JPH0284834A - Inter-cross polarization interference compensator - Google Patents

Inter-cross polarization interference compensator

Info

Publication number
JPH0284834A
JPH0284834A JP63236021A JP23602188A JPH0284834A JP H0284834 A JPH0284834 A JP H0284834A JP 63236021 A JP63236021 A JP 63236021A JP 23602188 A JP23602188 A JP 23602188A JP H0284834 A JPH0284834 A JP H0284834A
Authority
JP
Japan
Prior art keywords
signal
polarization
compensation
interference
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63236021A
Other languages
Japanese (ja)
Other versions
JP2580015B2 (en
Inventor
Yoshitami Aono
青野 芳民
Takanori Iwamatsu
隆則 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63236021A priority Critical patent/JP2580015B2/en
Publication of JPH0284834A publication Critical patent/JPH0284834A/en
Application granted granted Critical
Publication of JP2580015B2 publication Critical patent/JP2580015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent inter-cross polarization interference compensating capacity from being lowered and to operate a device at code speed by compensating delay difference between a main polarization and a cross polarization being generated due to fading on a transmission path, etc., adaptively and providing a phase control circuit, etc. CONSTITUTION:A cross polarization demodulation circuit 41 identifies and demodulates the signal of inputted cross polarization, and a clock generation circuit 42 generates a clock to be used in the decision of the timing of signal identification at the circuit 41. Also, the phase control circuit 45 judges the direction of the phase of a timing clock to obtain the optimum interference compensation effect by adjusting in a direction to lead or lag based on relation between the error of a main polarization demodulation signal before applying interference compensation and the inclination of a compensation signal. Then, the phase of the timing clock supplied from the circuit 42 to the circuit 41 is adjusted in a direction of judged result. In such a way, the compensation signal is generated at a compensation signal generation circuit 43 based on the demodulation signal whose identification timing is set at the optimum level, and the inter-cross polarization interference compensation capacity can be prevented from being lowered by suppressing an interference signal, in the main polarization by using the compensation signal, and also, the device can be operated at the code speed.

Description

【発明の詳細な説明】 (概要〕 交差偏波共用伝送方式の受信機における交差偏波間干渉
補償装置に関し。
DETAILED DESCRIPTION OF THE INVENTION (Summary) This invention relates to a cross-polarization interference compensation device in a cross-polarization shared transmission system receiver.

伝送路でのフェージング等により生じる主偏波と交差偏
波間の遅延差に対してこれを適応的に補償して交差偏波
間干渉補償能力の低下が生じることを防ぎ、かつ符号速
度で動作する干渉補償装置を提供することを目的とし。
An interference system that adaptively compensates for the delay difference between the main polarization and the cross-polarization caused by fading in the transmission path, prevents the cross-polarization interference compensation ability from decreasing, and operates at the code speed. The purpose is to provide a compensation device.

交差偏波の信号を識別し復調する交差偏波復調回路と、
交差偏波復調回路での信号識別のタイミング決定に用い
るクロックを発生するクロック発生回路と、交差偏波復
調回路の復調信号に基づき干渉信号を打ち消す補償信号
を発生する補償信号発生回路と、補償信号発生回路の補
償信号を用いて主偏波中の干渉信号を除去する合成回路
と、干渉補償前の主偏波復調信号の誤差と補償信号の傾
きとの関係に基づいて干渉信号の抑圧効果が大となるよ
うにクロック発生回路のクロックの位相を制御する位相
制御回路とを具備してなる。
a cross-polarization demodulation circuit that identifies and demodulates cross-polarization signals;
A clock generation circuit that generates a clock used to determine the timing of signal identification in the cross-polarization demodulation circuit, a compensation signal generation circuit that generates a compensation signal that cancels an interference signal based on the demodulation signal of the cross-polarization demodulation circuit, and a compensation signal. A synthesis circuit that removes the interference signal in the main polarization using the compensation signal of the generation circuit, and an interference signal suppression effect based on the relationship between the error of the main polarization demodulated signal before interference compensation and the slope of the compensation signal. and a phase control circuit for controlling the phase of the clock of the clock generation circuit so that the phase of the clock of the clock generation circuit is increased.

(産業上の利用分野) 本発明は交差偏波共用伝送方式の受信機における交差偏
波間干渉補償装置に関する。
(Industrial Application Field) The present invention relates to a cross-polarization interference compensation device in a cross-polarization shared transmission system receiver.

(従来の技術〕 ディジタル無線通信システムでは8周波数利用効率改善
のため、多値化が進められており、現状では256QA
M方式が実用化のため試験回線に導入されるまでに至っ
ている。この多値化と共に。
(Conventional technology) In order to improve the efficiency of using 8 frequencies in digital wireless communication systems, multi-leveling is being promoted, and currently 256 QA
The M method has even been introduced to test lines for practical use. Along with this multi-value.

