JPH028369A - Vacuum treatment equipment - Google Patents

Vacuum treatment equipment

Info

Publication number
JPH028369A
JPH028369A JP2037788A JP2037788A JPH028369A JP H028369 A JPH028369 A JP H028369A JP 2037788 A JP2037788 A JP 2037788A JP 2037788 A JP2037788 A JP 2037788A JP H028369 A JPH028369 A JP H028369A
Authority
JP
Japan
Prior art keywords
vacuum
chamber
substrate
processing
cassette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2037788A
Other languages
Japanese (ja)
Other versions
JP2626782B2 (en
Inventor
Tsutomu Tsukada
勉 塚田
Hideo Uchikawa
内川 英雄
Atsumi Tanaka
田中 敦巳
Junichi Shimizu
潤一 清水
Etsuo Wani
和仁 悦夫
Hideki Takahashi
高橋 秀輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP63020377A priority Critical patent/JP2626782B2/en
Publication of JPH028369A publication Critical patent/JPH028369A/en
Application granted granted Critical
Publication of JP2626782B2 publication Critical patent/JP2626782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To inhibit the generation of dust at the surface to be treated of a substrate and also to improve productivity by providing cassettes in which vertically set plural substrates are placed to the insides of plural spare vacuum chambers and successively conveying these cassettes to vacuum treatment chambers. CONSTITUTION:Cassettes 4a, 4b in which substrates 3 are set are set in spare vaccum chambers 6a, 6b so that substrate surfaces to be treated are made vertical. First, the cassette 4a is conveyed by means of a conveyance mechanism 7 into a vacuum conveyance chamber 5, and then, the substrate 3 is lifted up, held by means of a conveyance chuck 9, turned so that the surface to be treated of the substrate 3 is turned downward, and conveyed to a relay position 8. Subsequently, the substrate 3 is conveyed to vacuum chambers 1a-1c in succession by means of a robot arm 10 to undergo respectively prescribed vacuum treatments and is then returned via the relay position 8 into the cassette 4. When the treatments of all the substrates 3 are finished as mentioned above and the cassette 4a is moved to the spare vacuum chamber 6a, the cassette 4b is transferred into the vacuum conveyance chamber 5 and subjected to the repetition of the same treatments as mentioned above. By this method, the generation of dust at the substrate 3 surface to be treated can be inhibited, and productivity in the vacuum treatment can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空中で基板の表面処理を行うための真空処
理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vacuum processing apparatus for performing surface treatment of a substrate in vacuum.

(従来の技術) この種の真空処理装置としてプラズマを用いた装置が周
知であり、とりわけ半導体素子製造行程では、反応性ガ
スプラズマを利用したドライエツチング装置が広く普及
している。特に処理室を複数有したマルチチャンバード
ライエツチング装置は、それぞれの処理室で異なった反
応性ガスによるエツチングが可能であるため、特にアル
ミニウム合金摸のドライエツチング装置として使われ始
めている。
(Prior Art) As this type of vacuum processing apparatus, an apparatus using plasma is well known, and in particular, a dry etching apparatus using reactive gas plasma is widely used in the semiconductor device manufacturing process. In particular, a multi-chamber dry etching apparatus having a plurality of processing chambers is beginning to be used as a dry etching apparatus for aluminum alloys, since each processing chamber can perform etching using a different reactive gas.

これらのマルチチャンバードライエツチング装置の代表
例として第4図及び第5図に示す装置が知られている。
As representative examples of these multi-chamber dry etching devices, the devices shown in FIGS. 4 and 5 are known.

第4図に示す装置は、基板搬入用力セラ)4a及び3つ
の処理室1a、lb、lc並びに基板搬出用力セラ)4
bを直列に並べて構成しており、それらは互いにバルブ
2a、2b、2c、2dで仕切られている。
The apparatus shown in FIG. 4 includes a power cellar for carrying in substrates 4a, three processing chambers 1a, lb, and lc, and a power cellar for carrying out substrates) 4.
b are arranged in series and are separated from each other by valves 2a, 2b, 2c, and 2d.

上記のような構成において、基板3をセットした基板搬
入用のカセッ)4aは、大気中に置かれており、バルブ
2aを開閉して基板を一枚毎処理室1aに搬送する。そ
して、処理室la内で所定の真空処理を行った後、順次
各バルブを介して処理学1b、1cへ基板3を搬送しな
がら所定の真空処理を行い、こららの真空処理終了後、
処理済みの基板3を、基板搬出用のカセッ)4bに収納
搬出するようしている。
In the above configuration, the substrate carrying cassette 4a in which the substrates 3 are set is placed in the atmosphere, and the valve 2a is opened and closed to transfer the substrates one by one to the processing chamber 1a. After performing a predetermined vacuum process in the processing chamber la, the substrate 3 is sequentially transferred to the process chambers 1b and 1c through each valve while performing a predetermined vacuum process, and after completing these vacuum processes,
The processed substrate 3 is stored and carried out in a cassette 4b for carrying out the substrate.

次に、第5図に示す装置は、3個の処理室1a、1b、
1c及び基板搬入搬出兼用カセット4を収納した真空予
備室6が真空搬送室5を取り囲むように放射状に配置さ
れ、各処理室1a〜1c及び真空予備室6と真空搬送室
5との間は、バルブ2a、  2b、  2c、2dを
介在させ、各処理室1a〜1c及び真空予備室6と真空
搬送室5とを互いに気密にできるようにしている。そし
て、当該真空予備室6は、バルブ2aによって真空搬送
室5や処理室1a〜1cを大気に開放することなく、独
立に大気にすることができる。
Next, the apparatus shown in FIG. 5 has three processing chambers 1a, 1b,
1c and a vacuum preliminary chamber 6 which accommodates a cassette 4 for carrying in and carrying out substrates is arranged radially so as to surround the vacuum transfer chamber 5. Valves 2a, 2b, 2c, and 2d are interposed so that each of the processing chambers 1a to 1c, the vacuum preliminary chamber 6, and the vacuum transfer chamber 5 can be made airtight with respect to each other. The vacuum preliminary chamber 6 can be independently exposed to the atmosphere without opening the vacuum transfer chamber 5 and the processing chambers 1a to 1c to the atmosphere using the valve 2a.

上記のような構成において、真空予備室6におけるカセ
ット4の搬入搬出口であるバルブ2eを開き、基板3を
装填したカセット4を真空予備室6内に置いた後、上記
バルブ2eを閉じ、真空予備室6を真空に排気する。次
に、バルブ2aを開き、真空搬送室5内の搬送機構(図
示していない)により基板を任意の処理室1a若しくは
1b又はICに搬送し、基板3が移送された任意の処理
室バルブ2b若しくは2C又は2dを閉じ、所定の真空
処理を行う。
In the above-mentioned configuration, the valve 2e, which is the loading/unloading port for the cassette 4 in the vacuum preliminary chamber 6, is opened, and after the cassette 4 loaded with the substrate 3 is placed in the vacuum preliminary chamber 6, the valve 2e is closed, and the vacuum The preliminary chamber 6 is evacuated. Next, the valve 2a is opened, and the substrate is transferred to any processing chamber 1a or 1b or IC by the transfer mechanism (not shown) in the vacuum transfer chamber 5, and the arbitrary processing chamber valve 2b to which the substrate 3 was transferred is Alternatively, close 2C or 2d and perform a predetermined vacuum treatment.

そして、真空処理終了後、再び真空搬送室5を経由し、
他の処理室、へ基板を搬送した後、真空処理を行なう。
Then, after the vacuum processing is completed, it passes through the vacuum transfer chamber 5 again,
After the substrate is transferred to another processing chamber, vacuum processing is performed.

このような操作を所望の真空処理に応じて−乃至複数回
行った後、再び基板3を基板搬入搬出兼用カセット4に
収納することにより、真空処理を終了させる。全ての基
板の真空処理の終了後、バルブ2aを閉じ、真空予備室
6を大気とし、カセット4を取り出すようにしている。
After performing such an operation one or more times depending on the desired vacuum processing, the substrate 3 is again stored in the substrate loading/unloading cassette 4, thereby terminating the vacuum processing. After the vacuum processing of all the substrates is completed, the valve 2a is closed, the vacuum preliminary chamber 6 is exposed to the atmosphere, and the cassette 4 is taken out.

