JPH028391A - Lead dioxide electrode and production thereof - Google Patents

Lead dioxide electrode and production thereof

Info

Publication number
JPH028391A
JPH028391A JP63156256A JP15625688A JPH028391A JP H028391 A JPH028391 A JP H028391A JP 63156256 A JP63156256 A JP 63156256A JP 15625688 A JP15625688 A JP 15625688A JP H028391 A JPH028391 A JP H028391A
Authority
JP
Japan
Prior art keywords
layer
mixed
lead dioxide
sprayed layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63156256A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Makita
蒔田 善之
Toshiro Igarashi
五十嵐 寿郎
Hiromi Kubo
久保 博海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamioka Mining and Smelting Co Ltd
Original Assignee
Kamioka Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamioka Mining and Smelting Co Ltd filed Critical Kamioka Mining and Smelting Co Ltd
Priority to JP63156256A priority Critical patent/JPH028391A/en
Publication of JPH028391A publication Critical patent/JPH028391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To obtain a PbO2 electrode having superior durability by forming a thermally sprayed layer contg. a specified metal oxide and an electrically nonconductive material on the surface of a corrosion resistant metal substrate and by forming a beta-PbO2 layer on the thermally sprayed layer. CONSTITUTION:The surface of a substrate of a corrosion resistant metal such as Ti, Nb, Ta or Zr having a plate, bar or expanded mesh shape is roughened and cleaned by degreasing. A thermally sprayed layer of a mixture of at least one kind of electrically conductive oxide having high oxygen overvoltage selected among PbO2, MnO2 and TiO2 with an electrically nonconductive material rendering low porosity to the layer, e.g., resin such as PE or epoxy resin or rubber is formed on the surface of the substrate. A coating layer of beta-PbO2 is then formed on the thermally sprayed layer by electrolysis, thermal spraying, baking or other method to produce a PbO2 electrode capable of effectively preventing the contact of the base metal with an electrolytic soln. and having superior durability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐久性に優れた二酸化鉛電極及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a lead dioxide electrode with excellent durability and a method for manufacturing the same.

(従来技術とその問題点) 二酸化鉛電極は、芒硝電解や有機物電解等の酸素発生や
陽極酸化等を行う陽極として主として使用されている。
(Prior art and its problems) A lead dioxide electrode is mainly used as an anode for oxygen generation, anodic oxidation, etc. in mirabilite electrolysis, organic matter electrolysis, etc.

従来の二酸化鉛電極の製法は、チタン等の基体上に直接
、あるいは白金族金属やその酸化物から成る下地層を形
成した基体上に、電解により二酸化鉛を被覆する方法で
ある。該下地層は前記基体が電解液と接触して劣化する
ことを防止する機能を有するが、該下地層に使用される
成分特に前記した白金族金属やその酸化物はその電極活
性が前記二酸化鉛被覆層を構成する二酸化鉛と比較して
かなり高く、このような電極では前記下地層の成分も電
極活性物質として機能し電解液を電解して該下地層と前
記二酸化鉛被覆層間にガスを発生させる。発生したガス
は電極表面から電解液中に放出される際に前記被覆層を
前記下地層から剥離させるよう働き、電極寿命の短縮を
来してしまうという欠点を有している。
A conventional method for producing lead dioxide electrodes is to electrolytically coat lead dioxide either directly on a substrate such as titanium or on a substrate on which a base layer made of a platinum group metal or its oxide is formed. The base layer has the function of preventing the base from deteriorating due to contact with the electrolyte, but the components used in the base layer, particularly the platinum group metals and their oxides, have electrode activities that are higher than the lead dioxide. It is considerably higher than the lead dioxide that constitutes the coating layer, and in such electrodes, the components of the base layer also function as electrode active substances and electrolyze the electrolyte to generate gas between the base layer and the lead dioxide coating layer. let The generated gas has a disadvantage in that when it is released from the electrode surface into the electrolytic solution, it serves to separate the coating layer from the underlying layer, resulting in a shortened electrode life.

この問題点を解決するために前記下地層成分として前記
二酸化鉛より活性の低い成分を選択することが考えられ
るが、該下地層成分は導電性があることが必須であり、
該条件を満足する下地層成分の活性は前記二酸化鉛の活
性と同等か僅かに劣る程度である(例えば特開昭63−
57791号公報、特開昭63−57792号公報参照
)。従って他の下地層成分を選択しても該下地層でのガ
ス発生を完全に防止することはできず、前記二酸化鉛被
覆層の剥離の問題を回避することはできない。
In order to solve this problem, it may be possible to select a component with lower activity than the lead dioxide as the base layer component, but it is essential that the base layer component is electrically conductive.
The activity of the base layer component that satisfies the above conditions is equivalent to or slightly inferior to the activity of the lead dioxide (for example, Japanese Patent Application Laid-open No. 1983-1982).
57791, JP-A-63-57792). Therefore, even if other base layer components are selected, gas generation in the base layer cannot be completely prevented, and the problem of peeling of the lead dioxide coating layer cannot be avoided.