主偏波と交差偏波の偏波面共用により・同゛−周波数帯
における伝送容量を従来の片側偏波伝送方式に比べて単
純に2倍にする試みも行われている。
Attempts have also been made to simply double the transmission capacity in the same frequency band compared to the conventional single-polarization transmission system by sharing the polarization planes of the main polarization and cross-polarization.

この交差偏波共用伝送方式による通信システムが第7図
に示される0図中、20.30はそれぞれ垂直偏波V用
と水平偏波H用の送信機、21〜27は垂直偏波V側受
信装置、31〜37は水平偏波H側受信装置である。
A communication system based on this cross-polarization shared transmission method is shown in Figure 7. In Figure 7, 20 and 30 are transmitters for vertical polarization V and horizontal polarization H, respectively, and 21 to 27 are on the vertical polarization V side. The receiving devices 31 to 37 are horizontally polarized H side receiving devices.

21.31は受信部、22.32は復調回路。21.31 is a receiving section, and 22.32 is a demodulation circuit.

23.33は主偏波の信号識別を行う識別器、24.3
4は交差偏波側の信号識別を行う識別器。
23.33 is a discriminator that identifies main polarization signals; 24.3
4 is a discriminator that discriminates signals on the cross-polarized side.

25.35は主偏波の復調信号を等化するトランスバー
サル形等化器、26.3’6は主偏波中の干渉信号を除
去するための補償信号を発生する補償信号発生回路、2
7.37は主偏波から補償信号を差し引くことによって
干渉信号を除去する合成回路である。ここで補償信号発
生回路26.36としてはトランスバーサルフィルタを
用いたものが一般的である。
25.35 is a transversal equalizer that equalizes the demodulated signal of the main polarization, 26.3'6 is a compensation signal generation circuit that generates a compensation signal for removing the interference signal in the main polarization, 2
7.37 is a synthesis circuit that removes interference signals by subtracting a compensation signal from the main polarization. Here, the compensation signal generation circuits 26 and 36 generally use transversal filters.

このシステムは、無線伝送路で垂直偏波Vと水平偏波H
間で干渉が起こり、一方の偏波(主偏波)に他方の偏波
(交差偏波)が干渉波として漏れ込んだ場合に、その主
偏波側の受信装置において。
This system uses vertical polarization V and horizontal polarization H in a wireless transmission path.
When interference occurs between the two polarized waves and one polarized wave (main polarized wave) leaks into the other polarized wave (cross polarized wave) as an interference wave, in the receiving device on the main polarized side.

主偏波中の干渉信号と逆周波数特性の補償信号を交差偏
波を波形成形して作り、この補償信号によって干渉信号
を打ち消して交差偏波間干渉を補償するものである。こ
の互いの偏波間の干渉を抑圧するために交差偏波間干渉
補償装置が用いられる。
A compensation signal having a frequency characteristic opposite to that of the interference signal in the main polarization is created by waveform-shaping the cross-polarized waves, and this compensation signal cancels the interference signal to compensate for the interference between the cross-polarized waves. A cross-polarization interference compensator is used to suppress this interference between polarizations.

第8図には垂直偏波Vを主偏波とした場合についての交
差偏波間干渉補償装置が示される0図示の如く、識別器
23.24はA/D変換器で構成されており、このA/
D変換器23.24のタイミングクロックとしては、ク
ロック再生回路28において復調回路22からデータ信
号のクロック周期が抽出再生されたものが用いられる。
FIG. 8 shows a cross-polarization interference compensation device in the case where the vertical polarization V is the main polarization. As shown in FIG. 8, the discriminators 23 and 24 are composed of A/D converters, A/
As the timing clock for the D converters 23 and 24, the clock cycle of the data signal extracted and reproduced from the demodulation circuit 22 in the clock reproduction circuit 28 is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の交差偏波間干渉補償装置では、主偏波中に含まれ
る干渉信号と、受信側で作られた干渉波補償用の補償信
号との間に遅延差があると補償能力が低下する。この遅
延差は無線伝送路におけるマルチパスフェージング等に
よる主偏波と交差偏波の伝搬距離差等に基づき生じるも
のである。
In a conventional cross-polarization interference compensation device, the compensation ability is degraded if there is a delay difference between the interference signal included in the main polarization and the compensation signal for interference wave compensation created on the receiving side. This delay difference occurs based on the propagation distance difference between the main polarization and the cross polarization due to multipath fading in the wireless transmission path.