(発明が解決しようとする問題点) しかしながら、前記第4図に示す装置では、処理室la
内が、基板3を搬送する度に大気に晒されるため、大気
中の水分等の残留ガスが、処理室壁面に吸着して再現性
の良い真空処理を行うことが難しい。更に、各処理室が
直接連結しているため、各処理室で使用したガスの残留
成分が互いに隣り合った処理室に流れ込み易く、処理特
性が悪化する場合がある。更に、処理後の基板は、大気
中で保管され、カセット4に装填された全ての基板の処
理が終了するまで、真空処理された基板が大気に晒され
るため、例えばアルミニウム合金膜のエツチング時には
、多量のコロ−ジョンが発生する場合があった。
(Problems to be Solved by the Invention) However, in the apparatus shown in FIG.
Since the interior of the chamber is exposed to the atmosphere every time the substrate 3 is transported, residual gas such as moisture in the atmosphere is adsorbed to the wall surface of the processing chamber, making it difficult to perform vacuum processing with good reproducibility. Furthermore, since the processing chambers are directly connected, residual components of the gas used in each processing chamber tend to flow into adjacent processing chambers, which may deteriorate processing characteristics. Furthermore, the substrates after processing are stored in the atmosphere, and the vacuum-treated substrates are exposed to the atmosphere until the processing of all the substrates loaded in the cassette 4 is completed. In some cases, a large amount of corrosion occurred.

次に前記第5図に示す装置では、基板は真空中に保管さ
れ、カセットの交換時に予備真空室のみ大気開放すれば
良いため、処理後の残留ガスによる汚染が少なく、また
アルミニウム合金エツチング時のコロ−ジョンの発生も
少ない。
Next, in the apparatus shown in FIG. 5, the substrate is stored in a vacuum, and only the preliminary vacuum chamber needs to be opened to the atmosphere when replacing the cassette, so there is less contamination due to residual gas after processing, and there is less contamination during aluminum alloy etching. There is also less occurrence of corrosion.

しかしながら、真空予備室が一室しかないため、カセッ
トにセットされた全ての基板の真空処理が終り、カセッ
トを交換する間、真空処理ができないため、生産性が大
幅に低下する。特に微細加工をする上で重要となる基板
上に発生する微少なゴミは、真空予備室を大気にしたり
、真空に排気する時に多量に発生する。このゴミを減少
させるためには、真空に排気する時間や、大気にする時
間を充分長くする必要があるが、このような過程を第5
図に示す装置で行うと、生産性が大幅に低下してしまう
However, since there is only one vacuum preparatory chamber, the vacuum processing cannot be performed while the cassettes are being replaced after all the substrates set in the cassettes have been vacuum processed, resulting in a significant drop in productivity. In particular, a large amount of minute dust generated on the substrate, which is important in microfabrication, is generated when the vacuum preliminary chamber is exposed to the atmosphere or evacuated to a vacuum. In order to reduce this dust, it is necessary to make the time for evacuation to a vacuum and the time for the atmosphere to be sufficiently long, but this process is
If the apparatus shown in the figure is used, productivity will drop significantly.

更に、上記両装置とも基板3は、処理面が上を向いてい
るため、搬送中及び真空処理中に基板面で多量のゴミが
発生しており、微細加工の要求に合致するものではなか
った。
Furthermore, in both of the above devices, since the processing surface of the substrate 3 faces upward, a large amount of dust was generated on the substrate surface during transportation and vacuum processing, which did not meet the requirements of microfabrication. .

(本発明の目的) 本発明は、上記問題点を解決するためになされたもので
あり、その目的は、基板の処理面に発生するゴミの発生
を抑制するとともに、真空処理の生産性を向上させ、更
にアフターコロ−ジョンを発生させず、再現性の良い真
空処理を行うことのできる装置を提供することにある。
(Object of the present invention) The present invention was made to solve the above-mentioned problems, and its purpose is to suppress the generation of dust on the processing surface of a substrate and to improve the productivity of vacuum processing. The object of the present invention is to provide an apparatus capable of performing vacuum processing with good reproducibility without causing after-corrosion.

(問題点を解決するための手段) 本発明は、上記目的を達成するために次のように構成さ
れている。すなわち、第1の手段として、バルブにより
気密にすることができる予備真空室と、真空搬送室と、
複数の処理室とを備え、予備真空室内の基板を真空搬送
室を経由して任意の処理室へ搬送し、該基板を該処理室
で真空処理した後、再び該真空搬送室を経由して他の任
意の処理室へ搬送し、該基板を該処理室で真空処理した
後、再び該真空搬送室を経由し予備真空室へ戻し、真空
処理する真空処理装置において、各々独立に大気開放、
真空排気できる機構を備えた予備真空室を少なくとも2
個設け、該各々の予備真空室内には、鉛直に設置した複
数枚の基板を収納したカセットを備え、該基板を真空中
で予備真空室と真空搬送室との間で往復移送する搬送機
構を備えるとともに、該真空搬送室へ搬送された基板を
前記カセットから順次該真空処理室へ搬送する一方、該
真空処理室で真空処理した処理済基板を前記カセットに
引き渡す移送機構を備えたことを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention is configured as follows. That is, as a first means, a preliminary vacuum chamber that can be made airtight with a valve, a vacuum transfer chamber,
A plurality of processing chambers are provided, and the substrate in the preliminary vacuum chamber is transferred to an arbitrary processing chamber via the vacuum transfer chamber, and after the substrate is vacuum-processed in the processing chamber, the substrate is transferred via the vacuum transfer chamber again. After the substrate is transferred to another arbitrary processing chamber and subjected to vacuum processing in the processing chamber, the substrate is returned to the preliminary vacuum chamber via the vacuum transfer chamber again, and in the vacuum processing apparatus for vacuum processing, each substrate is independently exposed to the atmosphere,
At least two preliminary vacuum chambers equipped with a mechanism for evacuation
Each preliminary vacuum chamber is equipped with a cassette containing a plurality of vertically installed substrates, and a transfer mechanism is provided for reciprocating the substrates in vacuum between the preliminary vacuum chamber and the vacuum transfer chamber. The method further includes a transfer mechanism that sequentially transfers substrates transferred to the vacuum transfer chamber from the cassette to the vacuum processing chamber, and transfers processed substrates that have been vacuum-processed in the vacuum processing chamber to the cassette. It is said that

更に、第2の手段として、バルブにより気密にすること
ができる予備真空室と、真空搬送室と、複数の処理室と
を備え、予備真空室内の基板を真空搬送室を経由して任
意の処理室へ搬送し、該基板を該処理室で真空処理した
後、再び該真空搬送室を経由して他の任意の処理室へ搬
送し、該基板を該処理室で真空処理した後、再び該真空
搬送室を経由し予備真空室へ戻し、真空処理する真空処
理装置において、各々独立に大気開放、真空排気できる
機構を備えた予備真空室を少なくとも2個設け、該各々
の予備真空室内には、鉛直に設置した複数枚の基板を収
納したカセットを備え、該基板を真空中で予備真空室と
真空搬送室との間で往復移送する搬送機構を備えるとと
もに、該真空搬送室へ搬送された基板を前記カセットか
ら順次該真空処理室へ搬送する一方、該真空処理室で真
空処理した処理済基板を前記カセットに引き渡す移送機
構を備え、該真空予備室の大気側に、カセットに収納し
た基板を100℃以上に加熱可能な少なくとも一つの加
熱炉を設置し、かつ該真空予備室よりカセットを取り出
し、カセットを該加熱炉へ移動する機構を備えたことを
特徴としている。
Furthermore, as a second means, a preliminary vacuum chamber that can be made airtight with a valve, a vacuum transfer chamber, and a plurality of processing chambers are provided, and the substrate in the preliminary vacuum chamber is transferred through the vacuum transfer chamber to any desired processing. After the substrate is vacuum-processed in the processing chamber, it is transported again to any other processing chamber via the vacuum transfer chamber, and the substrate is vacuum-processed in the processing chamber, and then the substrate is vacuum-processed in the processing chamber. In a vacuum processing apparatus that performs vacuum processing by returning to a pre-vacuum chamber via a vacuum transfer chamber, at least two pre-vacuum chambers each equipped with a mechanism that can be independently opened to atmosphere and evacuated are provided, and each pre-vacuum chamber has a , equipped with a cassette containing a plurality of vertically installed substrates, a transfer mechanism for reciprocating the substrates between a preliminary vacuum chamber and a vacuum transfer chamber in a vacuum, and a transfer mechanism for transferring the substrates back and forth between a preliminary vacuum chamber and a vacuum transfer chamber; A transfer mechanism is provided to sequentially transport the substrates from the cassette to the vacuum processing chamber and to deliver the processed substrates that have been vacuum-processed in the vacuum processing chamber to the cassette, and the substrates stored in the cassette are placed on the atmospheric side of the vacuum preliminary chamber. The apparatus is characterized by being equipped with at least one heating furnace capable of heating the liquid to 100° C. or higher, and a mechanism for taking out the cassette from the vacuum preliminary chamber and moving the cassette to the heating furnace.