又前記白金族金属やその酸化物は非常に高価でありこれ
らを下地層として使用すると電極のコストが上昇し経済
的でないという欠点がある。
Furthermore, the platinum group metals and their oxides are very expensive, and their use as an underlayer increases the cost of the electrode, making it uneconomical.

(発明の目的) 本発明は、下地層として機能する溶射層の成分を通常の
電極活性物質と非導電性物質の混合物とすることにより
、上記欠点を解消するようにした一酸化鉛電極及びその
製造方法を提供することを目的とする。
(Object of the Invention) The present invention provides a lead monoxide electrode and its lead monoxide electrode which solves the above-mentioned drawbacks by using a mixture of a normal electrode active material and a non-conductive material as a component of a sprayed layer that functions as a base layer. The purpose is to provide a manufacturing method.

(問題点を解決するための手段) 本発明は、第1に、耐食性金属基体と、該金属基体上に
形成された二酸化鉛、二酸化マンガン及び二酸化チタン
の少なくとも1種と非導電性物質とを含む混合溶射層と
、該混合溶射層上に形成された二酸化鉛被覆層とを含ん
で成る二酸化鉛電極であり、第2に、耐食性金属基体上
に、二酸化鉛、−酸化マンガン及び二酸化チタンの少な
くとも1種の粉末と非導電性物質の粉末との混合粉末を
溶射して混合溶射層を形成し、該混合溶射層上に酸化鉛
被覆層を形成することを含んで成る二酸化鉛電極の製造
方法である。
(Means for Solving the Problems) The present invention first provides a corrosion-resistant metal substrate, at least one of lead dioxide, manganese dioxide, and titanium dioxide formed on the metal substrate, and a non-conductive substance. and a lead dioxide coating layer formed on the mixed sprayed layer, and secondly, a layer of lead dioxide, manganese oxide and titanium dioxide is coated on a corrosion-resistant metal substrate. Manufacturing a lead dioxide electrode comprising thermally spraying a mixed powder of at least one type of powder and a powder of a non-conductive substance to form a mixed sprayed layer, and forming a lead oxide coating layer on the mixed thermally sprayed layer. It's a method.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係わる二酸化鉛被覆電極及びその製造方法は、
耐食性金属基体と二酸化鉛被覆層間に、二酸化鉛等と非
導電性物質との混合溶射層を形成し、該非導電性物質に
より該混合溶射層の電気抵抗を増大させつまり該混合溶
射層の過電圧特に酸素過電圧を高くして、該混合溶射層
におけるガス発生を最小限に抑制して前記二酸化鉛被覆
層の剥離を効果的に防止して電極の寿命を大幅に長くす
るようにしたことを特徴とし、本発明に係わる二酸化鉛
電極は、酸素発生を伴う電極反応の電極つまり硫酸浴電
解、水電解、有機物電解等の陽極として好適に使用され
るが、これらに限定されるものではなく、他の電解用の
電極として使用することができる。
The lead dioxide coated electrode and the manufacturing method thereof according to the present invention include:
A mixed sprayed layer of lead dioxide, etc. and a non-conductive substance is formed between the corrosion-resistant metal substrate and the lead dioxide coating layer, and the electrical resistance of the mixed sprayed layer is increased by the non-conductive substance. The oxygen overvoltage is increased to minimize gas generation in the mixed sprayed layer, effectively preventing peeling of the lead dioxide coating layer and significantly extending the life of the electrode. The lead dioxide electrode according to the present invention is suitably used as an electrode for electrode reactions involving oxygen generation, that is, as an anode for sulfuric acid bath electrolysis, water electrolysis, organic matter electrolysis, etc., but is not limited to these, and can be used for other electrode reactions. It can be used as an electrode for electrolysis.

