part in the case of the above operation will be explained based on FIG. 2.

センサ12,5の検出信号は図示外の制御装置に与えら
れ、その制御装置によって上記バーナ4の動作が制御さ
れる。その制御は、センサ12による流動層7°の温度
の検出値が流動層7°の設定温度TB(例えば780℃
)よりも低いときにはバーナ4を作動させ(又は出力を
上昇させ)、高いときにはバーナ4を停止させる(又は
出力を低下させる)制御、即ち、流動層7°の温度を設
定温度に保持させる制御である。それに加え、センサ5
による加熱室3の温度の検出値が加熱室の上限設定温度
TA(例えば1050℃)を越えるとバーナ4の作動を
停止させる制御、即ち加熱室3の温度の上限を抑える制
御である。尚上記上限設定温度TAは上記流動層の設定
温度TBよりも高く設定される。
Detection signals from the sensors 12 and 5 are given to a control device (not shown), and the operation of the burner 4 is controlled by the control device. The control is such that the detected value of the temperature of the fluidized bed 7° by the sensor 12 is the set temperature TB of the fluidized bed 7° (for example, 780°C).
), the burner 4 is activated (or the output is increased), and when the temperature is higher, the burner 4 is stopped (or the output is decreased), that is, the temperature of the fluidized bed 7° is maintained at the set temperature. be. In addition, sensor 5
This control stops the operation of the burner 4 when the detected value of the temperature of the heating chamber 3 exceeds the upper limit setting temperature TA (for example, 1050° C.) of the heating chamber, that is, the control suppresses the upper limit of the temperature of the heating chamber 3. Note that the upper limit set temperature TA is set higher than the set temperature TB of the fluidized bed.

この制御形態のものにおいて、被熱処理物を流動層内に
入れる前においては加熱室3の温度T1及び流動層の温
度T2は夫々第2図において(イ)に示されるような状
態となっている。即ち温度T2は設定温度TBで安定(
例えば±3℃)しており、又温度TIは、流動化ガスの
流通によって流動層7′から持ち去られる熱量を流動層
に補給するに足る分だけ上記設定温度TBよりも高い温
度となって安定している。
In this control mode, before the material to be heat treated is placed in the fluidized bed, the temperature T1 of the heating chamber 3 and the temperature T2 of the fluidized bed are in the state shown in (a) in FIG. 2, respectively. . In other words, the temperature T2 is stable at the set temperature TB (
For example, ±3°C), and the temperature TI is higher than the set temperature TB and stable by an amount sufficient to replenish the fluidized bed with the amount of heat removed from the fluidized bed 7' by the flow of the fluidizing gas. are doing.

この状態において(ロ)の時点で低温の被熱処理物14
が流動層7°内に装入される。するとその被熱処理物は
流動層から熱を得て、その温度T3は図示(ハ)の如く
上昇する。一方流動層はその熱が被熱処理物に与えられ
ることにより、その温度T2は図示の如く低下する。又
加熱室3も上記低温化した流動層に熱を奪われ、その温
度TIは図示の如く低下する。この状態においては、セ
ンサ12,5で検知される温度が低い為、当然のことな
がらバーナ4は動作状態となる。上記バーナ4の動作に
より、加熱室3の温度T1はやがて(ニ)の如く上昇す
る。尚その温度↑lは、上述の如く上限設定温度TAに
よってその上限が抑えられる。上記のように加熱室の温
度が上昇すると、流動層の温度T2及び被熱処理物の温
度T3も同様に上昇する。
In this state, the object to be heat treated 14 which is at a low temperature at the time of (b)
is charged into the fluidized bed at 7°. Then, the object to be heat-treated receives heat from the fluidized bed, and its temperature T3 rises as shown in the figure (c). On the other hand, in the fluidized bed, as the heat is applied to the object to be heat treated, the temperature T2 thereof decreases as shown in the figure. Heat is also taken from the heating chamber 3 by the fluidized bed whose temperature has been reduced, and its temperature TI decreases as shown in the figure. In this state, since the temperature detected by the sensors 12 and 5 is low, the burner 4 is naturally in the operating state. Due to the operation of the burner 4, the temperature T1 of the heating chamber 3 eventually rises as shown in (d). Note that the upper limit of the temperature ↑l is suppressed by the upper limit set temperature TA as described above. When the temperature of the heating chamber increases as described above, the temperature T2 of the fluidized bed and the temperature T3 of the object to be heat treated also increase.