1l− =12− (作用) 上記構成から成る本発明において、基板の真空処理に際
し、予備真空室と真空搬送室と処理室間相互の基板の出
し入れ及び搬送動作は次のように行われる。
1l- = 12- (Function) In the present invention having the above configuration, during vacuum processing of a substrate, the operation of loading and unloading and transporting the substrate between the preliminary vacuum chamber, the vacuum transfer chamber, and the processing chamber is performed as follows.

2つの予備真空室と、真空搬送室と、処理室の全系を、
各室を隔離するバルブを開いた状態で真空に排気する。
The entire system includes two preliminary vacuum chambers, a vacuum transfer chamber, and a processing chamber.
Evacuate each chamber to vacuum with the valves that isolate each chamber open.

次に、一方の予備真空室と真空搬送室とを隔離するバル
ブを閉じ、該予備真空室にN2、空気等を導入し、大気
開放とする。そして、予備真空室の蓋を開け、基板を鉛
直に収納したカセットを予備真空室内に設置する。続い
て、予備真空室の蓋を閉じ、真空に排気し、バルブを開
け、カセットを真空中で真空搬送室へ移送し、第1移送
機構である搬送チャック及び第2移送機構であるロボッ
トアームにより、カセット内の基板を、−枚毎、処理面
を下に向けて真空処理室の電極周囲に設けた基板保持リ
ング上に搬送し、該基板を基板保持リング上に載置する
Next, a valve isolating one of the preliminary vacuum chambers and the vacuum transfer chamber is closed, and N2, air, etc. are introduced into the preliminary vacuum chamber, and the chamber is opened to the atmosphere. Then, the lid of the pre-vacuum chamber is opened, and the cassette containing the substrate vertically is placed inside the pre-vacuum chamber. Next, the lid of the preliminary vacuum chamber is closed, the vacuum is evacuated, the valve is opened, and the cassette is transferred to the vacuum transfer chamber in a vacuum, using the transfer chuck that is the first transfer mechanism and the robot arm that is the second transfer mechanism. The substrates in the cassette are transported one by one onto a substrate holding ring provided around the electrodes in the vacuum processing chamber with the processing surface facing downward, and the substrates are placed on the substrate holding ring.

次に基板保持リングを電極に密着させてから電極を下降
させ、処理室を真空搬送室から隔離し、処理室へ反応性
ガスを流し、処理室に設けた他の排気系により排気しな
がら真空処理を行う。
Next, the substrate holding ring is brought into close contact with the electrode, the electrode is lowered, the processing chamber is isolated from the vacuum transfer chamber, the reactive gas is flowed into the processing chamber, and the vacuum is evacuated while being evacuated by another exhaust system installed in the processing chamber. Perform processing.

真空処理終了後、再び電極を上昇させ、処理室を真空搬
送室と同一真空とし・、基板を他の処理室へ搬送すると
同時に、他の基板をカセットから取り出し、先に基板を
処理した処理室へ搬送する。
After the vacuum processing is completed, the electrode is raised again to make the processing chamber the same vacuum as the vacuum transfer chamber, and at the same time the substrate is transferred to another processing chamber, another substrate is taken out from the cassette and transferred to the processing chamber where the substrate was previously processed. Transport to.

上記操作を一度乃至数度繰り返し、真空処理が終了した
後、基板をロボットアーム及び搬送チャックを介して処
理済基板をカセットに鉛直に回収し、真空処理を終させ
る。
The above operation is repeated once or several times, and after the vacuum processing is completed, the processed substrate is collected vertically into a cassette via a robot arm and a transfer chuck, and the vacuum processing is completed.

上記真空処理の最中に、他の予備真空室と真空搬送室と
を隔離するバルブをを閉じ、他の予備真空室を大気に開
放し、基板をセットした他のカセットを、該予備真空室
に設置し、真空に排気しておく。先の真空処理中の基板
が収納されたカセット内の基板の真空処理が終了した時
点で速やかにカセットを入れ代え、他のカセットに入っ
た基板の真空処理を開始する。それと同時に、真空処理
が終了した基板を回収したカセットは、先の予備真空室
に移送され、真空搬送室とはバルブで隔離した状態で予
備真空室を大気に開放し、処理済基板を取り出す。予備
真空室を大気開放してカセットを交換する操作は、以上
述べたように、真空処理を行いながら実行できるため、
生産性の大幅な向上が期待できるばかりでなく、N2や
空気等の導入、排気の時間を長時間行えるため、ゴミの
発生を抑えた真空処理の実現が可能となる。
During the above vacuum processing, the valve that isolates the other preliminary vacuum chamber and the vacuum transfer chamber is closed, the other preliminary vacuum chamber is opened to the atmosphere, and the other cassette with the substrate set is transferred to the preliminary vacuum chamber. and evacuate it to a vacuum. When the vacuum processing of the substrate in the cassette containing the substrate being previously vacuum processed is completed, the cassette is immediately replaced, and the vacuum processing of the substrate in the other cassette is started. At the same time, the cassette containing the substrates that have been vacuum-processed is transferred to the preliminary vacuum chamber, separated from the vacuum transfer chamber by a valve, the preliminary vacuum chamber is opened to the atmosphere, and the processed substrates are taken out. As mentioned above, the operation of opening the preliminary vacuum chamber to the atmosphere and replacing the cassette can be performed while performing vacuum processing.
Not only can a significant increase in productivity be expected, but the introduction and exhaust of N2, air, etc. can be carried out for a long time, making it possible to realize vacuum processing that suppresses the generation of dust.

さらに、処理済基板の収納されたカセットを加熱炉に入
れ、所定温度で一定時間の加熱処理を行うようにしてい
るので、殆ど完全にアフターコロ−ジョンを抑制できる
Further, since the cassette containing the processed substrates is placed in a heating furnace and heated at a predetermined temperature for a predetermined period of time, after-corrosion can be almost completely suppressed.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。なお
、従来技術と同一の構成部材については、同一符号を使
用して説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. Note that the same reference numerals will be used to describe the same constituent members as in the prior art.

第1図は、本発明の第1実施例の平面図を示している。FIG. 1 shows a plan view of a first embodiment of the invention.

これによると、3つの処理室1a、lb、1cは、真空
搬送室5の下部に配置され、当該真空搬送室5には、バ
ルブ2aによって隔離できる真空子1i室6aと、バル
ブ2bによって隔離できる真空予備室6bが取り付けら
れている。また、真空搬送室5内部には、カセッ)4a
及び4bを搬送させる搬送機構7と、カセッ)4a、4
bに鉛直にセットされた基板3をチャッキングし、90
°回転させて水平に保持し、基板3が下方に向くように
してから、軸芯9′を支点に水平方向に回動し、基板3
を中継位置8まて搬送する搬送チャック9と、中継位置
8まで搬送された基板を、更に処理室1a〜ICに搬送
するために2つのチャック部10a′、10bを備えた
回動可能なロボットアーム10が設置されている。
According to this, the three processing chambers 1a, lb, and 1c are arranged at the lower part of the vacuum transfer chamber 5, and the vacuum transfer chamber 5 includes a vacuum chamber 1i which can be isolated by a valve 2a and a vacuum chamber 1i which can be isolated by a valve 2b. A vacuum preliminary chamber 6b is attached. Also, inside the vacuum transfer chamber 5, there is a cassette 4a.
and a transport mechanism 7 for transporting the cassettes 4a and 4b, and the cassettes 4a and 4b.
Chuck the board 3 set vertically on b, and
° Rotate and hold the board 3 horizontally so that the board 3 faces downward, then rotate the board 3 horizontally about the axis 9' as a fulcrum, and then rotate the board 3 horizontally.
A rotatable robot equipped with a transport chuck 9 for transporting the substrate to the relay position 8, and two chuck parts 10a' and 10b for further transporting the substrate transported to the relay position 8 to the processing chambers 1a to IC. An arm 10 is installed.

なお、当該チャック部の数は、処理室の数又は処理速度
等に応じて増減可能で、必ずしも上記のように2つに限
定されない。
Note that the number of chuck parts can be increased or decreased depending on the number of processing chambers, processing speed, etc., and is not necessarily limited to two as described above.

次に上記の構成部材相互間の動作を説明する。Next, operations between the above-mentioned constituent members will be explained.

バルブ2a及び2bを開け、バルブ2c、2dを閉じた
状態で、真空搬送室5に備えた図示していない真空ポン
プ(例、クライオポンプ、ターボ分子ポンプ等)で、真
空搬送室5、真空予備室6a、6b及び処理室5を1O
−5Torr台以下の高真空に排気する。
With the valves 2a and 2b open and the valves 2c and 2d closed, a vacuum pump (not shown) provided in the vacuum transfer chamber 5 (e.g. cryopump, turbomolecular pump, etc.) is used to pump the vacuum transfer chamber 5 and the vacuum reserve. The chambers 6a, 6b and the processing chamber 5 are 10
Evacuate to a high vacuum of -5 Torr or less.