本発明で使用する前記耐食性金属基体は、チタン、クン
タル、ニオブ、ジルコニウム等の弁金属をはじめとする
導電性金属とし、板状、棒状、エキスバンドメソシュ状
等各種形状のものを制限なく使用することができる。該
金属基体は、後述する従来の下地層に相当する混合溶射
層の付着性を向上させかつ該金属基体の表面の不純物を
除去するため前処理を施すことが好ましく、該前処理と
してはサンドやグリッドを使用するブラスト処理による
表面の粗面化処理と水酸化ナトリウム水溶液やトリクロ
ロエチレン等に浸漬する脱脂処理等がある。
The corrosion-resistant metal substrate used in the present invention is a conductive metal including valve metals such as titanium, quantal, niobium, and zirconium, and various shapes such as plate, rod, and expanded mesh shapes can be used without limitation. can do. The metal substrate is preferably pretreated in order to improve the adhesion of a mixed sprayed layer corresponding to a conventional base layer described later and to remove impurities on the surface of the metal substrate. There are surface roughening treatment by blasting using a grid, and degreasing treatment by immersion in a sodium hydroxide aqueous solution, trichlorethylene, etc.

次いで該耐食性金属基体上に、二酸化鉛、二酸化マンガ
ン及び二酸化チタンから選択される少なくとも1種と樹
脂等の非導電性物質との混合物から成る溶射層を形成す
る。これらの溶射粉末は、二酸化鉛単味、二酸化マンガ
ン単味、又は二酸化鉛−二酸化マンガン混合粉末、ある
いは二酸化鉛二酸化チタンの混合粉末、二酸化マンガン
酸化チタン混合粉末、二酸化鉛−二酸化マンガンー酸化
チタン混合粉末とし、二酸化チタン単味で使用すること
は好ましくない。該混合溶射層には、二酸化鉛を含有さ
せることが好ましく、該二酸化鉛は二酸化鉛被覆層との
接合性が良好で、該混合溶射層と該被覆層がより完全に
接合して電極全体の寿命の長期化に寄与する。
Next, a sprayed layer made of a mixture of at least one selected from lead dioxide, manganese dioxide, and titanium dioxide and a non-conductive substance such as a resin is formed on the corrosion-resistant metal substrate. These thermal spray powders include single lead dioxide, single manganese dioxide, mixed powder of lead dioxide and manganese dioxide, mixed powder of lead dioxide and titanium dioxide, mixed powder of manganese dioxide and titanium oxide, and mixed powder of lead dioxide and manganese dioxide and titanium oxide. Therefore, it is not preferable to use titanium dioxide alone. It is preferable that the mixed sprayed layer contains lead dioxide, and the lead dioxide has good bonding properties with the lead dioxide coating layer, so that the mixed sprayed layer and the coating layer are bonded more completely, and the entire electrode is Contributes to longer lifespan.

該溶射法は通常の方法例えばガス溶射法やプラズマ溶射
法を制限なく使用することができ、これにより前記混合
溶射層を形成する。溶射条件は被覆組成により適宜決定
されるが、前記非導電性物質が樹脂等であり高温で溶融
等により脆弱化し易い場合は低温溶射とすることが望ま
しい。溶射する成分は通常の溶射法と同様に溶射前に粉
末とし、該粉末を溶射する。該混合溶射層の厚さは10
0μm以下とすることが好ましく、これを超えると電極
全体の過電圧が大きくなり過ぎるため一般に好ましくな
い。各成分の混合割合は、前記二酸化鉛、−酸化マンガ
ン及び二酸化チタンから選択される少なくとも1種の成
分の粉末を80〜95重量%と非導電性物質を20〜5
重量%とすることが好ましく、又二酸化チタンを二酸化
鉛及び/又は二酸化マンガンに混合する場合はその混合
割合は30〜5重量%とすることが望ましい。
The thermal spraying method may be a conventional method such as a gas spraying method or a plasma spraying method without any limitation, and the mixed thermal spraying layer is formed by this method. Thermal spraying conditions are appropriately determined depending on the coating composition, but if the non-conductive substance is a resin or the like and is likely to become brittle due to melting or the like at high temperatures, low-temperature thermal spraying is preferable. The components to be thermally sprayed are made into powder before thermal spraying, and the powder is thermally sprayed, as in the usual thermal spraying method. The thickness of the mixed thermal spray layer is 10
It is preferable to set it to 0 μm or less, and if it exceeds this, the overvoltage of the entire electrode becomes too large, which is generally not preferable. The mixing ratio of each component is 80 to 95% by weight of a powder of at least one component selected from lead dioxide, manganese oxide, and titanium dioxide, and 20 to 5% by weight of a non-conductive substance.
It is preferable to set it as % by weight, and when titanium dioxide is mixed with lead dioxide and/or manganese dioxide, the mixing ratio is preferably 30 to 5% by weight.

