JPH0285224A - Production of dimethyl ether - Google Patents

Production of dimethyl ether

Info

Publication number
JPH0285224A
JPH0285224A JP63274425A JP27442588A JPH0285224A JP H0285224 A JPH0285224 A JP H0285224A JP 63274425 A JP63274425 A JP 63274425A JP 27442588 A JP27442588 A JP 27442588A JP H0285224 A JPH0285224 A JP H0285224A
Authority
JP
Japan
Prior art keywords
catalyst
dimethyl ether
alumina
production
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63274425A
Other languages
Japanese (ja)
Inventor
Masasane Inomata
猪俣 将実
Shinji Tokuno
得能 伸司
Akira Itoi
井樋 明
Atsuro Yamauchi
淳良 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP63274425A priority Critical patent/JPH0285224A/en
Publication of JPH0285224A publication Critical patent/JPH0285224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prevent deposition of carbon for a long period of time, enhance catalyst activity and depress by-producing of impurities by using alumina catalyst containing oxide of group IIIa metal in production of the subject compound by dehydrating methyl alcohol in vapor phase. CONSTITUTION:In a production of dimethyl ether useful as substitute of fluorocarbon (aerosol propellant) having problem of environmental pollution by dehydrating methyl alcohol in vapor phase, oxide of Sc, Y or La-series in group IIIa elements or Ac-series elements, etc., preferably at least one metal selected from Y, La, Ce, Nd, Sm and Eu is contained in an alumina catalyst in an amount of 0.005-80wt.%, preferably 0.5-20wt.% of total weight of the catalyst. Deposition of carbon is completely prevented for a long period of time by using said catalyst and also catalyst activity at low temperature is enhanced, further, by-production of hydrocarbon such as methane inducing loss of the aimed compound in distillation is steeply reduced, thus the aimed compound is obtained in economically and industrially advantageously.

Description

【発明の詳細な説明】 本発明はジメチルエーテルの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing dimethyl ether.

より詳しくは、メチルアルコールを特定の金属酸化物を
含有するアルミナ触媒を用い、気相下、脱水することに
よるジメチルエーテルの製造方法に関するものである。
More specifically, the present invention relates to a method for producing dimethyl ether by dehydrating methyl alcohol in a gas phase using an alumina catalyst containing a specific metal oxide.

ジメチルエーテルは、エアゾール噴霧剤として近年環境
汚染が間Uとなってきているフロンの代替品として、需
要が拡大しつつある。
Dimethyl ether is in increasing demand as an aerosol spray agent as a substitute for fluorocarbons, which have become increasingly polluting the environment in recent years.

〔従来の技術] メチルアルコールを気相下、脱水し、ジメチルエーテル
を製造する方法として、■燐酸アルミニウム塩を用い、
375°C115a tIllで脱水を行わせる方法(
CAN 334.121)が開発された後、■燐酸−シ
リカ触媒及び高純度アルミナ触媒によって、200〜3
00℃で脱水する方法(J、Chem、Soc、Jap
an、 Ind。
[Prior art] As a method for producing dimethyl ether by dehydrating methyl alcohol in a gas phase,
Method of dehydration at 375°C 115a tIll (
After CAN 334.121) was developed, 200 to 3
Method of dehydration at 00℃ (J, Chem, Soc, Jap
an, Ind.

Chem、5ect、51.138〜139.1984
)等も見出された。
Chem, 5ect, 51.138-139.1984
) etc. were also found.

その後、アルミナ触媒を改質した触媒が現れた。Later, a modified alumina catalyst appeared.