次に、バルブ2aを閉じ、真空予備室6aにN2や空気
等を導入することによって大気圧にし、バルブ2Cを開
け、基板3をセラ!・シたカセット4aを、基板3の処
理面が鉛直になるように真空予備室6a内にセットする
。そして、バルブ2Cを閉じ、真空予備室6aを真空に
排気した後バルブ2aを開ける。この状態でカセット4
aをカセット搬送機構7により真空搬送室5内に搬送す
る。
Next, the valve 2a is closed, N2, air, etc. are introduced into the vacuum preliminary chamber 6a to bring it to atmospheric pressure, the valve 2C is opened, and the substrate 3 is sealed! - Set the closed cassette 4a in the vacuum preparatory chamber 6a so that the processing surface of the substrate 3 is vertical. Then, the valve 2C is closed, and after the vacuum preliminary chamber 6a is evacuated, the valve 2a is opened. In this state, cassette 4
a is transported into the vacuum transport chamber 5 by the cassette transport mechanism 7.

次に、基板リフト(図示していない)により基板3をカ
セッ)4a上に持ち上げ、この状態で搬送チャック9が
基板3をチャッキングする。次に基板3を保持した搬送
チャック9は、基板の処理面が下方を向くように基板を
90°回転する。この状態で搬送チャック9が軸g 9
 )を支点に回動して基板3を中継位置8まで搬送し、
チャッキングを解除し、中継位置8に基板を載置する。
Next, the substrate 3 is lifted onto the cassette 4a by a substrate lift (not shown), and the transport chuck 9 chucks the substrate 3 in this state. Next, the transport chuck 9 holding the substrate 3 rotates the substrate 90 degrees so that the processing surface of the substrate faces downward. In this state, the transport chuck 9 is rotated with the shaft g 9
) as a fulcrum to transport the board 3 to the relay position 8,
Release the chucking and place the board on the relay position 8.

そうすると搬送チャック9は、再び軸芯9′を支点とし
て回動してカセッ)4aの上部位置に帰還する。
Then, the transport chuck 9 rotates again about the axis 9' and returns to the upper position of the cassette 4a.

そして、カセッ)4aに対して906回転し、カセット
4aに鉛直にセットされた次の処理すべき基板をチャッ
キングする態勢に入る。
Then, it rotates 906 times relative to the cassette 4a, and is ready to chuck the next substrate to be processed, which is set vertically in the cassette 4a.

一方、基板の中継位置8に載置され残された基板は、回
動可能なロボットアーム10により処理室1aに運ばれ
る。処理室1aに運ばれた基板3は所定の真空処理が行
われた後、再びロボットアーム10で処理室1bに運ば
れ、次の真空処理が行われる。
On the other hand, the remaining substrate placed at the substrate relay position 8 is carried to the processing chamber 1a by a rotatable robot arm 10. The substrate 3 transported to the processing chamber 1a is subjected to a predetermined vacuum process, and then transported again to the processing chamber 1b by the robot arm 10, where the next vacuum process is performed.

基板3がロボットアーム10により処理室1bに運ばれ
たとき、処理室1aには、次の未処理の基板が搬送され
、真空処理が施される。更に、処理室1bで真空処理さ
れた基板は、ロボットアームにより処理室ICに運ばれ
、次の真空処理が施される。
When the substrate 3 is transported to the processing chamber 1b by the robot arm 10, the next unprocessed substrate is transported to the processing chamber 1a and subjected to vacuum processing. Furthermore, the substrate subjected to vacuum processing in the processing chamber 1b is carried by a robot arm to the processing chamber IC, where it is subjected to the next vacuum processing.

以上の真空処理が連続的に施された後、処理後の基板は
、再びロボットアーム10て中継位置8に運ばれる。更
に、処理後の基板は搬送チャック9により基板リフト(
図示していない)に受は渡され、カセッ)4aに戻され
、一連の真空処理が終了する。
After the above-described vacuum processing is continuously performed, the processed substrate is again transported to the relay position 8 by the robot arm 10. Furthermore, the processed substrate is lifted by the transport chuck 9 (
The receiver is transferred to a cassette (not shown) and returned to the cassette 4a, completing a series of vacuum treatments.

一方、カセッ)4aにセットされた基板の真空処理中に
、バルブ2bを閉じ、真空予備室6bにN2や空気等を
導入広大気圧とした後、バルブ2dを開け、基板をセッ
トしたカセット4bを真空予備室6b内にセットする。
On the other hand, during vacuum processing of the substrates set in the cassette 4a, the valve 2b is closed, N2 or air is introduced into the vacuum preliminary chamber 6b to create a wide atmospheric pressure, the valve 2d is opened, and the cassette 4b with the substrates set therein is opened. Set it in the vacuum preliminary chamber 6b.

次に、真空予備室6bを真空に排気駅バルブ2bを開け
、真空予備室6b内を真空搬送室5と同程度の高真空と
しておく。そして、カセット4aにセットされた未処理
基板が全て真空搬送室5へ運び込まれた、後、処理済基
板が1枚カセット4aに戻されると、カセット4aが真
空予備室6aに移動するとともに、カセツ)4bが真空
搬送室5に移動し、カセッ)4bにセットされた基板が
真空搬送室5に運ばれる。
Next, the vacuum preparatory chamber 6b is evacuated by opening the exhaust station valve 2b, and the inside of the vacuum preparatory chamber 6b is kept at a high vacuum comparable to that of the vacuum transfer chamber 5. After all the unprocessed substrates set in the cassette 4a are carried into the vacuum transfer chamber 5, when one processed substrate is returned to the cassette 4a, the cassette 4a is moved to the vacuum preliminary chamber 6a, and the cassette 4a is moved to the vacuum preliminary chamber 6a. ) 4 b is moved to the vacuum transfer chamber 5 , and the substrate set in the cassette ) 4 b is transferred to the vacuum transfer chamber 5 .

次に、再びカセッ)4bが真空予備室6bに移動し、カ
セッ)4aが真空搬送室に運ばれ、処理済の基板がカセ
ット4aに収納される。
Next, the cassette 4b is again moved to the vacuum preliminary chamber 6b, the cassette 4a is carried to the vacuum transfer chamber, and the processed substrates are stored in the cassette 4a.

この操作を繰り返し、カセッ)4aにセットされていた
全ての基板が処理され、全てカセット4aに回収された
後、カセッ)4bにセットされた基板を処理中にカセッ
)4aが、真空予備室6aに移動する。そして、バルブ
2aを閉し、真空予備室6aにN2又は空気を導入して
大気圧とした後、バルブ2cを開け、カセッ)4aを搬
出した後、カセッ)4aから処理済基板を取り出す。
This operation is repeated, and after all the substrates set in cassette 4a are processed and collected into cassette 4a, the cassette 4a is removed from the vacuum preliminary chamber 6a while the substrates set in cassette 4b are being processed. Move to. Then, the valve 2a is closed, N2 or air is introduced into the vacuum preliminary chamber 6a to bring it to atmospheric pressure, the valve 2c is opened, the cassette 4a is carried out, and the processed substrate is taken out from the cassette 4a.

このように予備真空室が2室から構成されているため、
1つのカセット内の基板を処理している間に、他のカセ
ットを一方の予備真空室から取り出すことができるため
、基板の真空処理能力を低下させることなく、カセット
の交換が可能である。
Since the preliminary vacuum chamber is composed of two chambers in this way,
While the substrates in one cassette are being processed, the other cassette can be taken out from one of the preliminary vacuum chambers, so the cassettes can be replaced without reducing the vacuum processing capacity of the substrates.

そればかりてな゛く、真空予備室へのN2又は空気等の
導入時間、排気時間を真空予備室内のゴミが舞い上がら
ない程度長くしても、処理能力にはほとんど影響がない
Not only that, but even if the time for introducing N2 or air into the vacuum preliminary chamber and the evacuation time are made long enough to prevent dust from flying up in the vacuum preliminary chamber, there is almost no effect on the throughput.

さらに基板は、真空予備室内では、処理面を水平面に対
して鉛直に、また真空搬送室内では、処理面を下方に向
けて搬送するため、処理面へのゴミの付着がきわめて少
ない真空処理が可能である。
Furthermore, substrates are transported with the processing surface perpendicular to the horizontal surface in the vacuum preparation chamber, and with the processing surface facing downward in the vacuum transfer chamber, making it possible to perform vacuum processing with extremely little dust adhering to the processing surface. It is.