前記非導電性物質は、前記二酸化鉛等に混合されてその
過電圧を上昇させることができ前記溶射により劣化せず
かつ前記した二酸化鉛等をも劣化させない物質、換言す
ると低い溶射温度で溶射層を形成することができる物質
であれば特に限定されず、例えばポリエチレンやエポキ
シ樹脂やベークライト等の樹脂類やゴム類等がある。溶
射温度が高くなってしまう非導電性物質としては例えば
石英ガラスがあり、該石英ガラスの溶射温度では前記二
酸化鉛等が劣化し性能の良い前記混合溶射層を形成する
ことができない。
The non-conductive substance is a substance that can be mixed with the lead dioxide etc. to increase its overvoltage and is not deteriorated by the thermal spraying and does not deteriorate the lead dioxide etc., in other words, it is a substance that can form a thermal sprayed layer at a low thermal spraying temperature. The material is not particularly limited as long as it can be formed, and examples thereof include resins such as polyethylene, epoxy resin, and Bakelite, and rubbers. An example of a non-conductive material that causes a high spraying temperature is quartz glass, and at the spraying temperature of quartz glass, the lead dioxide and the like deteriorate, making it impossible to form the mixed sprayed layer with good performance.

上記した通り前記金属基体上に混合溶射層を形成すると
、該溶射時に前記金属基体を構成する例えばチタンが加
熱されてその表面に二酸化チタンが形成され、該二酸化
チタンが二酸化鉛や二酸化マンガンと反応して複合酸化
物が形成されかつ溶射粉末に応じて対応する単独酸化物
又は複合酸化物が形成され、酸素過電圧の大きい導電性
酸化物から成る混合溶射層になる。該混合溶射層は樹脂
等の非導電性物質の添加により前記金属基体との接着性
と気孔率の低い溶射面を有するようになる。
As described above, when a mixed sprayed layer is formed on the metal substrate, for example, titanium constituting the metal substrate is heated during the thermal spraying and titanium dioxide is formed on its surface, and the titanium dioxide reacts with lead dioxide and manganese dioxide. A composite oxide is formed, and a corresponding single oxide or composite oxide is formed depending on the sprayed powder, resulting in a mixed sprayed layer consisting of a conductive oxide with a large oxygen overvoltage. The mixed sprayed layer has a sprayed surface with low adhesion to the metal substrate and low porosity by adding a non-conductive substance such as a resin.

気孔率が低いため、電解液の前記金属基体への浸入が確
実に防止され従来の溶射層よりも有効に金属基体保護を
達成することができる。
Since the porosity is low, penetration of the electrolytic solution into the metal substrate is reliably prevented, and protection of the metal substrate can be achieved more effectively than conventional sprayed layers.

次いで該混合溶射層上に二酸化鉛特にβ−二酸化鉛の被
覆層を形成する。該被覆層の形成方法は特に限定されな
いが電解法、溶射法及び焼付は法等を採用することがで
きるが、電解法により行うことが最適である。
A coating layer of lead dioxide, particularly β-lead dioxide, is then formed on the mixed sprayed layer. The method of forming the coating layer is not particularly limited, and electrolytic methods, thermal spraying methods, baking methods, etc. can be employed, but it is optimal to perform the formation by electrolytic methods.

該電解法は、例えば前記下地層を形成した金属基体及び
チタン板等をそれぞれ陽極及び陰極とし硝酸鉛を電解液
として、液温50〜90℃、電流密度0.5〜5A/d
m2で行うことが好ましい。二酸化鉛の結晶形にはαと
βがあり、該電解法で形成される二酸化鉛被覆層の結晶
形は電解反応が酸性条件下であればβ型にアルカリ性条
件であればα型になるが、前記混合溶射層との接着性の
見地からはβ型とすることが好ましい。
The electrolytic method uses, for example, a metal substrate on which the underlayer is formed, a titanium plate, etc. as an anode and a cathode, respectively, and lead nitrate as an electrolytic solution at a liquid temperature of 50 to 90°C and a current density of 0.5 to 5 A/d.
It is preferable to carry out in m2. There are two crystal forms of lead dioxide, α and β, and the crystal form of the lead dioxide coating layer formed by this electrolytic method will be the β type if the electrolytic reaction is carried out under acidic conditions, and the α type if the electrolytic reaction is under alkaline conditions. From the viewpoint of adhesion to the mixed thermal sprayed layer, it is preferable to use the β type.

一方前記溶射法は、二酸化鉛粉末を通常の溶射法により
前記混合溶射層上に溶射する。
On the other hand, in the thermal spraying method, lead dioxide powder is thermally sprayed onto the mixed thermal spraying layer by a normal thermal spraying method.