上述の補償能力の低下は以下のように説明することがで
きる。第9図には伝送路において交差偏波間干渉が起こ
る直前の主偏波と交差偏波との位相関係が示される。こ
こで、主偏波への干渉波は当然交差偏波と同位相である
The above-mentioned decrease in compensation ability can be explained as follows. FIG. 9 shows the phase relationship between the main polarization and the cross-polarization just before cross-polarization interference occurs in the transmission path. Here, the interference wave to the main polarization is naturally in the same phase as the cross polarization.

一方、伝送路において主偏波と交差偏波との間に伝搬径
路差があった状態で受信装置に受信されると、主偏波と
交差偏波との位相関係は例えば第1θ図に示されるよう
に、第9図での位相関係よりも交差偏波の位相がτ遅れ
たものとなる。受信装置の復調回路の識別器では、t1
’、t2の時刻に主偏波と交差偏波を共に識別する。
On the other hand, when the main polarized wave and the cross-polarized wave are received by the receiving device in a state where there is a propagation path difference between them in the transmission path, the phase relationship between the main polarized wave and the cross-polarized wave is shown in Fig. 1θ, for example. As shown in FIG. 9, the phase of the cross-polarized waves is delayed by τ compared to the phase relationship shown in FIG. In the discriminator of the demodulation circuit of the receiving device, t1
', both the main polarization and the cross polarization are identified at time t2.

ここで主偏波中に漏れ込んだ干渉信号の抑制は。Here, what is the suppression of interference signals leaking into the main polarization?

この干渉信号に特性が等しくなるように交差偏波を波形
成形した補償信号を主偏波から差し引くことによって行
われる。ところが、補償信号は、主偏波中の干渉信号の
位相とは異なる位相で識別された交差偏波に基づき生成
されているので、補償信号と干渉信号との誤差が太き(
なり、このため補償能力が低下するものである。
This is done by subtracting from the main polarization a compensation signal that has been waveform-shaped with cross-polarized waves so that the characteristics are equal to those of this interference signal. However, since the compensation signal is generated based on the cross-polarized wave identified with a phase different from that of the interference signal in the main polarization, the error between the compensation signal and the interference signal is large (
Therefore, the compensation ability decreases.

このように主偏波と交差偏波間に伝搬遅延差がある場合
、従来は例えば第8図に示されるように。
When there is a propagation delay difference between the main polarization and the cross polarization in this way, the conventional method is as shown in FIG. 8, for example.

識別器23と24の入力側のAとA′で遅延差を合わせ
ることにより主偏波側に含まれる干渉信号と補償信号と
の位相が最適な状態になるように設定している。
By matching the delay differences between A and A' on the input side of the discriminators 23 and 24, the phases of the interference signal and the compensation signal included on the main polarization side are set to be in an optimal state.

しかしながら、伝送路でのマルチパスフェージング等に
より主偏波と交差偏波間にランダムな遅延差が生じるよ
うな場合にはこれを補償することができず、交差偏波間
干渉補償装置の干渉補償能力が著しく劣化することを避
けられない。
However, if a random delay difference occurs between the main polarization and the cross-polarization due to multipath fading in the transmission path, this cannot be compensated for, and the interference compensation ability of the cross-polarization interference compensator is limited. Significant deterioration is inevitable.

この対策として、補償信号発生回路に用いられているT
スペース形のトランスバーサルフィルタの代わりに、a
延着の影響を受けないフラクショナルスペース形のトラ
ンスバーサルフィルタ、例えばT/2スペース形トシト
ランスバーサルフィルタいて装置を構成すればよい、し
かしこの場合には、識別器の動作クロックがTスペース
形に比べて2倍となり、使用するA/D変換器に2倍の
動作速度のものが要求される。
As a countermeasure for this, T
Instead of a space-type transversal filter, a
The device may be constructed using a fractional space type transversal filter that is not affected by delay, such as a T/2 space type tosi transversal filter. However, in this case, the operation clock of the discriminator is slower than that of the T space type Therefore, the A/D converter used is required to have twice the operating speed.

したがって本発明の目的は、伝送路でのフェージング等
により生じる主偏波と交差偏波間の遅延差に対してもこ
れを適応的に補償して交差偏波間干渉補償能力の低下を
防ぎ、かつ符号速度で動作する干渉補償装置を提供する
ことにある。
Therefore, it is an object of the present invention to adaptively compensate for the delay difference between the main polarization and the cross-polarization caused by fading in the transmission path, to prevent the deterioration of the cross-polarization interference compensation ability, and to The object of the present invention is to provide an interference compensation device that operates at high speed.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明に係る原理ブロック図である。 FIG. 1 is a principle block diagram according to the present invention.