次に、第2図は、第1図のA−A線断面図である。真空
搬送室5の下部には処理室1a及びICが配置されてい
る。一方の処理室1aは、平行平板型リアクティブエツ
チング処理が可能な処理室である。当該処理室la内に
は、シールド11と絶縁物12で囲まれたカソード13
と、当該カソード13に対向して接地電位のアノード1
4が平行して設けられている。基板3は、基板保持リン
グ15aにより上記カソード13面に固定されている。
Next, FIG. 2 is a sectional view taken along the line A--A in FIG. 1. At the bottom of the vacuum transfer chamber 5, a processing chamber 1a and an IC are arranged. One processing chamber 1a is a processing chamber capable of performing parallel plate type reactive etching processing. Inside the processing chamber la, there is a cathode 13 surrounded by a shield 11 and an insulator 12.
and an anode 1 at ground potential opposite to the cathode 13.
4 are provided in parallel. The substrate 3 is fixed to the surface of the cathode 13 by a substrate holding ring 15a.

また、処理室1aの周囲には、回転磁界発生装置16が
取り付けられている。
Further, a rotating magnetic field generator 16 is attached around the processing chamber 1a.

また他方の処理室1cは、プラズマ発生室17と、ハロ
ゲン赤外線ランプで構成された基板加熱機構18を備え
たプラズマ処理室である。
The other processing chamber 1c is a plasma processing chamber equipped with a plasma generation chamber 17 and a substrate heating mechanism 18 composed of a halogen infrared lamp.

次に本図を用い、A1合金膜のドライエツチングを行う
場合について詳細に説明する。
Next, using this figure, the case of dry etching the A1 alloy film will be described in detail.

処理室1aに基板を搬送するときは、シールド11、絶
縁物12、基板載置台であるカソード13の外側に設け
たバルブ2eが基板搬送室5内を上昇し、基板保持リン
グ15aの位置がロボットアーム10の高さ位置まで上
昇し、第1図に示した中継位置8から受は渡された基板
を保持したロボットアーム10が回動して基板保持リン
グ15a上に当該基板を搬送する。
When transferring a substrate to the processing chamber 1a, the shield 11, the insulator 12, and the valve 2e provided on the outside of the cathode 13, which is a substrate mounting table, move up inside the substrate transfer chamber 5, and the position of the substrate holding ring 15a is adjusted to the position of the robot. The robot arm 10 rises to the height of the arm 10 and holds the substrate passed from the relay position 8 shown in FIG. 1, and rotates to convey the substrate onto the substrate holding ring 15a.

次に、基板保持リング15aが上昇し、基板3をカソー
ド13の下面に密着させる。この密着させた状態でバル
ブ2eを下降させ、処理室1aを真空搬送室5から隔離
する。処理室1aを真空搬送室5から隔離すると、アノ
ード14に連結されたガス導入管19より塩素原子を含
む反応性ガスを導入する。この反応性ガスは、排気導管
20aを通して当該排気導管に直結されたターボ分子ポ
ンプ(図示していない)により排気されながら、処理室
1aは反応性ガスで所定の圧力に保持される。
Next, the substrate holding ring 15a rises to bring the substrate 3 into close contact with the lower surface of the cathode 13. In this closely contacted state, the valve 2e is lowered to isolate the processing chamber 1a from the vacuum transfer chamber 5. When the processing chamber 1a is isolated from the vacuum transfer chamber 5, a reactive gas containing chlorine atoms is introduced from a gas introduction pipe 19 connected to the anode 14. This reactive gas is exhausted through the exhaust conduit 20a by a turbo molecular pump (not shown) directly connected to the exhaust conduit, while the processing chamber 1a is maintained at a predetermined pressure with the reactive gas.

次に、処理室1aの外側に設けた回転磁界発生装置16
に交流電圧を印加し、カソード13面に対して平行な回
転磁界を発生させる。そして、カソード16に、13.
56MHzの高周波電圧を印加すると、磁場によりプラ
ズマ密度の増加した反応性ガスプラズマが生じ、A1合
金のエツチングが進行する。特に、磁場によりプラズマ
密度が増加したエツチングにより、At−Cu合金のC
U残査を効果的に除去できる。
Next, a rotating magnetic field generator 16 provided outside the processing chamber 1a
An alternating current voltage is applied to generate a rotating magnetic field parallel to the cathode 13 surface. and 13. to the cathode 16;
When a high frequency voltage of 56 MHz is applied, a reactive gas plasma with increased plasma density is generated by the magnetic field, and etching of the A1 alloy progresses. In particular, the etching of At-Cu alloys with increased plasma density due to the magnetic field
U residue can be effectively removed.

エツチングが終了すると、反応性ガスの導入を止め、処
理室1aを真空に排気した後、ターボ分子ポンプ直前の
バルブ(図示していない)を閉じ、バルブ2eを上昇さ
せ、基板保持リング15aを下降させ、ロボットアーム
10により、基板を回収する。
When etching is completed, the introduction of reactive gas is stopped, the processing chamber 1a is evacuated, the valve (not shown) immediately before the turbo molecular pump is closed, the valve 2e is raised, and the substrate holding ring 15a is lowered. Then, the robot arm 10 collects the substrate.

次に、このロボットアーム10を回動屈伸させることに
より1、処理室ICの基板保持リング15bに基板を載
置する。そして、基板保持リング15bを上昇させ、基
板加熱台21に基板を保持する。この状態でバルブ2f
を下降させ、バルブ2fのフランジ部の下端外側部2g
を真空搬送室5の下側部5aに圧接するようにすること
により、処理室ICを真空搬送室5から隔離する。
Next, by rotating and extending the robot arm 10, the substrate is placed on the substrate holding ring 15b of the processing chamber IC. Then, the substrate holding ring 15b is raised to hold the substrate on the substrate heating table 21. In this state, valve 2f
Lower the outer part 2g of the lower end of the flange part of the valve 2f.
The processing chamber IC is isolated from the vacuum transfer chamber 5 by bringing the IC into pressure contact with the lower side portion 5a of the vacuum transfer chamber 5.

排気導管20bに接続された処理室1aとは別に設けた
ターボ分子ポンプにより真空に排気しながら基板加熱機
構18により、基板を200℃以上に加熱する。次に、
プラズマ発生室17に連結したガス導入管(図示してい
ない)より02カスを導入し、排気導管20bより排気
しながら、高周波電極22に高周波を印加し、02ガス
プラズマを発生させ、プラズマによって生じた02ラジ
カルを基板に吹き付け、アルミエツチングを行フた基板
上にアルミエツチングのマスクとして残っているフォト
レジストをプラズマ剥離する。このプラズマ剥離による
後処理によってアルミニウム合金膜エツチングで問題と
なるアフターコロ−ジョンを抑制することが可能である
The substrate is heated to 200° C. or higher by the substrate heating mechanism 18 while being evacuated to vacuum by a turbo molecular pump provided separately from the processing chamber 1a connected to the exhaust conduit 20b. next,
02 gas is introduced through a gas introduction pipe (not shown) connected to the plasma generation chamber 17, and while being exhausted through the exhaust conduit 20b, high frequency is applied to the high frequency electrode 22 to generate 02 gas plasma. 02 radicals are sprayed onto the substrate, and the photoresist remaining on the substrate after aluminum etching is removed by plasma as a mask for aluminum etching. This post-treatment by plasma peeling makes it possible to suppress after-corrosion, which is a problem in aluminum alloy film etching.

プラズマ剥離終了後、ガス導入を止め、処理室1cを真
空に排気後、バルブ2fを上昇し、基板保持リング15
bを下降させ、ロボットアーム10により基板を回収す
る。
After plasma peeling is completed, gas introduction is stopped, the processing chamber 1c is evacuated, the valve 2f is raised, and the substrate holding ring 15 is
b is lowered, and the substrate is collected by the robot arm 10.

以上の処理を行った後、処理済基板を第1図において説
明したように、中継位置8で搬送チャック9により処理
済基板をチャッキングしながら力セットに回収する。ア
ルミニウム合金のエツチングの場合、高真空に排気され
た真空搬送室5を通してアルミニウム合金膜をエツチン
グするため、残留ガスの影響のない非常に優れた再現性
でエツチング処理が可能である。
After performing the above processing, the processed substrate is collected into a force set while being chucked by the transport chuck 9 at the relay position 8, as explained in FIG. In the case of etching an aluminum alloy, since the aluminum alloy film is etched through the vacuum transfer chamber 5 which is evacuated to a high vacuum, the etching process can be performed with excellent reproducibility without being affected by residual gas.

また、エツチング室と、後処理室が、真空搬送室5を通
して分離されているため、非常に効果的なコロ−ジョン
の抑制が可能となる。
Further, since the etching chamber and the post-processing chamber are separated through the vacuum transfer chamber 5, corrosion can be suppressed very effectively.