焼付は法による場合は、鉛の化合物と結合剤の混合物を
前記混合溶射層上に被覆し、加熱して前記結合剤の全部
又は一部を除去して前記混合溶射層上に二酸化鉛被覆層
を焼付ける方法である。本焼付は法における前記結合剤
は、常温では単独で前記混合溶射層に付着しない鉛化合
物を該混合溶射層に付着させる機能を有する比較的粘着
性の高い物質であり、例えば酸化珪素と酸化ナトリウム
との混合物である水ガラスを水で希釈したもの、あるい
は有機高分子物質を溶剤に溶解したもの等がある。なお
結合剤には焼付けによりその一部のみが除去される物質
があり、残留する物質が被覆層成分として使用できない
場合は本発明の結合剤として使用することができない。
When the baking method is used, a mixture of a lead compound and a binder is coated on the mixed sprayed layer, and all or part of the binder is removed by heating to form a lead dioxide coating layer on the mixed sprayed layer. This is a method of burning. The binder in the main baking method is a relatively sticky substance that has the function of adhering to the mixed thermal spraying layer lead compounds that do not adhere to the mixed thermal spraying layer alone at room temperature, such as silicon oxide and sodium oxide. Examples include water glass diluted with water, which is a mixture of organic substances, and organic polymer substances dissolved in a solvent. Note that some binders are only partially removed by baking, and if the remaining substances cannot be used as a coating layer component, they cannot be used as the binder of the present invention.

該焼付は法は、例えば希釈した前記水ガラスと二酸化鉛
粉末の混合スラリーを前記下地層上に塗布後加熱焼成し
、次に温水中に浸漬して固着した水ガラス中の酸化ナト
リウム分を溶出させて酸化珪素のみを残し、前記混合溶
射層上に二酸化鉛と僅かな酸化珪素から成る混合溶射層
を形成する方法である。結合剤として有機化合物を使用
すると、焼付けにより該物質が水と二酸化炭素等に分解
され除去されるのが一般的であり、混合溶射層中に他の
残留成分が混入しないため好ましい方法である。
The baking method involves, for example, applying a mixed slurry of the diluted water glass and lead dioxide powder onto the base layer, heating and baking it, and then immersing it in hot water to elute the sodium oxide content in the fixed water glass. In this method, a mixed sprayed layer consisting of lead dioxide and a small amount of silicon oxide is formed on the mixed sprayed layer, leaving only silicon oxide. When an organic compound is used as a binder, the substance is generally decomposed into water, carbon dioxide, etc. and removed by baking, and this is a preferred method because other residual components are not mixed into the mixed sprayed layer.

該焼付は時の加熱温度の上限は、混合溶射層中の二酸化
マンガン等の高温焼付は時に結晶変態によると思われる
劣化を防止するため、該焼付けは約550℃までの温度
で行うことが好ましい。
The upper limit of the heating temperature during the baking is preferably carried out at a temperature of up to about 550°C, in order to prevent the deterioration of manganese dioxide, etc. in the mixed sprayed layer, which is sometimes thought to be caused by crystal transformation. .

このように形成された電極は、混合溶射層の成分が被覆
層の二酸化鉛より過電圧が高いため、該混合溶射層上で
電解反応が生ずることが殆どなく発生ガスによる前記被
覆層の剥離を防止できるため、良好な耐久性を有し、特
に酸素発生型電解の電極として有用である。
In the electrode formed in this way, since the components of the mixed sprayed layer have a higher overvoltage than the lead dioxide of the coating layer, electrolytic reactions hardly occur on the mixed sprayed layer, preventing the coating layer from peeling off due to generated gas. Therefore, it has good durability and is particularly useful as an electrode for oxygen-generating electrolysis.

更に本発明に係わる電極の混合溶射層は、二酸化鉛等の
金属粉末と樹脂等の非導電性物質粉末により形成され、
通常の金属溶射では気孔率の高い溶射層が形成されるの
に対し、本発明ではこの空隙を前記非導電性物質粉末が
埋めて緻密な混合溶射層を形成することを可能にしてい
る。従って従来のように高価な白金族金属やその酸化物
の下地層を形成することは必ずしも必要ではなく、より
安価で性能の劣らない電極を提供できる。
Further, the mixed sprayed layer of the electrode according to the present invention is formed of metal powder such as lead dioxide and non-conductive material powder such as resin,
While ordinary metal spraying forms a sprayed layer with high porosity, the present invention makes it possible to fill the voids with the non-conductive material powder to form a dense mixed sprayed layer. Therefore, it is not necessarily necessary to form an underlayer of expensive platinum group metals or their oxides as in the past, and it is possible to provide an electrode that is less expensive and has the same performance.

(実施例) 以下本発明の実施例を記載するが、該実施例は本発明を
限定するものではない。
(Examples) Examples of the present invention will be described below, but these examples do not limit the present invention.