本発明に係る交差偏波間干渉補償装置は、交差偏波の信
号を識別し復調する交差偏波復調回路41と、交差偏波
復調回路41での信号識別のタイミング決定に用いるク
ロックを発生するクロック発生回路42と、交差偏波復
調回路41の復調信号に基づき干渉信号を打ち消す補償
信号を発生する補償信号発生回路43と、補償信号発生
回路43の補償信号を用いて主偏波中の干渉信号を除去
する合成回路44と、干渉補償前の・主偏波fffi調
信号の誤差と補償信号の傾きとの関係に基づいて干渉信
号の抑圧効果が大どなるようにクロック発生回路42の
クロックの位相を制御する位相制御回路45とを具備し
てなる 【作用〕 位相制御回路45は干渉補償前の主偏波復調信号の誤差
と、補償信号の傾きとの関係から、タイミングクロック
の位相を進み/遅れの何れの方向に調節することが最適
な干渉補償効果を得るのに良いかを判定し、クロック発
生回路42から交差偏波復調回路41に供給されるタイ
ミングクロックの位相をその方向に調節する。このよう
にして識別タイミングが最適となった復調信号に基づき
補償信号発生回路43で補償信号を発生し、これを用い
て主偏波中の干渉信号を抑圧する。
The cross-polarization interference compensation device according to the present invention includes a cross-polarization demodulation circuit 41 that identifies and demodulates a cross-polarization signal, and a clock that generates a clock used to determine the timing of signal identification in the cross-polarization demodulation circuit 41. a generation circuit 42; a compensation signal generation circuit 43 that generates a compensation signal that cancels the interference signal based on the demodulated signal of the cross-polarization demodulation circuit 41; The phase of the clock of the clock generation circuit 42 is adjusted so that the effect of suppressing the interference signal becomes greater based on the relationship between the error of the main polarization FFFI signal before interference compensation and the slope of the compensation signal. [Function] The phase control circuit 45 advances the phase of the timing clock based on the relationship between the error of the main polarization demodulated signal before interference compensation and the slope of the compensation signal. It is determined in which direction the delay should be adjusted in order to obtain the optimal interference compensation effect, and the phase of the timing clock supplied from the clock generation circuit 42 to the cross-polarization demodulation circuit 41 is adjusted in that direction. . A compensation signal is generated in the compensation signal generation circuit 43 based on the demodulated signal whose identification timing is optimized in this way, and this is used to suppress the interference signal in the main polarization.

〔実施例〕〔Example〕

以下2図面を参照して本発明の詳細な説明する。第2図
は本発明の一実施例としての交差偏波間干渉補償装置を
示すブロック図である。この実施例装置は64値QAM
方式受信機に本発明を通用したものであるが1図面簡明
化のため図中には■チャネルのみの回路が示されている
。またIチャネルとQチャネル間の干渉はここでは無視
している。
The present invention will be described in detail below with reference to two drawings. FIG. 2 is a block diagram showing a cross-polarization interference compensation device as an embodiment of the present invention. This embodiment device uses 64-value QAM
Although the present invention is applied to a system receiver, only a circuit for channel 1 is shown in the drawing for the sake of simplification. Also, interference between the I channel and Q channel is ignored here.

第2図において、受信された主偏波は復調回路lで復調
され、その出力信号はA/D変換器からなる識別器2で
信号レベルを識別される。この実施例では64値CAM
であるので、主偏波の復調信号のレベル数(多値数)は
8であり、、Sa別器2からは3ビツト(PI 、P2
.P3)のデータ信号の他に2ビン) (1)4 、 
Pζ)の誤差信号を加えた合計5ビツトの信号が出力さ
れるものとする。
In FIG. 2, the received main polarized wave is demodulated by a demodulation circuit 1, and the signal level of the output signal is discriminated by a discriminator 2 consisting of an A/D converter. In this example, 64-value CAM
Therefore, the number of levels (multilevel number) of the demodulated signal of the main polarization is 8, and 3 bits (PI, P2
.. In addition to the data signal of P3), 2 bins) (1) 4,
It is assumed that a total of 5-bit signals including an error signal of Pζ) are output.

識別器2からの出力信号は等化器3で歪を等化された後
に、減算器9で干渉波成分を除去され。
After the distortion of the output signal from the discriminator 2 is equalized by an equalizer 3, the interference wave component is removed by a subtracter 9.

出力データDoとして出力される。It is output as output data Do.

一方、交差偏波は復調回路6で復調されてA/D変換器
からなる識別器7に入力され、ここでレベル識別された
後にTスペース形トランスバーサルフィルタからなる補
償信号発生回路8に入力される。補償信号発生回路8は
主偏波中の干渉波信号を打ち消すための補償信号を、!
a別器7の出力信号に基づき発生し、これを減算器9に
送出する。
On the other hand, the cross-polarized waves are demodulated by a demodulation circuit 6 and input to a discriminator 7 consisting of an A/D converter, where the level is discriminated, and then input to a compensation signal generation circuit 8 consisting of a T-space type transversal filter. Ru. The compensation signal generation circuit 8 generates a compensation signal for canceling the interference wave signal in the main polarization.
It is generated based on the output signal of the a-divider 7 and sent to the subtracter 9.