更に、基板の処理表面が下方に向けて搬送されるととも
に、真空処理が行われるため、多数枚エツチング処理し
たとき、アノード14に付着する反応生成物が大きなゴ
ミとなりで基板上に落下し、エツチング処理の欠陥とな
ることを防ぐことができ、エツチング処理室のクリーニ
ング頻度を低減させることができる。
Furthermore, since the substrates are transported with the processing surface facing downward and vacuum processing is performed, when a large number of substrates are etched, the reaction products adhering to the anode 14 become large particles that fall onto the substrates, causing etching problems. Processing defects can be prevented, and the frequency of cleaning the etching processing chamber can be reduced.

以上、第1図及び第2図に示した実施例にかかる装置に
よれは、ゴミの発生が少なく、効果的にコロ−ジョンの
抑制処理がなされたアルミニウム合金膜のエツチングを
高い生産性で行うことが可能である。
As described above, the apparatus according to the embodiment shown in FIGS. 1 and 2 is capable of etching an aluminum alloy film with low dust generation and effective corrosion suppression treatment with high productivity. Is possible.

次に、第3図は、他発明の実施例を示したものであり、
アルミニウム合金膜のエツチング後のコロ−ジョンの発
生を完全に抑制した装置である。
Next, FIG. 3 shows an embodiment of another invention,
This device completely suppresses the occurrence of corrosion after etching an aluminum alloy film.

なお、真空予備室から基板を鉛直にセットしたカセット
を真空搬送室に搬送し、処理室で基板の真空処理を行う
点については、前記実施例と同一構成で行うので、それ
については説明を省略する。
Note that the same configuration as in the previous embodiment is used to transport the cassette with the substrate set vertically from the vacuum preparatory chamber to the vacuum transfer chamber and vacuum process the substrate in the processing chamber, so a description thereof will be omitted. do.

また、前記実施例と同一の構成部材については同一の符
号をもって説明する。
Further, the same constituent members as those in the previous embodiment will be described using the same reference numerals.

当該装置は、3つの処理室1a、lb、ICを配置した
真空搬送室5には、2つの真空予備室6a、6bが連結
されている。そして、これらの真空予備室6a、6bの
バルブ2c、2dの前面には、カセット4aの移動スペ
ース24を設け、当該移動スペース24内には、上記バ
ルブの前面に真空予備室6 as  6 bからカセッ
ト取出し機構23a、23bを設けている。更に、カセ
ット設置位置25a、25bから加熱炉26の前面まで
搬送するカセットロボット27を設け、更に、処理済基
板の入ったカセット4aを加熱炉26に搬送するための
搬送機構2日を設けている。
In this apparatus, two vacuum preliminary chambers 6a and 6b are connected to a vacuum transfer chamber 5 in which three processing chambers 1a, 1b, and an IC are arranged. A movement space 24 for the cassette 4a is provided in front of the valves 2c and 2d of these vacuum preliminary chambers 6a and 6b, and in the movement space 24, there is a connection from the vacuum preliminary chamber 6 as 6b to the front surface of the valves. Cassette ejecting mechanisms 23a and 23b are provided. Further, a cassette robot 27 is provided to transport the cassettes from the cassette installation positions 25a and 25b to the front of the heating furnace 26, and a transport mechanism 27 is further provided to transport the cassette 4a containing the processed substrates to the heating furnace 26. .

以下には、当該装置の動作を説明する。The operation of the device will be explained below.

カセットストッカ(図示していない)にセットされた未
処理基板をセットしたカセットをロボット27が搬送し
、カセット設置位置25aにセットし、同時に真空予備
室6aの真空を破り、大気圧とした後、バルブ2cを開
け、カセット取り出し機構23aによりカセッ)4aを
真空予備室6aに搬送する。
The robot 27 transports a cassette with unprocessed substrates set in a cassette stocker (not shown) and sets it at the cassette installation position 25a, and at the same time breaks the vacuum in the vacuum preliminary chamber 6a to bring it to atmospheric pressure. The valve 2c is opened and the cassette 4a is transported to the vacuum preliminary chamber 6a by the cassette take-out mechanism 23a.

そして、バルブ2cを閉じ、真空予備室6aを真空に排
気する。真空排気完了後、基板の真空処理の間に、カセ
ットストッカ(図示していない)から次の未処理基板の
入ったカセッ)4aをカセットロボット27が取り出し
、カセット設置位置25bにセットする。
Then, the valve 2c is closed and the vacuum preliminary chamber 6a is evacuated. After the evacuation is completed, and during the vacuum processing of the substrate, the cassette robot 27 takes out the cassette 4a containing the next unprocessed substrate from the cassette stocker (not shown) and sets it at the cassette installation position 25b.

同様の手順により、カセット4bを真空予備室6bにセ
ットする。真空予備室6a内のカセットの未処理基板の
真空処理が終了した後、再び真空予備室6aを大気とし
、処理済基板の入ったカセッ)4aをカセット設置位置
25aに取り出す。
Using the same procedure, the cassette 4b is set in the vacuum preliminary chamber 6b. After the vacuum processing of the unprocessed substrates in the cassette in the vacuum preparatory chamber 6a is completed, the vacuum preparatory chamber 6a is returned to the atmosphere, and the cassette 4a containing the processed substrates is taken out to the cassette installation position 25a.

次いで、ロボット27がこのカセット4aを取り上げ、
図示のように加熱炉26の前面のカセット設置位置25
cに搬送される。そして、加熱炉のバルブ29を開け、
カセット搬送機構28によりカセッ)4aを加熱炉26
に入れ、150℃で加熱処理を30分行い、再び、搬送
機構28でカセッ)4aを取り出す。この間に真空予備
室6aには新しい未処理基板の入ったカセットをセット
し、次のエツチング処理を行う。加熱炉26より取り出
したカセット内の処理基板は、次工程へ運ばれ次の処理
を行う。
Next, the robot 27 picks up this cassette 4a and
As shown in the figure, the cassette installation position 25 is located at the front of the heating furnace 26.
transported to c. Then, open the heating furnace valve 29,
The cassette 4a is transferred to the heating furnace 26 by the cassette transport mechanism 28.
After heating at 150° C. for 30 minutes, the cassette 4a is taken out again by the transport mechanism 28. During this time, a cassette containing a new unprocessed substrate is set in the vacuum preliminary chamber 6a, and the next etching process is performed. The processed substrate in the cassette taken out from the heating furnace 26 is transported to the next process and subjected to the next process.

以上の装置により、はとんど完全にA1合金膜エツチン
グ後のアフターコロ−ジョンを抑制することが可能であ
る。更に、加熱炉と真空処理装置の間に処理基板をセッ
トしたカセットを純水に完全に浸すことのできる水洗槽
と水洗した基板を乾燥させる乾燥器を備えれば、更に完
全にアフターコロ−ジョンを抑制することが可能である
With the above-described apparatus, it is possible to almost completely suppress after-corrosion after etching the A1 alloy film. Furthermore, if a washing tank that can completely immerse a cassette containing processed substrates in pure water and a dryer that dries the washed substrates are installed between the heating furnace and the vacuum processing equipment, after-corrosion will be even more completely eliminated. It is possible to suppress the

前記両実施例では、3つの処理室に基板が次々に搬送さ
れ真空処理を行う方式について説明したが、本発明はこ
のような方式に限定されることはなく、例えば、異なっ
た基板が互いに異なった処理室で真空処理される、いわ
ゆる並列処理方式であってもよい。また、各処理室は、
平行平板RIEやプラズマ処理装置に限定されることは
なく、例えば、アノードカップル型処理装置若しくはμ
波によるプラズマ発生装置又はECRを利用したエツチ
ング若しくは薄膜付着装置であってもよい。
In both of the above embodiments, a method was described in which the substrates are transferred one after another to three processing chambers and subjected to vacuum processing, but the present invention is not limited to such a method. A so-called parallel processing method may be used in which the vacuum processing is performed in a separate processing chamber. In addition, each processing room is
It is not limited to parallel plate RIE or plasma processing equipment, for example, anode couple type processing equipment or μ
It may also be a wave-based plasma generator or an ECR-based etching or thin film deposition device.

さらに、紫外光を利用した紫外光によるフォトレジスト
硬化装置又はオゾン発生源からオゾンを導入しオゾン処
理する装置であってもよい。
Furthermore, it may be a photoresist curing device using ultraviolet light or a device that introduces ozone from an ozone generating source and performs ozone treatment.