実施例1 板厚1.ONのチタン製エキスバンドメツシュの表面を
サンドブラスト処理し、その後200 g / Jの水
酸化ナトリウム水溶液中で2時間脱脂処理し水洗後、こ
のエキスバンドメツシュ基体に電解法で製造したβ−二
酸化鉛粉末(−100〜325メツシユ粉末)95重量
%とポリエチレン粉末(−50〜325メソシユ粉末)
5重量%との混合粉末をガス溶射設備(日本ユテソク株
式会社テロダインシステム3000)を使用してガス溶
射し厚さ10〜50μmの混合溶射層を形成した。
Example 1 Plate thickness 1. The surface of ON's expanded band mesh made of titanium was sandblasted, then degreased in a 200 g/J aqueous sodium hydroxide solution for 2 hours, washed with water, and the base of the expanded mesh was coated with β-dioxide produced by an electrolytic method. 95% by weight of lead powder (-100~325 mesh powder) and polyethylene powder (-50~325 mesh powder)
The mixed powder with 5% by weight was gas sprayed using gas spraying equipment (Terodyne System 3000, Nippon Utesoku Co., Ltd.) to form a mixed sprayed layer with a thickness of 10 to 50 μm.

次いで該基体を陽極とし又チタン板を陰極として電解液
として硝酸鉛水溶液(80℃飽和溶液)を使用し、マグ
ネチソクスターラで液を攪拌しながら、温度80℃で2
A/dm2の電流密度で2時間電解し厚さ約250μm
のβ−二酸化鉛被覆層を有する電極を得た。
Next, using the substrate as an anode and the titanium plate as a cathode, using an aqueous lead nitrate solution (saturated solution at 80°C) as an electrolyte, and stirring the solution with a magnetic stirrer, it was heated at a temperature of 80°C for 2 hours.
Electrolyzed for 2 hours at a current density of A/dm2 to a thickness of approximately 250 μm.
An electrode having a β-lead dioxide coating layer was obtained.

几較炎上 溶射層用粉末としてβ−二酸化鉛粉末単味を使用して溶
射層を形成したこと以外は実施例1と同様の方法でβ−
二酸化鉛被覆層を有する電極を得た。
The β-
An electrode with a lead dioxide coating layer was obtained.

遣】1飢1 混合溶射層用混合粉末として二酸化マンガン粉末(−1
00〜325メソシユ粉末)90重量%とポリエチレン
粉末10重量%との混合粉末を使用して混合溶射層を形
成したこと以外は実施例1と同様にして二酸化鉛被覆電
極を得た。
1 Hunger 1 Manganese dioxide powder (-1
A lead dioxide-coated electrode was obtained in the same manner as in Example 1, except that a mixed sprayed layer was formed using a mixed powder of 90% by weight of 00-325 Mesophyll powder and 10% by weight of polyethylene powder.

此l■11 溶射層用粉末として二酸化マンガン粉末単味を使用して
溶射層を形成したこと以外は実施例1と同様の方法でβ
−二酸化鉛被覆層を有する電極を得た。
This l■11 β was prepared in the same manner as in Example 1 except that the thermal spray layer was formed using only manganese dioxide powder as the powder for the thermal spray layer.
- An electrode with a lead dioxide coating layer was obtained.

実施例3 混合溶射層用混合粉末としてβ−二酸化鉛粉末47.5
重量%、二酸化チタン粉末47.5重量%及びポリエチ
レン粉末5重量%との混合粉末を使用して混合溶射層を
形成したこと以外は実施例1と同様にして二酸化鉛被覆
電極を得た。
Example 3 β-lead dioxide powder 47.5% as mixed powder for mixed thermal spray layer
A lead dioxide-coated electrode was obtained in the same manner as in Example 1, except that a mixed sprayed layer was formed using a mixed powder of 47.5% by weight of titanium dioxide powder and 5% by weight of polyethylene powder.

大隻炎↓ 混合溶射層用混合粉末としてβ−二酸化鉛粉末67重量
%、二酸化チタン粉末28重量%及びポリエチレン粉末
5重量%との混合粉末を使用して混合溶射層を形成した
こと以外は実施例1と同様にして二酸化鉛被覆電極を得
た。
↓ Except for the fact that the mixed thermal sprayed layer was formed using a mixed powder of 67% by weight of β-lead dioxide powder, 28% by weight of titanium dioxide powder, and 5% by weight of polyethylene powder as the mixed powder for the mixed thermal sprayed layer. A lead dioxide coated electrode was obtained in the same manner as in Example 1.

比較例3 溶射層用粉末としてβ−二酸化鉛粉末70重量%及び二
酸化チタン粉末30重量%の混合粉末を使用して下地層
を形成したこと以外は実施例1と同様の方法でβ−二酸
化鉛被覆層を有する電極を得た。
Comparative Example 3 β-Lead dioxide was formed in the same manner as in Example 1, except that the base layer was formed using a mixed powder of 70% by weight of β-lead dioxide powder and 30% by weight of titanium dioxide powder as the powder for the thermal spray layer. An electrode having a coating layer was obtained.