4はクロック再生回路であり、主偏波の復調信号から情
報シンボルの周期のクロックを抽出再生する。このクロ
ックは識別器2に供給されて信号識別用のタイミングク
ロックとされると共に、移相器5を介して成る位相量だ
け偏移されて識別器7にも供給され、信号識別タイミン
グ用のクロ7りとされる。
Reference numeral 4 denotes a clock regeneration circuit which extracts and regenerates a clock having the period of the information symbol from the demodulated signal of the main polarization. This clock is supplied to the discriminator 2 and used as a timing clock for signal discrimination, and is also supplied to the discriminator 7 after being shifted by the phase amount formed by the phase shifter 5, and is used as a timing clock for signal discrimination. It is said to be 7 years old.

移相器5の位相量は制御回路10によって適応的に制御
される。制御回路lOは傾き判定回路11、制御停止判
定回路12.相関器13.積分回路14等を含み構成さ
れる。
The phase amount of the phase shifter 5 is adaptively controlled by a control circuit 10. The control circuit 1O includes a slope determination circuit 11, a control stop determination circuit 12. Correlator 13. It is configured to include an integrating circuit 14 and the like.

傾き判定回路11には補償信号発生回路8からの補償信
号ymが入力されており、この補償信号7にの傾きの正
負を判定して傾き信号9にとして相関器13に出力する
。この傾き判定回路11は例えば第3図に示されるよう
に、に1続接続された2つの遅延素子111.112と
これらの入出力をアドレス入力とするROMI l 3
とで構成することができ、第4図に示されるようなアイ
ダイヤグラムにおける補償信号7にの時刻toでの信号
遷移の傾きを判定して傾き信号9にとして出力するもの
である。
The compensation signal ym from the compensation signal generation circuit 8 is input to the slope determination circuit 11, which determines whether the slope of the compensation signal 7 is positive or negative and outputs it as a slope signal 9 to the correlator 13. For example, as shown in FIG. 3, this slope determination circuit 11 includes two delay elements 111 and 112 connected in series, and a ROMI l3 whose input and output are used as address inputs.
The slope of the signal transition of the compensation signal 7 at time to in the eye diagram as shown in FIG. 4 is determined and outputted as the slope signal 9.

制御停止判定回路12には補償信号発生回路8からの補
償信号yxと減算器9からの干渉補償後の主偏波出力デ
ータD、の誤差信号a2  (出力データD、の下位2
ビツトのPa、Ps)とが入力されており、これらの信
号に基づき移相器5の位相偏移動作を停止するが否かを
判定し、誤差信号ε1および/または補償信号yにがそ
れぞれ成る一定値よりも小さい場合に動作停止信号を積
分回路14に出力する。
The control stop determination circuit 12 receives an error signal a2 between the compensation signal yx from the compensation signal generation circuit 8 and the interference-compensated main polarization output data D from the subtracter 9 (lower 2 of the output data D).
Based on these signals, it is determined whether or not to stop the phase shift operation of the phase shifter 5, and the error signal ε1 and/or the compensation signal y are respectively generated. If the value is smaller than a certain value, an operation stop signal is output to the integrating circuit 14.

相関313は排他的論理和回路からなり、p!!き判定
回路11からの傾き信号9試と等化器3からの干渉補償
前のデータ信号の誤差信号ε1 (等化器3出力データ
の下位2ビツトのP4.P5)とが入力されており、こ
れら傾き信号9にの正負と誤差信号ε1の正負との相関
を排他的論理和により求めてその結果の“O”または“
l゛信号積分回路14に出力する。
The correlation 313 consists of an exclusive OR circuit, and p! ! The nine slope signals from the bias determination circuit 11 and the error signal ε1 of the data signal before interference compensation from the equalizer 3 (P4 and P5 of the lower two bits of the output data of the equalizer 3) are input. The correlation between the positive and negative values of the slope signal 9 and the positive and negative values of the error signal ε1 is determined by exclusive OR, and the result is "O" or "
l' is output to the signal integration circuit 14.

積分回路14は一定周期クロックを計数するアップ/ダ
ウンカウンタからなり、相関器13からの出力信号に応
じてアンプカウントモードとダウンカウントモードとに
切り替わるように構成されており、そのカウント値を移
相器5に出力する。
The integration circuit 14 is composed of an up/down counter that counts constant period clocks, and is configured to switch between an amplifier count mode and a down count mode according to the output signal from the correlator 13, and phase-shifts the count value. Output to device 5.

そして制御停止判定回路12から停止信号を受けると積
分動作(カウント動作)を停止する。
Then, upon receiving a stop signal from the control stop determination circuit 12, the integrating operation (counting operation) is stopped.