上記のように温度T2が上昇する過程において、図示(
ホ)の如(それが設定温度TBに比べて予め定められた
所定の温度ΔLだけ低い温度TOまで到達すると、加熱
室の上限設定温度は、上記設定温度TBよりも高い範囲
内で、温度TAからそれよりも低い温度TC(例えば9
50℃)に変更される。要するに、流動層の温度が上昇
して、上記設定温度に近づき、上記設定温度よりも予め
定められた温度だけ低い温度に到達したときは、上記加
熱室の上限設定温度を、上記流動層の設定温度よりも高
い範囲内で低く変更する。この変更は上記制御装置によ
り自動的に行うが、手iで行っても良い。上記温度Δt
は、流動層炉lの形状、規模によって夫々異なる加熱室
から流動層への熱伝達の時定数を考慮して実験的に定め
るのが良いが、−例としては3〜10℃である。上記上
限設定温度の変更の後は、加熱室の温度は、その温度T
Cによって上限が抑えられた状態で制御される。
As shown in the figure (
(e) When it reaches the temperature TO which is lower than the set temperature TB by a predetermined temperature ΔL, the upper limit set temperature of the heating chamber is set at the temperature TA within a range higher than the set temperature TB. to a lower temperature TC (e.g. 9
50°C). In short, when the temperature of the fluidized bed increases, approaches the set temperature, and reaches a temperature lower than the set temperature by a predetermined temperature, the upper limit set temperature of the heating chamber is changed to the set temperature of the fluidized bed. Change lower within the range higher than the temperature. This change is automatically made by the control device, but may also be made manually. Above temperature Δt
is preferably determined experimentally, taking into consideration the time constant of heat transfer from the heating chamber to the fluidized bed, which varies depending on the shape and scale of the fluidized bed furnace l, and is, for example, 3 to 10°C. After changing the upper limit set temperature above, the temperature of the heating chamber will be the same temperature T.
The upper limit is controlled by C.

上記流動層の温度T2が温度T8に到達した後も流動層
は加熱室から熱の供給を受ける為、温度T2は更に上昇
し、やがて(へ)の如く設定温度TBに達する。温度T
2は設定温度THに達した後、加熱室3からの熱り供給
によって尚も上昇する。しかし加熱室の温度TIは、上
記の如くその上限設定温度が低く変更された結果、低く
なっている為、温度T2の過上昇値は(ト)の如く小さ
い。よって温度T2は(チ)の如く短時間で設定温度T
Bに戻る。温度T2はこのような過上昇、戻りの繰り返
しを経て、やがて(す)の如く設定温度TBに安定(例
えば±3℃)する。
Even after the temperature T2 of the fluidized bed reaches the temperature T8, the fluidized bed receives heat from the heating chamber, so the temperature T2 further increases and eventually reaches the set temperature TB as shown in (v). Temperature T
After the temperature 2 reaches the set temperature TH, it continues to rise due to the supply of heat from the heating chamber 3. However, since the temperature TI of the heating chamber has become low as a result of the upper limit set temperature being changed to a lower value as described above, the excessive rise value of the temperature T2 is small as shown in (g). Therefore, the temperature T2 becomes the set temperature T in a short time as shown in (H).
Return to B. After the temperature T2 repeats such excessive rise and return, it eventually stabilizes at the set temperature TB (for example, ±3° C.) as shown in (S).

上記のように温度T2が安定する結果、被熱処理物の温
度も同温で安定する。この状態が達成されると、被熱処
理物には次の処理工程(被熱処理物の#1類により異な
るが、例えば均熱工程或いは冷却工程)が施される。
As a result of the temperature T2 being stabilized as described above, the temperature of the object to be heat treated is also stabilized at the same temperature. When this state is achieved, the object to be heat-treated is subjected to the next treatment step (for example, a soaking step or a cooling step, although it differs depending on the #1 type of object to be heat-treated).

本件明細書中においては、低温の被熱処理物を流動層に
装入してから流動層の温度T2を設定温度TBに安定化
させるまでの工程、即ち図において符号21で示される
工程を昇温定温化工程とも呼ぶ。
In this specification, the process from charging the low-temperature heat-treated material into the fluidized bed to stabilizing the temperature T2 of the fluidized bed to the set temperature TB, that is, the process indicated by the reference numeral 21 in the figure, is the temperature raising process. Also called temperature constant process.

又被熱処理物が流動層に装入されてから、流動層の温度
T2を設定温度TBに昇温させるまでの、符号22で示
される工程を昇温工程とも呼ぶ。そしてその後流動層の
温度T2を設定温度TBにおいて定温化させるまでの、
符号23で示され−る工程を定温化工程と呼ぶ。
Further, the process indicated by the reference numeral 22 from when the material to be heat treated is charged into the fluidized bed until the temperature T2 of the fluidized bed is raised to the set temperature TB is also referred to as a temperature raising process. Then, until the temperature T2 of the fluidized bed is constant at the set temperature TB,
The process indicated by the reference numeral 23 is called a constant temperature process.

前記のような温度条件の場合、工程21は例えば28分
となり (工程22は20.5分、工程23は7.5 
分)、前記従来の工程21゛  が50分(工程22″
 が20分、工程23′が30分)に比べて1.8倍の
生産性の向上が達成される。
In the case of the above temperature conditions, step 21 takes, for example, 28 minutes (step 22 takes 20.5 minutes, step 23 takes 7.5 minutes).
), the conventional step 21'' takes 50 minutes (step 22''
(20 minutes for step 23' and 30 minutes for step 23'), an improvement of 1.8 times in productivity is achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にあっては、低温の被熱処理物14
を流動層7゛内に装入してそれを昇温させる場合、被熱
処理物14は流動状態の粉粒体と接触して熱を受けるか
ら、その被熱処理物14を極めて迅速に昇温させられる
効果があるは勿論のこと、その場合、高温の加熱室3が
ら上記流動層7゛に熱をどんどん供給して流動層7°の
温度を高めていくことができるから、極めて短時間で設
定温度まで到達させられる効果がある。
As described above, in the present invention, the low-temperature heat-treated object 14
When the heat-treated material 14 is charged into the fluidized bed 7 and raised in temperature, the heat-treated material 14 comes into contact with the fluidized powder and granules and receives heat, so the temperature of the heat-treated material 14 is raised extremely quickly. Of course, this has the effect of increasing the temperature of the fluidized bed 7° by rapidly supplying heat from the high temperature heating chamber 3 to the fluidized bed 7°, so it can be set in an extremely short time. It has the effect of reaching the temperature.

しかも流動層の昇温工程から定温化工程に至る過程で加
熱室の上限温度を低く変更するから、士記のようにして
設定温度にまで到達した後は、加熱室3から流動層7゛
に供給される熱は少なくなって流動層7°の温度の設定
温度を越えての過上昇値は小さく、その結果、その過上
昇した温度が設定温度にまで戻るのに要する時間が短く
なる特長がある。このことは、短時間でもって被熱処理
物14の温度を設定温度に安定させられる効果がある。
Moreover, the upper limit temperature of the heating chamber is changed to a lower value in the process from the temperature raising process to the constant temperature process of the fluidized bed, so after reaching the set temperature as described above, the heating chamber 3 is changed to the fluidized bed 7. The heat supplied is reduced, and the excessive rise in temperature of the fluidized bed at 7° above the set temperature is small, and as a result, the time required for the excessively raised temperature to return to the set temperature is shortened. be. This has the effect of stabilizing the temperature of the object to be heat treated 14 at the set temperature in a short time.

このように本発明は、低温の被熱処理物を短時間で昇温
させられると共に、その昇温後は短時間で設定温度に安
定させることができ、即ち低温の被熱処理物を所定の安
定した温度にまで至らしめる処理時間を前記従来技術に
比べて著しく短縮できて、生産性の向上を図り得る有用
性がある。
In this way, the present invention can raise the temperature of a low-temperature object to be heat-treated in a short time, and after raising the temperature, can stabilize the temperature at a set temperature in a short time. The processing time required to reach the temperature can be significantly shortened compared to the above-mentioned conventional technology, which is useful in improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は流動層炉の
縦断面図、第2図は加熱室、流動層及び被熱処理物の温
度変化を示すグラフである。第3図は従来例を示す第2
図と均等の図。 3・・・加熱室、6・・・レトルト、7”・・・流動層
、14・・・被熱処理物。 第 1 ■ 第2図 第3図
The drawings show an embodiment of the present application, and FIG. 1 is a longitudinal sectional view of a fluidized bed furnace, and FIG. 2 is a graph showing temperature changes in a heating chamber, a fluidized bed, and a material to be heat treated. Figure 3 is a second diagram showing a conventional example.
Figure and equivalent figure. 3... Heating chamber, 6... Retort, 7''... Fluidized bed, 14... Material to be heat treated. 1 ■ Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  内部に流動層を備えるレトルトには加熱室を付設し、
上記加熱室の上限設定温度は上記流動層の設定温度より
も高く設定して、上記流動層に被熱処理物を装入後は、
上記加熱室から上記流動層への熱の供給によって流動層
を昇温させ、流動層が設定温度に達した後は、流動層の
温度によって加熱室の温度を制御する流動層炉の温度制
御方法において、上記加熱室の上限設定温度を、上記流
動層を昇温させる工程からその後の定温化させる工程に
至る過程で低く変更することを特徴とする流動層炉の温
度制御方法。
A heating chamber is attached to the retort, which has a fluidized bed inside.
The upper limit temperature setting of the heating chamber is set higher than the setting temperature of the fluidized bed, and after charging the material to be heat treated into the fluidized bed,
A temperature control method for a fluidized bed furnace, in which the temperature of the fluidized bed is raised by supplying heat from the heating chamber to the fluidized bed, and after the fluidized bed reaches a set temperature, the temperature of the heating chamber is controlled by the temperature of the fluidized bed. A temperature control method for a fluidized bed furnace, characterized in that the upper limit set temperature of the heating chamber is changed to a lower value in the process from the step of raising the temperature of the fluidized bed to the subsequent step of constant temperature.
JP23690088A 1988-09-21 1988-09-21 Temperature control for fluidized-bed furnace Pending JPH0285690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23690088A JPH0285690A (en) 1988-09-21 1988-09-21 Temperature control for fluidized-bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23690088A JPH0285690A (en) 1988-09-21 1988-09-21 Temperature control for fluidized-bed furnace

Publications (1)

Publication Number Publication Date
JPH0285690A true JPH0285690A (en) 1990-03-27

Family

ID=17007423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23690088A Pending JPH0285690A (en) 1988-09-21 1988-09-21 Temperature control for fluidized-bed furnace

Country Status (1)

Country Link
JP (1) JPH0285690A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58678U (en) * 1981-06-24 1983-01-05 松下電器産業株式会社 phase control circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58678U (en) * 1981-06-24 1983-01-05 松下電器産業株式会社 phase control circuit

Similar Documents

Publication Publication Date Title
US6940047B2 (en) Heat treatment apparatus with temperature control system
JPH0724257B2 (en) Quenching furnace for semiconductor processing
JP4426024B2 (en) Temperature calibration method for heat treatment equipment
JP2003519071A (en) Hybrid method for firing ceramics
US6285012B1 (en) Method and apparatus for thermal limiting of the temperature of a glass-ceramic cooktop
JP3688264B2 (en) Heat treatment method and heat treatment apparatus
JPH0285690A (en) Temperature control for fluidized-bed furnace
JPH055588A (en) Temperature controller for lamp-annealing furnace
JP3628905B2 (en) Heat treatment equipment
JP2548095B2 (en) Heat treatment method for metallic materials using fluidized bed furnace
JPS6122008B2 (en)
JPS6016293A (en) Method of operating fluidized bed furnace
JP3074823B2 (en) Heat treatment equipment for semiconductor wafers
JPH01212889A (en) Fluidized bed furnace
SU467217A1 (en) Method for automatic control of operation of multistage rotary kiln heat exchanger
JP2001027402A (en) Method for controlling bed temperature of pressurized fluidized bed boiler
JP2004006447A (en) Heat treatment apparatus and temperature controlling method used for it
JPS5881925A (en) Heat-treatment of metal by fluidized-bed furnace
JPH0544593B2 (en)
JPS62250103A (en) Method for operating degreasing and sintering furnace
SU446536A1 (en) Method for automatic control of thermal conditions of a tubular pyrolysis furnace
JPS62247020A (en) Heat treatment of metal by fluidized bed furnace
JPS60221534A (en) Heating control method of box type annealing furnace
JPH05160056A (en) Thermal treatment oven
SU742689A1 (en) Method of automatic regulation of heat condition in slot-type furnace