また、特に回転磁界発生装置を備えている必要はなく、
処理室の数も前記のように3つに限定されることはなく
、少なくとも2つ以上であればよい。さらに、処理室で
使用されるガスも02ガスや塩素ガス以外のフレオン系
ガスやN2ガス等を含む全てのガスが使用可能である。
In addition, it is not necessary to have a rotating magnetic field generator,
The number of processing chambers is not limited to three as described above, and may be at least two or more. Further, all gases including Freon gas, N2 gas, etc. other than O2 gas and chlorine gas can be used in the processing chamber.

さらに、第1及び第2実施例は、処理面を下にして真空
処理を行っているが、これは、本発明が最もその効果を
発揮する場合の例であって、必ずしもこれに限定される
ものではない。また、カセットは同一の真空予備室内を
往復したが、未処理基板をセットしたカセットが一方の
真空予備室から出て、処理済基板を収納したカセットを
、他方の真空予備室に収納することも可能である。
Further, in the first and second embodiments, vacuum processing is performed with the processing surface facing down, but this is an example of a case where the present invention exhibits its effects most, and is not necessarily limited to this. It's not a thing. Furthermore, although the cassettes were moved back and forth within the same vacuum preparatory chamber, the cassette containing unprocessed substrates could come out of one vacuum preparatory chamber, and the cassette containing processed substrates could be stored in the other vacuum preparatory chamber. It is possible.

また、同一カセットから基板を取り出し、処理済基板を
回収したが、予め定められた別のカセットに回収しても
よい。さらに、加熱炉、水洗槽と真空処理装置の相対的
位置は、これに限定されることはない。また、加熱条件
も本実施例で示した条件に限定されない。
Further, although the substrates were taken out from the same cassette and the processed substrates were collected, they may be collected into another predetermined cassette. Furthermore, the relative positions of the heating furnace, the washing tank, and the vacuum processing apparatus are not limited to this. Furthermore, the heating conditions are not limited to those shown in this example.

(発明の効果) 本発明に係る請求項(1)〜(13)によれば、基板の
処理面に発生するゴミの発生を抑制することができると
ともに、真空処理の生産性を向上させることができる。
(Effects of the Invention) According to claims (1) to (13) of the present invention, it is possible to suppress the generation of dust on the processing surface of a substrate, and to improve the productivity of vacuum processing. can.

更に、アルミニウム合金のエツチング等で、アフターコ
ロ−ジョンを発生させず、再現性の良い真空処理を行う
ことができる。
Furthermore, when etching aluminum alloys, etc., vacuum processing can be performed with good reproducibility without causing after-corrosion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示した真空処理装置の概略平
面図、第2図は第1図のA−A線断面図、第3図は他の
発明の実施例を示した真空処理装置の概略平面図、第4
図及び第5図は従来の真空処理装置の概略図である。 1・・・処理室、2・・・バルブ、3・・・基板、4・
・・カセット、5・・・真空搬送室、6・・・真空予備
室、7・・・カセット搬送機構、8・・・基板中継位置
、9・・・搬送チャック、10・・・ロボットアーム、
26・・・加熱炉。 特許出願人 日電アネルバ株式会社 代理人   弁理士 村上 健次
Fig. 1 is a schematic plan view of a vacuum processing apparatus showing an embodiment of the present invention, Fig. 2 is a sectional view taken along line A-A in Fig. 1, and Fig. 3 is a vacuum processing apparatus showing another embodiment of the invention. Schematic plan view of the device, 4th
1 and 5 are schematic diagrams of a conventional vacuum processing apparatus. DESCRIPTION OF SYMBOLS 1...Processing chamber, 2...Valve, 3...Substrate, 4...
... Cassette, 5... Vacuum transfer chamber, 6... Vacuum preliminary chamber, 7... Cassette transfer mechanism, 8... Board relay position, 9... Transfer chuck, 10... Robot arm,
26... Heating furnace. Patent applicant: Nichiden Anelva Co., Ltd. Patent attorney: Kenji Murakami

Claims (13)

【特許請求の範囲】[Claims] (1)バルブにより気密にすることができる予備真空室
と、真空搬送室と、複数の処理室とを備え、予備真空室
内の基板を真空搬送室を経由して任意の処理室へ搬送し
、該基板を該処理室で真空処理した後、再び該真空搬送
室を経由して他の任意の処理室へ搬送し、該基板を該処
理室で真空処理した後、再び該真空搬送室を経由し予備
真空室へ戻し、真空処理する真空処理装置において、各
々独立に大気開放、真空排気できる機構を備えた予備真
空室を少なくとも2個設け、該各々の予備真空室内には
、鉛直に設置した複数枚の基板を収納したカセットを備
え、該基板を真空中で予備真空室と真空搬送室との間で
往復移送する搬送機構を備えるとともに、該真空搬送室
へ搬送された基板を前記カセットから順次該真空処理室
へ搬送する一方、該真空処理室で真空処理した処理済基
板を前記カセットに引き渡す移送機構を備えたことを特
徴とする真空処理装置。
(1) A preliminary vacuum chamber that can be made airtight with a valve, a vacuum transfer chamber, and a plurality of processing chambers are provided, and the substrate in the preliminary vacuum chamber is transferred to an arbitrary processing chamber via the vacuum transfer chamber, After the substrate is vacuum-processed in the processing chamber, the substrate is transferred to any other processing chamber via the vacuum transfer chamber again, and after the substrate is vacuum-processed in the processing chamber, the substrate is transferred via the vacuum transfer chamber again. In the vacuum processing equipment for vacuum processing, the vacuum chamber is returned to the pre-vacuum chamber, and at least two pre-vacuum chambers each equipped with a mechanism that can be independently opened to the atmosphere and evacuated are provided, and each pre-vacuum chamber is installed vertically. It is equipped with a cassette that stores a plurality of substrates, and a transfer mechanism that reciprocates the substrates between a preliminary vacuum chamber and a vacuum transfer chamber in a vacuum, and transfers the substrates transferred to the vacuum transfer chamber from the cassette. A vacuum processing apparatus comprising a transfer mechanism that sequentially transports the processed substrates to the vacuum processing chamber and transfers the processed substrates vacuum-processed in the vacuum processing chamber to the cassette.
(2)移送機構が、真空搬送室内に設置された基板押上
手段によって押し上げられた基板を保持する基板保持手
段と、基板を保持した状態で90℃回転させ基板を水平
にする基板回転手段から成り、水平方向に回動可能な第
1移送機構と、基板を保持する基板保持手段を備え、水
平方向に回動可能で、かつ屈伸するように構成した少な
くとも2つのアームから成る第2移送機構によって構成
され、所定の中継位置で第1及び第2移送機構相互間で
基板の受渡しをするようにしたことを特徴とする請求項
(1)記載の真空処理装置。
(2) The transfer mechanism consists of a substrate holding means for holding the substrate pushed up by a substrate pushing means installed in the vacuum transfer chamber, and a substrate rotation means for horizontally rotating the substrate by 90 degrees while holding the substrate. , by a second transfer mechanism comprising a first transfer mechanism rotatable in the horizontal direction, and at least two arms including substrate holding means for holding the substrate, and configured to be rotatable in the horizontal direction and bend and extend. 2. The vacuum processing apparatus according to claim 1, wherein the vacuum processing apparatus is configured such that the substrates are transferred between the first and second transfer mechanisms at a predetermined relay position.
(3)水平にした基板の処理面を下向きにしていること
を特徴とする請求項(2)記載の真空処理装置。
(3) The vacuum processing apparatus according to claim (2), wherein the processing surface of the horizontal substrate faces downward.
(4)真空搬送室内を上下自在に移動し、真空搬送室と
処理室とを隔離する真空隔離手段を設けたことを特徴と
する請求項(1)記載の真空処理装置。
(4) The vacuum processing apparatus according to claim (1), further comprising a vacuum isolation means that is movable up and down within the vacuum transfer chamber and isolates the vacuum transfer chamber and the processing chamber.
(5)真空隔離手段が真空搬送室の最下部の位置で処理
室と真空搬送室とを分離するバルブを備えていることを
特徴とする請求項(4)記載の真空処理装置。
(5) The vacuum processing apparatus according to claim (4), wherein the vacuum isolation means includes a valve for separating the processing chamber and the vacuum transfer chamber at the lowest position of the vacuum transfer chamber.
(6)真空隔離手段が上下動自在な基板保持機構を備え
ていることを特徴とする請求項(4)又は(5)記載の
真空処理装置。
(6) The vacuum processing apparatus according to claim (4) or (5), wherein the vacuum isolation means is provided with a substrate holding mechanism that is vertically movable.
(7)少なくとも一つの真空隔離手段が基板加熱機構を
備えていることを特徴とする請求項(4)もしくは(5
)又は(6)記載の真空処理装置。
(7) Claim (4) or (5) characterized in that at least one vacuum isolation means is equipped with a substrate heating mechanism.
) or the vacuum processing apparatus described in (6).
(8)真空搬送室と複数の処理室には、各々独立した真
空排気ポンプを備えていることを特徴とする請求項(1
)記載の真空処理装置。
(8) Claim (1) characterized in that the vacuum transfer chamber and the plurality of processing chambers are each equipped with an independent vacuum pump.
) Vacuum processing equipment described.
(9)少なくとも一つの処理室が、基板を一枚毎処理可
能な平行平板電極を設置したプラズマ処理室であること
を特徴とする請求項(1)記載の真空処理装置。
(9) The vacuum processing apparatus according to claim (1), wherein at least one processing chamber is a plasma processing chamber equipped with parallel plate electrodes capable of processing substrates one by one.
(10)プラズマ処理室の周囲に電極面と平行な面で回
転する回転磁界を発生させる機構を備えたことを特徴と
する請求項(9)記載の真空処理装置。
(10) The vacuum processing apparatus according to claim 9, further comprising a mechanism for generating a rotating magnetic field that rotates in a plane parallel to the electrode plane around the plasma processing chamber.
(11)少なくとも一つの処理室が、プラズマ発生室を
備えたことを特徴とする請求項(1)記載の真空処理装
置。
(11) The vacuum processing apparatus according to claim (1), wherein at least one processing chamber includes a plasma generation chamber.
(12)バルブにより気密にすることができる予備真空
室と、真空搬送室と、複数の処理室とを備え、予備真空
室内の基板を真空搬送室を経由して任意の処理室へ搬送
し、該基板を該処理室で真空処理した後、再び該真空搬
送室を経由して他の任意の処理室へ搬送し、該基板を該
処理室で真空処理した後、再び該真空搬送室を経由し予
備真空室へ戻し、真空処理する真空処理装置において、
各々独立に大気開放、真空排気できる機構を備えた予備
真空室を少なくとも2個設け、該各々の予備真空室内に
は、鉛直に設置した複数枚の基板を収納したカセットを
備え、該基板を真空中で予備真空室と真空搬送室との間
で往復移送する搬送機構を備えるとともに、該真空搬送
室へ搬送された基板を前記カセットから順次該真空処理
室へ搬送する一方、該真空処理室で真空処理した処理済
基板を前記カセットに引き渡す移送機構を備え、該真空
予備室の大気側に、カセットに収納した基板を100℃
以上に加熱可能な少なくとも一つの加熱炉を設置し、か
つ該真空予備室よりカセットを取り出し、カセットを該
加熱炉へ移動する機構を備えたことを特徴とする真空処
理装置。
(12) A preliminary vacuum chamber that can be made airtight with a valve, a vacuum transfer chamber, and a plurality of processing chambers are provided, and the substrate in the preliminary vacuum chamber is transferred to an arbitrary processing chamber via the vacuum transfer chamber; After the substrate is vacuum-processed in the processing chamber, the substrate is transferred to any other processing chamber via the vacuum transfer chamber again, and after the substrate is vacuum-processed in the processing chamber, the substrate is transferred via the vacuum transfer chamber again. In the vacuum processing equipment that performs vacuum processing after returning to the preliminary vacuum chamber,
At least two preliminary vacuum chambers each equipped with a mechanism that can be independently opened to atmosphere and evacuated are provided, and each preliminary vacuum chamber is equipped with a cassette containing a plurality of substrates installed vertically, and the substrates are vacuum-exhausted. The interior is equipped with a transfer mechanism that reciprocates between the preliminary vacuum chamber and the vacuum transfer chamber, and sequentially transfers the substrates transferred to the vacuum transfer chamber from the cassette to the vacuum processing chamber. A transfer mechanism is provided to transfer the vacuum-treated substrate to the cassette, and the substrate stored in the cassette is heated at 100°C on the atmospheric side of the vacuum preliminary chamber.
A vacuum processing apparatus comprising at least one heating furnace capable of heating as described above, and a mechanism for taking out a cassette from the vacuum preliminary chamber and moving the cassette to the heating furnace.
(13)カセットに収納した基板を水洗する水槽と、該
基板を100℃以上に加熱可能な加熱炉を真空予備室の
大気側に設置するとともに、該真空予備室よりカセット
を取り出し、該カセットを該水槽を経由し、該加熱炉へ
移動させるカセット移動機構を備えたことを特徴とする
請求項(12)記載の真空処理装置。
(13) A water tank for washing the substrates stored in the cassettes and a heating furnace capable of heating the substrates to 100°C or higher are installed on the atmospheric side of the vacuum preliminary chamber, and the cassettes are taken out from the vacuum preliminary chamber and the cassettes are heated. 13. The vacuum processing apparatus according to claim 12, further comprising a cassette moving mechanism for moving the cassette to the heating furnace via the water tank.
JP63020377A 1988-01-29 1988-01-29 Vacuum processing equipment Expired - Lifetime JP2626782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63020377A JP2626782B2 (en) 1988-01-29 1988-01-29 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63020377A JP2626782B2 (en) 1988-01-29 1988-01-29 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JPH028369A true JPH028369A (en) 1990-01-11
JP2626782B2 JP2626782B2 (en) 1997-07-02

Family

ID=12025358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63020377A Expired - Lifetime JP2626782B2 (en) 1988-01-29 1988-01-29 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP2626782B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230759A (en) * 1988-07-19 1990-02-01 Ulvac Corp Vacuum treatment equipment
US6566175B2 (en) 1990-11-09 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US6756258B2 (en) 1991-06-19 2004-06-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123879A (en) * 1982-01-18 1983-07-23 Seiko Epson Corp Plasma etching device
JPS58175173A (en) * 1982-03-26 1983-10-14 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Magazine and a plurality of disc holders
JPS6169966A (en) * 1984-09-14 1986-04-10 Hitachi Ltd Vacuum processing device
JPS61133388A (en) * 1984-11-30 1986-06-20 Tokuda Seisakusho Ltd Dry etching device
JPS6244571A (en) * 1985-08-20 1987-02-26 Toshiba Mach Co Ltd Ion implantation device
JPS6250463A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Continuous sputtering device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123879A (en) * 1982-01-18 1983-07-23 Seiko Epson Corp Plasma etching device
JPS58175173A (en) * 1982-03-26 1983-10-14 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Magazine and a plurality of disc holders
JPS6169966A (en) * 1984-09-14 1986-04-10 Hitachi Ltd Vacuum processing device
JPS61133388A (en) * 1984-11-30 1986-06-20 Tokuda Seisakusho Ltd Dry etching device
JPS6244571A (en) * 1985-08-20 1987-02-26 Toshiba Mach Co Ltd Ion implantation device
JPS6250463A (en) * 1985-08-30 1987-03-05 Hitachi Ltd Continuous sputtering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230759A (en) * 1988-07-19 1990-02-01 Ulvac Corp Vacuum treatment equipment
US6566175B2 (en) 1990-11-09 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US6756258B2 (en) 1991-06-19 2004-06-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6797548B2 (en) 1991-06-19 2004-09-28 Semiconductor Energy Laboratory Co., Inc. Electro-optical device and thin film transistor and method for forming the same
US6847064B2 (en) 1991-06-19 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a thin film transistor

Also Published As

Publication number Publication date
JP2626782B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JP2665202B2 (en) Semiconductor wafer processing equipment
JPS63204726A (en) Vacuum treatment device
JPS6052574A (en) Continuous sputtering device
JPH0345455B2 (en)
JP2600399B2 (en) Semiconductor wafer processing equipment
KR100743275B1 (en) Plasma processing method and post-processing method
JPH0613751B2 (en) Continuous sputtering equipment
JPH028369A (en) Vacuum treatment equipment
JPH07161598A (en) Vacuum processing apparatus
JP3188956B2 (en) Film processing equipment
JPS60113428A (en) Manufacturing equipment of semiconductor
JPH07273092A (en) Plasma treatment apparatus and its cleaning method
JP3276382B2 (en) Vacuum processing device and vacuum processing method
JP2744934B2 (en) Vertical processing equipment
JPH08255784A (en) Vacuum treating apparatus and method
JPH0542507B2 (en)
JPH01135015A (en) Semiconductor wafer treating device
JP2001185598A (en) Substrate processor
JP2939378B2 (en) Vacuum processing equipment
JP2868767B2 (en) Semiconductor wafer processing equipment
JPH09129611A (en) Etching
JP3121022B2 (en) Decompression processing equipment
JPH09143674A (en) Film forming device and using method therefor
JP2002075882A (en) Substrate treatment device, load lock chamber for the same, and cleaning method of load lock chamber in substrate treatment device
JPH08325733A (en) Vacuum treatment and vacuum treating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11