実施例装置の動作が以下に説明される。主偏波中に含ま
れた干渉信号は補償信号発生回路8で生成された補償信
号yにでキャン、セルされることによって干渉補償がな
される。この際、干渉信号と補償信号との誤差が小さい
ことが干渉補償効果を上げるために必要であり、誤差を
小さくするには識別器7における交差偏波の信号識別タ
イミングクロックの位相を移相器5によって適切なもの
に調節することが必要である。
The operation of the example device will be described below. The interference signal contained in the main polarization is canceled by the compensation signal y generated by the compensation signal generation circuit 8, thereby performing interference compensation. At this time, it is necessary that the error between the interference signal and the compensation signal be small in order to increase the interference compensation effect. 5, it is necessary to adjust it appropriately.

この位相調節方法は詳細には以下のようにして行われる
。すなわち、第5図に示されるように。
This phase adjustment method is performed in detail as follows. That is, as shown in FIG.

補償信号y+tの傾きの正負と誤差信号a1の正負とが
分かれば9wA別器7の識別タイミングクロックの位相
を進み/遅れの何れの方向に動かせば最適な識別タイミ
ングになるかを判定することができる。
If we know whether the slope of the compensation signal y+t is positive or negative and whether the error signal a1 is positive or negative, it is possible to determine whether the phase of the identification timing clock of the 9WA separate unit 7 should be moved in the advance or delay direction to obtain the optimal identification timing. can.

そこで補償信号yxの傾きの正負と誤差信号ε、の正負
の相関を相関器13で求め、その結果に基づき進み指示
または遅れ指示の出力信号を積分回路14に出力する。
Therefore, the correlation between the positive and negative slopes of the compensation signal yx and the error signal ε is determined by the correlator 13, and based on the result, an output signal of an advance instruction or a delay instruction is outputted to the integration circuit 14.

積分回路14はこの進み/遅れ出力に応じてアップ/ダ
ウンカウントを行い、そのカウント値に応じて移相器5
の位相の進み/遅れ方向およびその偏移量を制御する。
The integrating circuit 14 performs up/down counting according to this lead/lag output, and the phase shifter 5 performs up/down counting according to the count value.
The phase lead/lag direction and the amount of deviation thereof are controlled.

この結果として干渉補償処理が適正に行われたため、干
渉補償後の出力データDoの誤差信号C2が所定の値よ
りも小さくなった場合には、制御停止判定回路12はこ
れを検知して積分回路14の動作を停止して位相状態を
固定する。また補償信号y+tが所定の値よりも小さい
ような場合には干渉波の値も小さいものと判断すること
ができ。
As a result, the interference compensation process has been properly performed, so when the error signal C2 of the output data Do after interference compensation becomes smaller than a predetermined value, the control stop determination circuit 12 detects this and the integrator circuit 14 is stopped to fix the phase state. Furthermore, if the compensation signal y+t is smaller than a predetermined value, it can be determined that the value of the interference wave is also small.

かかる場合には干渉補償処理は必要でないから。In such a case, interference compensation processing is not necessary.

制御停止判定回路12はこれを検知して積分回路14の
動作を停止して位相を固定状態にする。
The control stop determination circuit 12 detects this and stops the operation of the integrating circuit 14 to fix the phase.

本発明の実施にあたっては種々の変形形態が可能である
0例えば、上述の実施例は1次元構成のトランスバーサ
ルフィルタによるものであったが。
Various modifications are possible in carrying out the present invention. For example, the above-described embodiment was based on a transversal filter having a one-dimensional configuration.

勿論これに限らず9例えば多値QAM方式の通信装置で
はIチャネルとQチャネル間での干渉も考慮して直交2
次元構成のトランスバーサルフィルタを用いて本発明を
実施することができる。第6図は係る2次元構成の場合
の補償信号発生回路部分の構成を示す図であり、!チャ
ネルとQチャネル間の干渉も補償するように補償信号発
生回路に4つのトランスバーサルフィルタ部が用意され
る。
Of course, this is not limited to this.9 For example, in a multi-level QAM type communication device, orthogonal 2
The invention can be implemented using transversal filters of dimensional configuration. FIG. 6 is a diagram showing the configuration of the compensation signal generation circuit portion in the case of such a two-dimensional configuration. Four transversal filter sections are provided in the compensation signal generation circuit so as to also compensate for interference between the channel and the Q channel.