大旗■】 混合溶射層用混合粉末として二酸化マンガン粉末90重
量%とエポキシ樹脂粉末10重量%との混合粉末を使用
して混合溶射層を形成したこと以外は実施例1と同様に
して二酸化鉛被覆電極を得た。
Big Flag ■] Lead dioxide was prepared in the same manner as in Example 1, except that the mixed sprayed layer was formed using a mixed powder of 90% by weight of manganese dioxide powder and 10% by weight of epoxy resin powder as the mixed powder for the mixed thermally sprayed layer. A coated electrode was obtained.

比較例4 溶射層用粉末として酸化白金粉末単味を使用して溶射層
を形成したこと以外は実施例1と同様の方法でβ−二酸
化鉛被覆層を有する電極を得た。
Comparative Example 4 An electrode having a β-lead dioxide coating layer was obtained in the same manner as in Example 1, except that the sprayed layer was formed using platinum oxide powder alone as the powder for the sprayed layer.

実施例1〜5及び比較例1〜4の計9枚の二酸化鉛被覆
電極を、50℃、200 g / lの硫酸水溶液中で
陽極とし、100A/dm2の電流密度で加速電解試験
を実施した。その結果を第1表に示す。
A total of nine lead dioxide coated electrodes of Examples 1 to 5 and Comparative Examples 1 to 4 were used as anodes in a 200 g/l sulfuric acid aqueous solution at 50°C, and an accelerated electrolytic test was conducted at a current density of 100 A/dm2. . The results are shown in Table 1.

実施例1〜5の電極は1000時間以上電極を行っても
剥離の発生や重量減少が観察されず、安定した電解を行
うことができた。比較例の各電極はいずれも短時間でβ
−二酸化鉛層と溶射層間の全面で剥離が発生した。
In the electrodes of Examples 1 to 5, no peeling or weight loss was observed even when the electrodes were used for 1000 hours or more, and stable electrolysis could be performed. Each electrode in the comparative example achieved β in a short time.
- Peeling occurred on the entire surface between the lead dioxide layer and the sprayed layer.

第 表 (発明の効果) 本発明に係わる二酸化鉛電極は、耐食性金属基体と、該
金属基体上に形成された非導電性物質を含む混合溶射層
と、該混合溶射層上に形成された二酸化鉛被覆層とを含
んでいる。
Table 1 (Effects of the Invention) The lead dioxide electrode according to the present invention comprises a corrosion-resistant metal base, a mixed sprayed layer containing a non-conductive substance formed on the metal base, and a carbon dioxide formed on the mixed sprayed layer. A lead coating layer is included.

前記混合溶射層中の樹脂等の非導電性物質は、前記二酸
化鉛被覆層の過電圧よりも該混合溶射層の過電圧を高く
する機能を有している。従って電解反応は前記二酸化鉛
被覆層で選択的に起こり、前記混合溶射層上では殆ど生
じない。そのため該混合溶射層上ではガス発生がなく該
発生ガスによる前記二酸化鉛被覆層の剥離も生じない。
The non-conductive substance such as resin in the mixed sprayed layer has a function of making the overvoltage of the mixed sprayed layer higher than the overvoltage of the lead dioxide coating layer. Therefore, the electrolytic reaction occurs selectively on the lead dioxide coating layer, and hardly occurs on the mixed sprayed layer. Therefore, no gas is generated on the mixed sprayed layer, and the lead dioxide coating layer does not peel off due to the generated gas.

更に該混合溶射層は溶射法により形成されるにもかかわ
らず、非導電性物質の粒子が二酸化鉛等の粒子間の間隙
を埋めて気孔率を低くしているため、電解液の前記金属
基体との接触を効果的に防止し前記混合溶射層の本来の
機能である前記金属基体の保護がより確実になって耐久
性が飛躍的に増大し、長期間に亘る安定した操業を可能
にする。
Furthermore, although the mixed sprayed layer is formed by a thermal spraying method, the particles of the non-conductive substance fill the gaps between the particles of lead dioxide, etc., thereby lowering the porosity. This effectively prevents contact with the metal substrate, which is the original function of the mixed sprayed layer, and makes the protection of the metal substrate more reliable, dramatically increasing durability and enabling stable operation over a long period of time. .

又本発明では、白金族金属を使用しなくても良く、原料
コストが安く、安価に性能の良好な二酸化鉛電極を製造
することが可能になる。
Further, in the present invention, it is not necessary to use platinum group metals, the raw material cost is low, and a lead dioxide electrode with good performance can be manufactured at low cost.

Claims (2)

【特許請求の範囲】[Claims] (1)耐食性金属基体と、該金属基体上に形成された二
酸化鉛、二酸化マンガン及び二酸化チタンの少なくとも
1種と非導電性物質とを含む混合溶射層と、該混合溶射
層上に形成された二酸化鉛被覆層とを含んで成る二酸化
鉛電極。
(1) a corrosion-resistant metal base; a mixed sprayed layer formed on the metal base and containing at least one of lead dioxide, manganese dioxide, and titanium dioxide; and a non-conductive substance; and a mixed sprayed layer formed on the mixed sprayed layer. A lead dioxide electrode comprising a lead dioxide coating layer.
(2)耐食性金属基体上に、二酸化鉛、二酸化マンガン
及び二酸化チタンの少なくとも1種の粉末と非導電性物
質の粉末との混合粉末を溶射して混合溶射層を形成し、
該混合溶射層上に二酸化鉛被覆層を形成することを含ん
で成る二酸化鉛電極の製造方法。
(2) spraying a mixed powder of at least one powder of lead dioxide, manganese dioxide, and titanium dioxide and a powder of a non-conductive substance onto a corrosion-resistant metal substrate to form a mixed sprayed layer;
A method for manufacturing a lead dioxide electrode, comprising forming a lead dioxide coating layer on the mixed sprayed layer.
JP63156256A 1988-06-24 1988-06-24 Lead dioxide electrode and production thereof Pending JPH028391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156256A JPH028391A (en) 1988-06-24 1988-06-24 Lead dioxide electrode and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156256A JPH028391A (en) 1988-06-24 1988-06-24 Lead dioxide electrode and production thereof

Publications (1)

Publication Number Publication Date
JPH028391A true JPH028391A (en) 1990-01-11

Family

ID=15623818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156256A Pending JPH028391A (en) 1988-06-24 1988-06-24 Lead dioxide electrode and production thereof

Country Status (1)

Country Link
JP (1) JPH028391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834103B2 (en) * 2005-10-21 2011-12-14 オウトテック オサケイティオ ユルキネン Method for forming an electrocatalytic surface on an electrode and the electrode
CN108048867A (en) * 2017-12-05 2018-05-18 淮南师范学院 A kind of preparation method of novel photoelectric catalysis material electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834103B2 (en) * 2005-10-21 2011-12-14 オウトテック オサケイティオ ユルキネン Method for forming an electrocatalytic surface on an electrode and the electrode
KR101383524B1 (en) * 2005-10-21 2014-04-08 오토텍 오와이제이 Method for forming an electrocatalytic surface on an electrode and the electrode
CN108048867A (en) * 2017-12-05 2018-05-18 淮南师范学院 A kind of preparation method of novel photoelectric catalysis material electrode
CN108048867B (en) * 2017-12-05 2019-06-11 淮南师范学院 A kind of preparation method of photoelectrocatalysimaterial material electrode

Similar Documents

Publication Publication Date Title
AU657248B2 (en) Electrodes of improved service life
FI118159B (en) Method for forming an electrocatalytic surface of an electrode and electrode
JP2006188742A (en) Insoluble anode
JP4341838B2 (en) Electrode cathode
CA1184871A (en) Low overvoltage hydrogen cathodes
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
SE457004B (en) ELECTROLYCLE ELECTRODE WITH AN INTERMEDIATE BETWEEN SUBSTRATE AND ELECTRIC COATING AND PROCEDURE FOR MANUFACTURING THE ELECTRODE
KR860001050B1 (en) Metal electrode for use in electrolytic process
CA1190185A (en) Electrode with outer coating and protective intermediate conductive polymer coating on a conductive base
JPH0633287A (en) Electrode for electrolysis and its production
US5431798A (en) Electrolytic electrode and method of production thereof
KR890002700B1 (en) Low over-voltage electrodes for alkaline electrolytes
JPH03271386A (en) Anode for generating oxygen and production thereof
JPH0790665A (en) Oxygen generating electrode
JPH05171483A (en) Manufacture of anode for generating oxygen
JPH05148675A (en) Electrolytic electrode base body, electrolytic electrode and production thereof
JPH028391A (en) Lead dioxide electrode and production thereof
JP4115575B2 (en) Activated cathode
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JPH0257159B2 (en)
JPH0499294A (en) Oxygen generating anode and its production
JP3422885B2 (en) Electrode substrate
JPS5925985A (en) Low overvoltage cathode having high durability and its production
JPH02179891A (en) Anode for generate oxygen and production thereof
US5391280A (en) Electrolytic electrode and method of production thereof