その中には、■アルカリ金属又はアルカリ土類金属の酸
化物含有シリカ−アルミナ触媒を用い、常圧又は500
psigまでの加圧下で行う方法(USP 3.036
.134) 、00.05〜2.0重量%のアルカリ金
属の酸化物を含有するγ−アルミナ触媒を用い、SV 
100〜1000(1/Hr)、250〜450°Cで
反応を行わせる方法、01〜20重量%のシリカを含む
アルミナ触媒を用い1034Kpa 、390 ”Cで
脱水を行わせる方法(特開昭59−42333号)が知
られている。
Among them, ■ a silica-alumina catalyst containing an oxide of alkali metal or alkaline earth metal is used, and
Methods carried out under pressure up to psig (USP 3.036
.. 134), using a γ-alumina catalyst containing 00.05 to 2.0% by weight of alkali metal oxide, SV
A method in which the reaction is carried out at 100 to 1000 (1/Hr) and 250 to 450°C, and a method in which dehydration is carried out at 1034 Kpa and 390 "C using an alumina catalyst containing 01 to 20% by weight of silica (Japanese Patent Application Laid-open No. 1983 -42333) is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来法に挙げた製法の■及び■の触媒は、活性は申し分
ないが、触媒ライフが短いという欠点を有する。これは
触媒表面に析出する炭素によるものであり、失活した触
媒の交換は頻繁に行わねばならない、また、■の触媒は
モレキュラーシーツ類に属するものであり、ガス基準の
空間速度(SV)が0.01〜2(1/Hr)  と非
常に小さい等の欠点を存する。
Catalysts of production methods (1) and (2) listed in the conventional methods have satisfactory activity, but have the drawback of short catalyst life. This is due to carbon precipitated on the catalyst surface, and the deactivated catalyst must be replaced frequently.Also, the catalyst (2) belongs to the molecular sheet class and has a gas-based space velocity (SV). There are drawbacks such as a very small 0.01 to 2 (1/Hr).

次に、■の触媒はT−アルミナ触媒をアルカリ金属の酸
化物の添加で改質したものであるが、少量の添加量でさ
え、元のT−アルミナ触媒の活性が大きく変化するため
に、品質管理が非常に難しく、工業的な触媒には不適当
である。また、■のシリカをアルミナ触媒に含有させ4
方法では、シリカの純度が低いとき、アルミナ触媒の活
性を急激に低下させることにつながる。そのためシリカ
原料としてメタ珪酸エチルのような高価なものを使用し
なくてはならず、触媒が高価となる。
Next, the catalyst (2) is a T-alumina catalyst modified by adding an alkali metal oxide, but even a small amount of addition significantly changes the activity of the original T-alumina catalyst. Quality control is very difficult and it is unsuitable for industrial catalysts. In addition, by incorporating silica in the alumina catalyst 4
In this method, when the purity of silica is low, it leads to a sharp decrease in the activity of the alumina catalyst. Therefore, an expensive silica raw material such as ethyl metasilicate must be used, and the catalyst becomes expensive.

以上のように、従来法では、炭素析出による活性低下を
きたすアルミナ触媒に対し、アルカリ金属酸化物及びシ
リカ等を添加する改質法が提案されてきているが、未だ
、炭素析出がなく、長期間活性が持続するような優れた
触媒は見出されていない。
As mentioned above, conventional methods have proposed a modification method in which alkali metal oxides, silica, etc. are added to the alumina catalyst, which causes a decrease in activity due to carbon precipitation. An excellent catalyst that maintains its activity for a long period of time has not been found.

さらに、アルミナ系触媒の活性は、燐酸系触媒に比べ、
比較的安定しているが、未だ活性が低く、製品ジメチル
エーテル中の不快臭を生むプロピレン、ブテン等の不飽
和炭化水素が多(副生ずる。
Furthermore, the activity of alumina-based catalysts is higher than that of phosphoric acid-based catalysts.
Although it is relatively stable, its activity is still low, and a large amount of unsaturated hydrocarbons such as propylene and butene, which cause an unpleasant odor in the dimethyl ether product, are produced as by-products.

活性を高めるために入口温度を高めることは、熱交換器
およびヒーター等の能力を増強させることにつながる。
Increasing the inlet temperature to increase activity leads to increasing the capacity of heat exchangers, heaters, etc.

また、このことにより炭素質が触媒に析出すると共に、
メタン、エチレンおよびプロピレン等の炭化水素が急増
するため、資源利用を低下させるばかりでj、g (、
lfl’;、メチルエーテルの蒸留時にジメチルエーテ
ルの損失を高めることにもつながる。
In addition, this causes carbonaceous matter to precipitate on the catalyst, and
The rapid increase in hydrocarbons such as methane, ethylene and propylene will only reduce resource utilization and increase
lfl'; also leads to increased loss of dimethyl ether during distillation of methyl ether.

本発明は、長期間炭素析出がなく、低温高活性で、かつ
副生物の炭化水素を抑えた触媒開発と、その触媒を用い
たジメチルエーテルの製造方法を提供することを口約と
している。
The purpose of the present invention is to develop a catalyst that does not deposit carbon over a long period of time, has high activity at low temperatures, and suppresses by-product hydrocarbons, and provides a method for producing dimethyl ether using the catalyst.

〔課題を解決するための手段及び作用]上記目的を達成
するために、本発明者らは、メチルアルコールの脱水に
よるジメチルエーテル製造用触媒について鋭意研究した
結果、アルミナ触媒に周期律表3A族から選ばれる少な
くとも1種の金属の酸化物を含有させることによって、
アルミナ触媒の炭素析出を長期間、完全に防止するばか
りでなく、アルミナ触媒の高活性を長期間にわたり持続
させ、かつ、ジメチルエーテルの分解等によって生じる
メタン、エチレンおよびプロピレン等の不純物を激減さ
せることを見出し、さらに研究を重ね、本発明を完成さ
せるに至った。 すなわち、本発明は メチルアルコールを気相下、脱水し、ジメチルエーテル
を製造するに際し、周期律表3A族から選ばれる少なく
とも1種の金属の酸化物を含有するアルミナ触媒を用い
ることを特徴とするジメチルエーテルの製造方法である
[Means and effects for solving the problem] In order to achieve the above object, the present inventors conducted intensive research on catalysts for producing dimethyl ether by dehydrating methyl alcohol, and found that an alumina catalyst selected from Group 3A of the periodic table was used as an alumina catalyst. By containing an oxide of at least one metal,
It not only completely prevents carbon deposition on the alumina catalyst for a long period of time, but also maintains the high activity of the alumina catalyst for a long period of time, and drastically reduces impurities such as methane, ethylene, and propylene produced by decomposition of dimethyl ether. After making this discovery and conducting further research, the present invention was completed. That is, the present invention is characterized in that when methyl alcohol is dehydrated in a gas phase to produce dimethyl ether, an alumina catalyst containing an oxide of at least one metal selected from Group 3A of the Periodic Table is used. This is a manufacturing method.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いられるT−アルミナに含有する金属酸化物
は、周期律表3A族のスカンジウム、イツトリウム、ラ
ンタン系列元素、アクチニウム系列元素等、好ましくは
イツトリウム、ランタン、セリウム、ネオジム、サマリ
ウム、ユーロピウム等の酸化物である。
The metal oxide contained in the T-alumina used in the present invention includes scandium, yttrium, lanthanum series elements, actinium series elements, etc. of group 3A of the periodic table, preferably yttrium, lanthanum, cerium, neodymium, samarium, europium, etc. It is an oxide.

上記の周期律表3A族から選ばれる金属の酸化物を含有
するアルミナ触媒の調製法は、例えば(A)これらの金
属の硝酸塩等の可溶性鉱酸塩水溶液に高純度アルミナを
浸漬したものを湯浴中にて、蒸発・乾固した後、100
°C以上の温度にて一昼夜乾燥をしたものを1000℃
以下、好ましくは400〜700℃の高温下、数時間焼
成する方法。
A method for preparing an alumina catalyst containing an oxide of a metal selected from Group 3A of the Periodic Table is, for example, (A) high-purity alumina immersed in an aqueous solution of soluble mineral salts such as nitrates of these metals, and immersed in hot water. After evaporating and drying in a bath, 100
1000℃ after drying for a day and night at a temperature of ℃ or higher
The following method involves baking at a high temperature, preferably 400 to 700°C, for several hours.

(B)これらの添加金属の硝酸塩等の可溶性鉱酸塩水溶
液に高純度アルミナを懸、濁させた溶液に、アンモニア
水等を滴下し、溶液のPHが8以上になるように調製し
た後、沈澱物を濾過し、十分tfL酸塩を除去し、上記
(A)の如く乾燥・焼成する方法。
(B) High purity alumina is suspended in an aqueous solution of soluble mineral salts such as nitrates of these additive metals, and aqueous ammonia is added dropwise to the cloudy solution to adjust the pH of the solution to 8 or higher. A method in which the precipitate is filtered to sufficiently remove the tfL salt, and then dried and calcined as in (A) above.

(C)添加金属の酸化物と高純度アルミナを微粒子の状
態で十分に混合し、(A)の如(焼成する方法。
(C) A method in which an oxide of an additive metal and high-purity alumina are sufficiently mixed in the form of fine particles, and then fired as in (A).

(D)添加金属の硝酸塩等の可溶性鉱酸塩水溶液を十分
に攪拌したところに、アルミン酸ナトリウムを一挙に加
え、PHを、中性に調整し、−昼夜撹拌下、熟成させた
後、得られたスラリーi8液を濾過し、鉱酸塩が見られ
なくなるまで十分に洗浄した後、乾燥し、焼成する方法
(D) To a sufficiently stirred aqueous solution of soluble mineral salts such as nitrates of added metals, sodium aluminate was added all at once, the pH was adjusted to neutral, and after aging under stirring day and night, the obtained A method in which the slurry I8 liquid is filtered, thoroughly washed until mineral salts are no longer seen, then dried and fired.

などが触媒調製法として適用できる。etc. can be applied as a catalyst preparation method.

また、その他アルミナ触媒に周期律表3A族の金属の酸
化物が含有されるような触媒調製法であれば調製法とし
て通用され得る。
Further, any other catalyst preparation method in which the alumina catalyst contains an oxide of a metal of group 3A of the periodic table may be used as the preparation method.

添加金属の酸化物の含を量は、総触媒重量に対し、0.
005〜80重量%、好ましくは0.5〜20重量%の
範囲である。
The amount of added metal oxides is 0.0000000000000000000000000000000000000000000000000000000000 type type type type type type type form type form type form type form type form type form whatever form what form.
0.005 to 80% by weight, preferably 0.5 to 20% by weight.

本発明に用いられる高純度アルミナは、一般にT−アル
ミナが良く、例えば、不純物の含有量がシリカで0.3
%以下、鉄酸化物で0.03%以下、ナトリウム酸化物
で0.1%以下、表面積が100〜700m”7gであ
るようなT−アルミナが触媒調製に使用されることが好
ましい。
The high-purity alumina used in the present invention is generally T-alumina, and for example, the content of impurities is 0.3 with silica.
%, less than 0.03% for iron oxides, less than 0.1% for sodium oxides, and a surface area of 100-700 m''7 g is preferably used for catalyst preparation.

UIMされた触媒は、通常20〜200メツシュ程度の
粉末で使用され得るが、工業的な取扱い上、適当な大き
さの球状または円柱状に成型されるのが良い。例えば、
2〜101の大きさで細孔容、fa 0 、2〜0.9
/!/g、見掛は密度0.3〜1.5g/mJ2に成型
されるのが好ましい。
The UIM catalyst can usually be used in the form of a powder of about 20 to 200 meshes, but for industrial handling, it is better to mold it into a spherical or cylindrical shape of an appropriate size. for example,
Pore volume with a size of 2 to 101, fa 0 , 2 to 0.9
/! /g, and the apparent density is preferably 0.3 to 1.5 g/mJ2.

本発明に使用される周期律表3A族から選ばれる少なく
とも1種の金属の酸化物を含有するアルミナ触媒を用い
るメチルアルコールの脱水によるジメチルエーテル合成
用反応器としては、伝熱方式によって断熱式、自己熱交
換式あるいは多管熱交換式等が選択され得る。
The reactor used in the present invention for dimethyl ether synthesis by dehydration of methyl alcohol using an alumina catalyst containing an oxide of at least one metal selected from Group 3A of the Periodic Table can be adiabatic or self-contained depending on the heat transfer method. A heat exchange type, a multi-tube heat exchange type, etc. may be selected.

〔実施例] 以下、本発明を実施例により、さらに具体的に説明する
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

分析法は、ガスクロマトグラフィーによる。The analysis method is gas chromatography.

実施例1 γ−アルミナを粉砕し、60〜100メツシユのもの3
8.8gを、硝酸ランタン・6水和物3.18gを水2
00m lに溶解した溶液に懸濁させ、5重量%アンモ
ニア水溶液を滴下し、溶液のpHを8.2に調整した。
Example 1 Pulverized γ-alumina, 60 to 100 mesh 3
8.8g, 3.18g of lanthanum nitrate hexahydrate, 22g of water
The pH of the solution was adjusted to 8.2 by adding dropwise a 5% by weight ammonia aqueous solution.

この液を撹拌下、1時間室温に放置した後、80°Cの
湯浴中にて内容物を7発・乾固した。その後、触媒を1
10°Cにて24時間乾燥し、さらに600”Cに5時
間焼成し、60〜100メンシユに篩分けし、脱水反応
に用いた。
After this liquid was left at room temperature for 1 hour with stirring, the contents were dried in a water bath at 80°C for 7 times. Then add 1 catalyst
It was dried at 10°C for 24 hours, further calcined at 600''C for 5 hours, sieved into 60-100 mesh sizes, and used for dehydration.

この時、酸化ランタンは触媒に対し3%含有していた。At this time, the content of lanthanum oxide was 3% based on the catalyst.

上記成型触媒1.5gを内径20mmの石英製熱交換式
固定層型反応器に充填し、触媒層入口ガス温度および触
媒層外壁周辺温度を共に260°Cに保持した該反応器
にメチルアルコールガスをW/F=2(g  −hr/
mol) (W :触媒L  F:ガス流量)で供給し
、反応成績を調べた。
1.5 g of the above molded catalyst was packed into a quartz heat exchange type fixed bed reactor with an inner diameter of 20 mm, and methyl alcohol gas was introduced into the reactor with both the gas temperature at the inlet of the catalyst layer and the temperature around the outer wall of the catalyst layer maintained at 260°C. W/F=2(g −hr/
mol) (W: catalyst LF: gas flow rate), and the reaction results were investigated.

その結果、メチルアルコール転化率72.0%、ジメチ
ルエーテルに対する炭化水素量はメタン:12pp11
.エチレン:0.25ppm、プロピレン:0.25p
pm等であった。
As a result, the methyl alcohol conversion rate was 72.0%, and the amount of hydrocarbon relative to dimethyl ether was methane: 12 pp11
.. Ethylene: 0.25ppm, Propylene: 0.25p
pm etc.

比較例1 実施例1において、酸化ランタン含存T−アルミナ触媒
を、無含存T−アルミナ触媒に変えること以外は、全く
同様に反応を行った。
Comparative Example 1 The reaction was carried out in exactly the same manner as in Example 1, except that the lanthanum oxide-containing T-alumina catalyst was replaced with a T-alumina-free catalyst.

その結果、メチルアルコール転化率60.3%、ジメチ
ルエーテルに対する炭化水素量は、メタン:80ppm
、エチレン:IPpll 、プロピレン:lppmであ
った。
As a result, the methyl alcohol conversion rate was 60.3%, and the amount of hydrocarbons relative to dimethyl ether was 80 ppm for methane.
, ethylene: IPpll, propylene: lppm.

実施例2〜9 実施例1において、触媒層入口ガス温度および触媒層外
壁周辺温度を共に350°Cにし、かつ、酸化ランタン
を表1に示した金属酸化物と含有量に変えること以外は
、全〈実施例1と同様に反応を14日間連続して行い、
反応成績と触媒の炭素析出による着色を観察した。その
結果を表1に示す。
Examples 2 to 9 In Example 1, except that the catalyst layer inlet gas temperature and the catalyst layer outer wall surrounding temperature were both 350°C, and the lanthanum oxide was changed to the metal oxide and content shown in Table 1, The reaction was carried out continuously for 14 days in the same manner as in Example 1,
The reaction results and the coloration of the catalyst due to carbon deposition were observed. The results are shown in Table 1.

表1より明らかなように、周期律表3A族の金属の酸化
物を含有するT−アルミナ触媒は、炭素析出が見られな
いばかりか、ジメチルエーテルの不純物である炭化水素
が′a滅している。
As is clear from Table 1, in the T-alumina catalyst containing an oxide of a metal of group 3A of the periodic table, not only is no carbon deposited, but also hydrocarbons, which are impurities in dimethyl ether, are completely eliminated.

比較例2 実施例2において、触媒を無含有T−アルミナ触媒に変
えること以外は、全く同様に反応を行った。その結果を
表1に示す。
Comparative Example 2 The reaction was carried out in exactly the same manner as in Example 2 except that the catalyst was changed to a non-containing T-alumina catalyst. The results are shown in Table 1.

〔発明の効果] 本発明のジメチルエーテルの製造方法によれば、メチル
アルコールの気相脱水触媒として、周期律表3A族の金
属の酸化物を含有するT−アルミナ触媒を用いることに
よって、炭素析出が長期間完全に無くなると共に、触媒
の低温活性が高まり、さらに、蒸留時ジメチルエーテル
の損失を招く不純物であるメタン、エチレン、プロピレ
ン等の炭化水素の副生を激減させることが可能となり、
よって本発明は従来の課題を解決した気相脱水触媒を用
いた、非常に経済的な、かつ、工業的に優れた製造方法
である。
[Effects of the Invention] According to the method for producing dimethyl ether of the present invention, carbon precipitation is prevented by using a T-alumina catalyst containing an oxide of a metal in group 3A of the periodic table as a gas phase dehydration catalyst for methyl alcohol. As it is completely eliminated for a long period of time, the low-temperature activity of the catalyst increases, and furthermore, it becomes possible to drastically reduce by-products of hydrocarbons such as methane, ethylene, and propylene, which are impurities that cause loss of dimethyl ether during distillation.
Therefore, the present invention is a very economical and industrially excellent production method using a gas phase dehydration catalyst that solves the conventional problems.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、メチルアルコールを気相下、脱水し、ジメチルエー
テルを製造するに際し、周期律表3A族から選ばれる少
なくとも1種の金属の酸化物を含有するアルミナ触媒を
用いることを特徴とするジメチルエーテルの製造方法。
1. A method for producing dimethyl ether, which comprises using an alumina catalyst containing an oxide of at least one metal selected from Group 3A of the Periodic Table when producing dimethyl ether by dehydrating methyl alcohol in a gas phase. .
JP63274425A 1988-06-13 1988-11-01 Production of dimethyl ether Pending JPH0285224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274425A JPH0285224A (en) 1988-06-13 1988-11-01 Production of dimethyl ether

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14367688 1988-06-13
JP63-143676 1988-06-13
JP63274425A JPH0285224A (en) 1988-06-13 1988-11-01 Production of dimethyl ether

Publications (1)

Publication Number Publication Date
JPH0285224A true JPH0285224A (en) 1990-03-26

Family

ID=26475345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274425A Pending JPH0285224A (en) 1988-06-13 1988-11-01 Production of dimethyl ether

Country Status (1)

Country Link
JP (1) JPH0285224A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753716A (en) * 1997-02-21 1998-05-19 Air Products And Chemicals, Inc. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
EP1396483A1 (en) * 2002-09-06 2004-03-10 Toyo Engineering Corporation Process for producing dimethyl ether
JP2006043548A (en) * 2004-08-03 2006-02-16 Sumitomo Chemical Co Ltd Catalyst for manufacture of dimethyl ether
US20140306145A1 (en) * 2011-12-20 2014-10-16 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
US20150190790A1 (en) * 2012-08-30 2015-07-09 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
US20150191638A1 (en) * 2012-08-30 2015-07-09 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
US9463445B2 (en) 2013-03-21 2016-10-11 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
CN111646870A (en) * 2020-05-06 2020-09-11 北京航天试验技术研究所 Catalyst applied to low-temperature starting monopropellant and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753716A (en) * 1997-02-21 1998-05-19 Air Products And Chemicals, Inc. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process
EP1396483A1 (en) * 2002-09-06 2004-03-10 Toyo Engineering Corporation Process for producing dimethyl ether
US7202387B2 (en) 2002-09-06 2007-04-10 Toyo Engineering Corporation Process for producing dimethyl ether
JP2006043548A (en) * 2004-08-03 2006-02-16 Sumitomo Chemical Co Ltd Catalyst for manufacture of dimethyl ether
US20140306145A1 (en) * 2011-12-20 2014-10-16 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
US8907136B2 (en) * 2011-12-20 2014-12-09 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
US20150190790A1 (en) * 2012-08-30 2015-07-09 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
US20150191638A1 (en) * 2012-08-30 2015-07-09 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
US9452420B2 (en) 2012-08-30 2016-09-27 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
US9463445B2 (en) 2013-03-21 2016-10-11 Dow Global Technologies Llc Catalysts and methods for alcohol dehydration
CN111646870A (en) * 2020-05-06 2020-09-11 北京航天试验技术研究所 Catalyst applied to low-temperature starting monopropellant and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0845294B1 (en) Catalyst for dimethyl ether, method of producing catalyst and method of producing dimethyl ether
US20060224012A1 (en) Process for producing dimethyl ether
US4302357A (en) Catalyst for production of ethylene from ethanol
JPS6344131B2 (en)
JPS6143332B2 (en)
IE52463B1 (en) Oxychlorination process and catalyst therefor
US4777322A (en) Obtaining but-2-enes from C4 -hydrocarbon mixtures which contain but-1-ene and may or may not contain but-2-enes
US3527834A (en) Conversion of butene-2 to butene-1
JPH0285224A (en) Production of dimethyl ether
KR20080011628A (en) Catalyst for methanol and dimethyl ether synthesis from syngas and preparation method thereof
US2830090A (en) Production of alcohols and ethers
JPS6049178B2 (en) How to make amines
US4482753A (en) Catalyst for use in the hydrogenolysis of methyl glycol formals
JPS58146528A (en) Manufacture of asymmetrical fatty ketone
JP2911244B2 (en) Method for producing lower olefins
JPH039772B2 (en)
JPS5817182B2 (en) Production method of lower alkyl amines
US3855154A (en) Catalyst for conversion of non-cyclic c{11 -c{11 {11 alkanes to aromatic hydrocarbons
JP7039817B2 (en) Manufacturing method of metal composite catalyst and metal composite catalyst manufactured by this method
JPH10174872A (en) Production of catalyst for producing dimethyl ether and production of dimethyl ether
JPS6361931B2 (en)
JPS6316367B2 (en)
JPS6232735B2 (en)
JPH09249608A (en) Production of vinyl ether
JPS63141937A (en) Production of higher alcohol