また本発明はアナログ形またはディジタル形の何れの回
路にも通用できるものであることは明白である。
It is also clear that the present invention is applicable to either analog or digital circuits.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、主偏波と交差偏波の遅延差がフェージ
ング等によりランダムに変化しても、交差偏波側の信号
識別タイミングが適応的に制御されることによってこれ
が補償されて遅延差が吸収される。これにより偏波間の
遅延差の発生によって交差偏波間干滲禎償能力が低下す
ることを防止できる。しかも補償信号発生に用いるトラ
ンスバーサルフィルタとしてはTスペース形のものでよ
く、結果としてフラクショナルスペース形のものに比べ
て符号速度を高めた場合、使用する素子の周波数の上限
に対する制限を緩和することができる。
According to the present invention, even if the delay difference between the main polarization and the cross-polarization changes randomly due to fading or the like, this is compensated for by adaptively controlling the signal identification timing on the cross-polarization side, and the delay difference is absorbed. This can prevent the ability to compensate for cross-polarized waves from being degraded due to the occurrence of a delay difference between polarized waves. Furthermore, the transversal filter used to generate the compensation signal can be of the T-space type, and as a result, when the code speed is increased compared to the fractional-space type, restrictions on the upper limit of the frequency of the elements used can be relaxed. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原理ブロック図 第2図は本発明の一実施例と乙の交差偏波間干渉補償装
置を示すブロック図。 第3図は実施例装置の制御停止判定回路の構成を示すブ
ロック図。 第4図、第5図は実施例装置の動作説明図。 第6図は本発明を2次元構成の交差偏波間干渉補償装置
に通用する場合の変形例のブロック図。 第7図は従来の偏波共用システムの概略構成例を示すブ
ロック図。 第8図は従来の交差偏波間干渉補償装置を示すブロック
図。 第9図および第10図は偏波間の遅延差による干渉補償
能力の低下理由を説明する図である。 図において。 1.6.22.32−・−復調回路 2.7,23.24.33.34・−・識別器3.25
.36・・・等化器 4.28−クロック再生回路 5−移相器 8.26.36−・−補償信号発生回路9−減算器 10−一一一制御回路 11・−・傾き判定回路 12−・・制御停止判定回路 13・−相関器 14・−積分回路 本発明1クイ氷−6,59i、環ブロック図第1図 第5 図 (ADD) イ東さ411定回路の@f;、分11 第11 第3 第4 図 直交2ス元孤成1;Jろ交形潮11 第6図 編製共用システムの11代停止 第7図 千渉踊゛イIt jL!の従、未ダJ1干39−時の在
相関イ爪 第9図 受ン信機入力吟のイ立相関イ外、
FIG. 1 is a block diagram showing the principle of the present invention; FIG. 2 is a block diagram showing an embodiment of the present invention and a cross-polarization interference compensating device. FIG. 3 is a block diagram showing the configuration of a control stop determination circuit of the embodiment device. 4 and 5 are explanatory diagrams of the operation of the embodiment device. FIG. 6 is a block diagram of a modification in which the present invention is applied to a two-dimensional cross-polarization interference compensation device. FIG. 7 is a block diagram showing a schematic configuration example of a conventional polarization sharing system. FIG. 8 is a block diagram showing a conventional cross-polarization interference compensation device. FIG. 9 and FIG. 10 are diagrams explaining the reason why the interference compensation ability decreases due to the delay difference between polarized waves. In fig. 1.6.22.32--Demodulation circuit 2.7, 23.24.33.34--Discriminator 3.25
.. 36...Equalizer 4.28-Clock regeneration circuit 5-Phase shifter 8.26.36--Compensation signal generation circuit 9-Subtractor 10-111 Control circuit 11--Slope determination circuit 12 - Control stop judgment circuit 13 - Correlator 14 - Integrator circuit Present invention 1 Kui ice - 6,59i, ring block diagram Figure 1 Figure 5 (ADD) Itosa 411 constant circuit @f; Minute 11 11 3 4 Fig. Orthogonal 2 source isolation 1; J Locator shape tide 11 Fig. 6 11 generation stop of editing common system Fig. 7 Thousand cross dance It jL! As a follow-up, the current correlation at the time of J1 season 39-1 is shown in Figure 9.

Claims (1)

【特許請求の範囲】 交差偏波共用伝送方式の受信機における交差偏波から漏
れ込んだ主偏波中の干渉波の影響を抑圧する交差偏波間
干渉補償装置であって、 交差偏波の信号を識別し復調する交差偏波復調回路(4
1)、 該交差偏波復調回路での信号識別のタイミング決定に用
いるクロックを発生するクロック発生回路(42)、 該交差偏波復調回路の復調信号に基づき干渉信号を打ち
消す補償信号を発生する補償信号発生回路(43)、 該補償信号発生回路の補償信号を用いて該主偏波中の干
渉信号を除去する合成回路(44)、および 該干渉補償前の主偏波復調信号の誤差と該補償信号の傾
きとの関係に基づいて干渉信号の抑圧効果が大となるよ
うに該クロック発生回路のクロックの位相を制御する位
相制御回路(45) を具備してなる交差部波間干渉補償装置。
[Claims] A cross-polarization interference compensation device for suppressing the influence of interference waves in the main polarization leaking from the cross-polarization in a cross-polarization shared transmission system receiver, the device comprising: A cross-polarization demodulation circuit (4) that identifies and demodulates
1) A clock generation circuit (42) that generates a clock used to determine the timing of signal identification in the cross-polarization demodulation circuit; and a compensation circuit that generates a compensation signal that cancels the interference signal based on the demodulation signal of the cross-polarization demodulation circuit. a signal generation circuit (43), a synthesis circuit (44) that removes the interference signal in the main polarization using the compensation signal of the compensation signal generation circuit, and a synthesis circuit (44) that removes the interference signal in the main polarization demodulated signal before the interference compensation. A cross-wave interference compensation device comprising: a phase control circuit (45) that controls the phase of the clock of the clock generation circuit so that the interference signal suppression effect is increased based on the relationship with the slope of the compensation signal.
JP63236021A 1988-09-20 1988-09-20 Cross polarization interference compensator Expired - Fee Related JP2580015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63236021A JP2580015B2 (en) 1988-09-20 1988-09-20 Cross polarization interference compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63236021A JP2580015B2 (en) 1988-09-20 1988-09-20 Cross polarization interference compensator

Publications (2)

Publication Number Publication Date
JPH0284834A true JPH0284834A (en) 1990-03-26
JP2580015B2 JP2580015B2 (en) 1997-02-12

Family

ID=16994593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63236021A Expired - Fee Related JP2580015B2 (en) 1988-09-20 1988-09-20 Cross polarization interference compensator

Country Status (1)

Country Link
JP (1) JP2580015B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174830A (en) * 1989-09-01 1991-07-30 Nec Corp Cross polarized wave interference elimination circuit
WO2008126852A1 (en) * 2007-04-11 2008-10-23 Nec Corporation Orthogonal cross polarization interference compensating device, demodulator, receiving station, and method of compensating cross polarization interference
USRE40695E1 (en) 1995-03-17 2009-04-07 Fujitsu Limited Clock phase detecting circuit and clock regenerating circuit each arranged in receiving unit of multiplex radio equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174830A (en) * 1989-09-01 1991-07-30 Nec Corp Cross polarized wave interference elimination circuit
JP2687691B2 (en) * 1989-09-01 1997-12-08 日本電気株式会社 Cross polarization interference cancellation circuit
USRE40695E1 (en) 1995-03-17 2009-04-07 Fujitsu Limited Clock phase detecting circuit and clock regenerating circuit each arranged in receiving unit of multiplex radio equipment
WO2008126852A1 (en) * 2007-04-11 2008-10-23 Nec Corporation Orthogonal cross polarization interference compensating device, demodulator, receiving station, and method of compensating cross polarization interference
US8145174B2 (en) 2007-04-11 2012-03-27 Nec Corporation Orthogonal cross polarization interference compensating device, demodulator, receiving station, and method of compensating cross-polarization interference
JP4918938B2 (en) * 2007-04-11 2012-04-18 日本電気株式会社 Orthogonal polarization interference compensation device, demodulation device, receiving station, and orthogonal polarization interference compensation method

Also Published As

Publication number Publication date
JP2580015B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
CA1211514A (en) Automatic adaptive equalizer having improved reset function
EP0609828B1 (en) Adaptive matched filter
US6236263B1 (en) Demodulator having cross polarization interference canceling function
US6067333A (en) Adaptive serial and parallel mixed interference cancellation method
EP0183274B1 (en) Cross-polarization interference canceller
US4667333A (en) Automatic clock recovery circuit
KR900002330B1 (en) Radio receiver
US4638495A (en) Automatic adaptive equalizer
CA2044707C (en) Adaptive equalizer capable of effectively removing a remaining fading in an equalized signal
JPH0284834A (en) Inter-cross polarization interference compensator
JPS6412136B2 (en)
US4803438A (en) 8-phase phase-shift keying demodulator
JP2680373B2 (en) Cross polarization interference compensator
JPH0420545B2 (en)
JPH0279632A (en) Device for compensating cross polarization interference
JPH01125135A (en) Interference compensation device between cross polarized waves
JPH01176130A (en) Digital demodulation system for two polarized wave
JP3099867B2 (en) Amplitude equalizer
JP2797808B2 (en) Cross polarization interference compensator
KR0155935B1 (en) Apparatus & method for recovering carrier having phase jitter tracker
JPH04292010A (en) Automatic equalizer
JP2526475B2 (en) Demodulator with cross polarization interference canceller
JPH0548567A (en) Digital multiplex radio system
JPH04322531A (en) Line changeover system
JPS6292524A (en) Moden for facsimile equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees