JPH0283457A - Voltage measuring apparatus - Google Patents

Voltage measuring apparatus

Info

Publication number
JPH0283457A
JPH0283457A JP63234763A JP23476388A JPH0283457A JP H0283457 A JPH0283457 A JP H0283457A JP 63234763 A JP63234763 A JP 63234763A JP 23476388 A JP23476388 A JP 23476388A JP H0283457 A JPH0283457 A JP H0283457A
Authority
JP
Japan
Prior art keywords
single crystal
voltage
resistance value
transparent
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63234763A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
一雄 小林
Toru Uenishi
徹 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63234763A priority Critical patent/JPH0283457A/en
Publication of JPH0283457A publication Critical patent/JPH0283457A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the effect of a temp. change by providing a transparent resistor film having a resistance value of 1-1,000MOMEGA or less to the Z-surface of an LiNbO3 single crystal and connecting the same to the voltage applying electrode provided to the X-surface of said crystal. CONSTITUTION:Light is passed through an LiNbO3 single crystal 1 cut vertically in a Z-direction in parallel to the Z-axis of said crystal 1 and an electric field is applied in an x-axis direction by electrodes 3, 3' and this single crystal is placed between a polarizer 4 and a detector 5 along with a 1/4 wavelength plate 6 to constitute a voltage measuring apparatus. Transparent resistors 7, 7' each having a high resistance value M (M=1-1,000MOMEGA) are provided to the Z-surface of the LiNbO3 single crystal 1 and electrically connected to the voltage applying electrodes 3, 3'. Since the resistance value of Z-surface non-treatment is 10<6>MOMEGA, the mounting of the transparent resistors 7, 7' on the Z-surface is effective for discharging and extinguishing the charge generated in the Z-surface by a temp. change and, by this method, a lowering of accuracy due to a temp. change is prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はポッケルス効果を利用した電圧測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a voltage measuring device using the Pockels effect.

(従来の技術) 結晶素子のポッケルス効果を利用して電圧を測定する光
電圧センサは、光フアイバ伝送技術を利用するため、絶
縁性が高く電磁誘導雑音を受けにくい測定系を構成する
ことができるので近年注目を沿びている。
(Conventional technology) Optical voltage sensors that measure voltage using the Pockels effect of crystal elements use optical fiber transmission technology, so they can construct a measurement system that has high insulation and is less susceptible to electromagnetic induction noise. So it has been attracting attention in recent years.

第5図は電気光学効果を利用した電圧測定原理を示す図
であり、LiNbO3単結晶の工、”#+Z軸に対する
印加電界と光軸との関係を示している。第5図において
、 LiNbO3単結晶の工軸方向に電界(EX)を印
加したときにZ軸方向に通した光に生じる位相差Δψ2
は次のようになる。
Figure 5 is a diagram showing the principle of voltage measurement using the electro-optic effect, and shows the relationship between the applied electric field and the optical axis with respect to the #+Z axis of the LiNbO3 single crystal. Phase difference Δψ2 that occurs in light transmitted in the Z-axis direction when an electric field (EX) is applied in the crystal's axial direction
becomes as follows.

(参考資料・・・東京大学生産技術研究所報告第28巻
第5号、P17〜P 20) 但し、λ;光の波長 no;常光線屈折率γ2□;電気
光学効果の大きさを示す係数α;Z軸方向の結晶長さ 
Ex;印加電界このようにLiNb0.単結晶軸に対す
る印加電界と光入射の方向を選ぶと、自然複屈折による
光学的位相差が除去できる。すなわち、光源のスペクト
ル特性に影響されなくなり、自然複屈折位相による温度
特性も避けることができるため電圧センサとして好都合
である。
(Reference material: Report of the Institute of Industrial Science, the University of Tokyo, Vol. 28, No. 5, P17-P20) However, λ: wavelength of light no: ordinary ray refractive index γ2□: coefficient indicating the magnitude of electro-optic effect α: Crystal length in Z-axis direction
Ex; the applied electric field is thus LiNb0. Optical retardation due to natural birefringence can be removed by selecting the applied electric field and the direction of light incidence relative to the single crystal axis. That is, it is convenient as a voltage sensor because it is not affected by the spectral characteristics of the light source and can avoid temperature characteristics due to the natural birefringence phase.

一方LiNb0.単結晶には、焦電効果と呼ばれる現象
がある。これは温度変化により、LiNb0.単結晶の
7面に電荷が発生する現象であり前記電荷のために測定
電界以外の電界がLiNb3単結晶に生じるため、電圧
測定に誤差が生じることになる。この上記欠点を除去し
た構成の電圧測定装置として特開昭57−196166
号公報が提案されており、その電圧測定装置の構成を第
6図に示す。
On the other hand, LiNb0. Single crystals exhibit a phenomenon called the pyroelectric effect. This is due to temperature changes, LiNb0. This is a phenomenon in which charges are generated on the seven faces of the single crystal, and because of the charges, an electric field other than the measurement electric field is generated in the LiNb3 single crystal, resulting in an error in voltage measurement. Japanese Patent Application Laid-Open No. 57-196166 discloses a voltage measuring device having a configuration that eliminates the above-mentioned drawbacks.
No. 6 has been proposed, and the configuration of the voltage measuring device is shown in FIG.

第6図は、Z方向に垂直に切断したLiNb0.単結晶
1に対してZ軸に平行な方向に光2を通し、工軸方向に
電極3,3′により電界を印加しこれをl/4波長板6
とともに偏光子4と検光子5との間に置くことにより電
圧測定装置を構成している。同装置に偏光子4側より入
射した光2の出力強度は電気光学効果を有するLiNb
O3単結晶に印加された印加電圧Vinにより変化しこ
の出力強度変化から印加電圧Vinを検知することがで
きる。
FIG. 6 shows a LiNb0. Light 2 is passed through the single crystal 1 in a direction parallel to the Z axis, and an electric field is applied by electrodes 3 and 3' in the direction of the Z axis, and this is applied to the 1/4 wavelength plate 6.
A voltage measuring device is constructed by placing the polarizer 4 and the analyzer 5 between the polarizer 4 and the analyzer 5. The output intensity of light 2 incident on the device from the polarizer 4 side is determined by LiNb, which has an electro-optic effect.
It changes depending on the applied voltage Vin applied to the O3 single crystal, and the applied voltage Vin can be detected from this output intensity change.

さらに第6図では、LiNb0.単結晶の2面に導電性
透明材料による透明電極10.10’が設けられ。
Furthermore, in FIG. 6, LiNb0. Transparent electrodes 10 and 10' made of a conductive transparent material are provided on two sides of the single crystal.

これらの透明電極10と10′ は金リード線11によ
り相互に電気的に接続されている。また電圧印加用電極
3,3′とこの透明電極10.10’ との間に絶縁性
が保たれるように相互の間隔が適当に離れている。
These transparent electrodes 10 and 10' are electrically connected to each other by a gold lead wire 11. Furthermore, the distance between the voltage applying electrodes 3, 3' and the transparent electrodes 10, 10' is appropriately spaced so as to maintain insulation between them.

すなわち第6図のようにLiNb0.単結晶の7面に設
けた透明電極io、 io’を電気的に接続することに
より温度変化によってLiNb0.単結晶の7面に発生
した電荷を互いに打消し合うことができ前記電荷による
測定誤差の原因となる電界の発生を防止できることにな
る。
That is, as shown in FIG. 6, LiNb0. LiNb0. The charges generated on the seven faces of the single crystal can cancel each other out, making it possible to prevent the generation of an electric field that causes measurement errors due to the charges.

(発明が解決しようとする課題) しかしながら第6図の構成において透明電極10゜10
′ は導電性材料で形成されているため電気的に浮いた
電極となり、この例では印加電圧のほぼ中間電位となる
。従ってLiNb0a単結晶1内部の導電泣面8は、第
7図のようになる。っまり工軸方向に電圧を印加したと
き、導電性の透明電極10゜10’が存在するためLi
Nb0.単結晶の内部には、)C軸方向の電界の他にZ
軸方向電界も存在することになる。この場合第7図から
判るようにe、とQ□がまったく等しくかつ光軸が結晶
軸に一致すればZ軸方向電界の影響が無視されることに
なるが、前記条件を満足して、電圧測定装置を実装する
こと非常に困難である。従って、Z軸方向電界の影響が
無視できないため電圧測定に誤差を生じることになる。
(Problem to be solved by the invention) However, in the configuration shown in FIG.
′ is made of a conductive material, so it becomes an electrically floating electrode, and in this example, it is approximately at the midpoint potential of the applied voltage. Therefore, the conductive surface 8 inside the LiNb0a single crystal 1 becomes as shown in FIG. When a voltage is applied exactly in the direction of the machining axis, Li
Nb0. Inside the single crystal, in addition to the electric field in the C-axis direction, there is
An axial electric field will also be present. In this case, as can be seen from Figure 7, if e and Q□ are exactly equal and the optical axis coincides with the crystal axis, the influence of the electric field in the Z-axis direction will be ignored. It is very difficult to implement the measuring device. Therefore, the influence of the electric field in the Z-axis direction cannot be ignored, resulting in an error in voltage measurement.

また、透明電極10と10′は金リード線11により相
互に電気的に接続する必要があるが、透明電極10、1
0’の厚さは非常に薄く、(数護オーダー)この接続作
業にも工夫が必要である。さらに透明電極10.10’
と電圧印加電極3,3′との間の絶縁を確保する必要が
ありLiNΩ、単結晶の寸法が大形化するため、高周波
域までの測定が困難となる。
Further, the transparent electrodes 10 and 10' need to be electrically connected to each other by the gold lead wire 11.
The thickness of 0' is very thin (on the order of a few numbers), and this connection work also requires some ingenuity. Further transparent electrode 10.10'
It is necessary to ensure insulation between the electrodes 3, 3' and the voltage applying electrodes 3, 3', which increases the size of the LiNΩ single crystal, making it difficult to measure up to a high frequency range.

これは、電気光学結晶は圧電効果を有するため。This is because electro-optic crystals have a piezoelectric effect.

特定の周波数で機械的共振現象を示す、この共振点では
、圧電効果によって発生する応力に起因する光弾性効果
によって結晶内に複屈折が生じる。
At this resonance point, which exhibits a mechanical resonance phenomenon at a specific frequency, birefringence occurs in the crystal due to the photoelastic effect due to the stress generated by the piezoelectric effect.

この複屈折は、印加電圧による電気光学効果を重畳して
現われるので、サージ電圧のように高周波成分を含む信
号を計測する場合に注意を要し、この共振周波数を高く
するには、LiNb0.単結晶の小形化が必要である。
This birefringence appears by superimposing the electro-optic effect due to the applied voltage, so care must be taken when measuring signals containing high frequency components such as surge voltages.In order to increase this resonance frequency, LiNb0. It is necessary to miniaturize single crystals.

本発明は、上述した従来装置の欠点を改良したもので、
工作性がよく、また環境温度が変化しても正確に電圧測
定が可能な電圧測定装置を提供することにある。
The present invention improves the drawbacks of the conventional device described above.
It is an object of the present invention to provide a voltage measuring device which has good workability and is capable of accurately measuring voltage even when the environmental temperature changes.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、LiNb0a単結晶の7面に高抵抗値をもつ
透明抵抗膜を設け、これらの透明電極を工面に設けられ
た電圧印加用電極と電気的に接続している。
(Means for Solving the Problems) The present invention provides a transparent resistive film with a high resistance value on seven sides of a LiNb0a single crystal, and electrically connects these transparent electrodes to voltage application electrodes provided on the machined surface. are doing.

(作  用) 上記電圧印加用電極と電気的に接続された高抵抗値をも
つ透明抵抗膜を取付けることにより、温度変化によって
LiNb0.単結晶の7面に発生した電荷が消滅すると
ともにLiNb0z単結晶内部の電界分布も工軸方向成
分のみとなるため、測定誤差の原因となる電界の発生を
防止できる。また透明抵抗膜は、2面側からの蒸着作業
により工面にも蒸着材が付着するため7面の透明抵抗膜
は、工面の電圧印加用電極と容易に電気的にも接続され
る。
(Function) By attaching a transparent resistive film with a high resistance value electrically connected to the voltage applying electrode, LiNb0. Since the charges generated on the seven planes of the single crystal disappear and the electric field distribution inside the LiNb0z single crystal only has a component in the direction of the axis, it is possible to prevent the generation of electric fields that cause measurement errors. Furthermore, since the transparent resistive film is vapor-deposited from the two sides, the vapor deposition material also adheres to the cut side, so the transparent resistive films on the seven sides are easily electrically connected to the voltage application electrodes on the cut side.

(実 施 例) 本発明の実施例として、第1図に示すようにLiNb0
.単結晶1の7面に高抵抗値(R[MΩ])をもつ透明
抵抗膜7,7′を設けこれらの透明抵抗lI7゜7′を
電圧印加電極3,3′と電気的に接続された構成のもの
は第3図の等価回路で示すことができる。
(Example) As an example of the present invention, as shown in FIG.
.. Transparent resistive films 7 and 7' having a high resistance value (R [MΩ]) are provided on the seven sides of the single crystal 1, and these transparent resistors lI7゜7' are electrically connected to voltage application electrodes 3 and 3'. The configuration can be shown in the equivalent circuit of FIG.

ここでCpはLiNb0.単結晶1の静電容量であり、
いまLINbO,単結晶として3X3X3mmの寸法を
有する立方体のものを用いた場合Cp ”= 2[pF
]となる。
Here, Cp is LiNb0. The capacitance of single crystal 1 is
Now, if we use LINbO as a single crystal in the form of a cube with dimensions of 3 x 3 x 3 mm, Cp '' = 2 [pF
].

上記において、温度変化により7面に発生する電荷の放
電時定数(c [5])はτ=cP−RX 10−”[
mS]となり表1に示す関係がある。
In the above, the discharge time constant (c[5]) of charges generated on the 7th surface due to temperature change is τ=cP-RX 10-"[
mS], and there is a relationship shown in Table 1.

表1 従って面周周波数50Hzを測定する場合、前記電荷の
影響を受けないためには、7面の抵抗値は100唖[M
Ωコ以下が望ましい。
Table 1 Therefore, when measuring a surface circumference frequency of 50 Hz, the resistance value of the 7th surface must be 100 [M
Less than Ω is desirable.

通常、2面無処理の抵抗値は10’ [MΩ]以上ある
ため、上記抵抗値を満足する透明抵抗値を7面に設ける
ことは、温度変化により7面に発生する電荷を放電消滅
させるのに有効な方法である。
Normally, the resistance value of two untreated surfaces is 10' [MΩ] or more, so providing a transparent resistance value that satisfies the above resistance value on the seventh side is effective in discharging and extinguishing the charge generated on the seventh side due to temperature changes. This is an effective method.

一方、本発明の実施例において、電圧印加電極3’、3
’に交流電圧(E[V])を印加したとき、7面の透明
抵抗膜7,7′は高抵抗体(R[MΩ])故に損失[V
]となる。
On the other hand, in the embodiment of the present invention, the voltage application electrodes 3', 3
When an AC voltage (E [V]) is applied to ', the transparent resistive films 7 and 7' on the seven sides lose [V
].

一般に電気機器には、耐電圧試験仕様が決められており
例えば高電圧用電気機器では、交流2000[711分
間、雷インパルス7000[V]に耐えなければならな
い。
Electrical equipment generally has a withstand voltage test specification, and for example, high-voltage electrical equipment must withstand lightning impulses of 7000 [V] for 2000 [711 minutes] AC.

表2に、交流電圧2000[V]印加したときの透明抵
抗膜の抵抗値(R[MΩ])と発生損失CP[V])と
の関係を示す。
Table 2 shows the relationship between the resistance value (R [MΩ]) of the transparent resistive film and the generated loss CP [V]) when an AC voltage of 2000 [V] is applied.

表2 これより透明抵抗膜の抵抗値には下限があることが判る
Table 2 From this, it can be seen that there is a lower limit to the resistance value of the transparent resistive film.

従って、LiNb0.単結晶の寸法及び交流電圧の印加
時間1分間等を考慮して透明抵抗膜の抵抗値は、1[M
Ω]以上が望ましく、この様な高抵抗値を設けることに
より雷インパルスに対する絶縁耐力も十分に確保できる
Therefore, LiNb0. The resistance value of the transparent resistive film is 1 [M
[Ω] or more is desirable, and by providing such a high resistance value, sufficient dielectric strength against lightning impulses can be ensured.

以上述べた様に透明抵抗膜の抵抗値は1[MΩ]以上か
つ1000[MΩ]が望ましくこの抵抗値はZnO1や
SnO,を蒸着する条件を適切に選定することで得られ
る。
As described above, the resistance value of the transparent resistive film is desirably 1 [MΩ] or more and 1000 [MΩ], and this resistance value can be obtained by appropriately selecting the conditions for depositing ZnO1 or SnO.

また透明抵抗膜の蒸着において、2面側からの蒸着作業
で工面にも蒸着材が付着するよう蒸着条件を設定するこ
とが可能であり2面の透明抵抗膜7.7′は1面に設け
られた電圧印加用電極3.3′と容易に電気的に接続さ
れる。
In addition, in the vapor deposition of transparent resistive films, it is possible to set the vapor deposition conditions so that the vapor deposition material adheres to the work surface by performing vapor deposition from the two sides, and the transparent resistive films 7 and 7' on the two sides can be set on one side. It is easily electrically connected to the voltage applying electrode 3.3'.

尚、7面とX面の角部が鋭角であると、蒸着後の取扱い
によっては2面と工面の透明抵抗膜の電気的接続がなく
なる恐れがある。よって第4図(a)に示すように角部
9を曲面取りしたり、同図(b)に示すように角面取り
することにより7面と工面との透明抵抗膜の電気的接続
を強固にし、信頼性を高めることができる。
Note that if the corners of the 7th plane and the X plane are acute, there is a risk that the electrical connection between the transparent resistive films on the 2nd plane and the cut plane may be lost depending on the handling after vapor deposition. Therefore, by chamfering the corner 9 as shown in FIG. 4(a) or chamfering the corner as shown in FIG. , reliability can be increased.

〔発明の効果〕〔Effect of the invention〕

LiNb0.単結晶の7面に抵抗値1[MΩ]以上かつ
1000[:MΩ]以下の透明抵抗膜を設け、 これら
の透明抵抗値を工面に設けられた電圧印加用電極と電気
的に接続することにより、温度変化によってLiNb0
.単結晶の7面に発生する電荷が消滅するとともに、L
iNb0□単結晶内の電界分布も工軸方向成分のみとな
るため測定誤差の原因となる電界の発生を防止できるた
め、環境温度が変化しても正確に電圧測定が可能な電圧
測定装置を提供することができる。
LiNb0. By providing a transparent resistive film with a resistance value of 1 [MΩ] or more and 1000 [:MΩ] or less on seven sides of the single crystal, and electrically connecting these transparent resistance values to the voltage application electrode provided on the machined surface. , LiNb0 due to temperature change
.. As the charges generated on the seven faces of the single crystal disappear, L
Since the electric field distribution within the iNb0□ single crystal is limited to the component in the direction of the transverse axis, it is possible to prevent the generation of electric fields that cause measurement errors, thereby providing a voltage measuring device that can accurately measure voltage even when the environmental temperature changes. can do.

また本発明による透明抵抗値は、2面側からの蒸着作業
により工面にも蒸着剤を付着できるため、7面の透明抵
抗膜と工面の電圧印加用電極との電気的接続も容易にで
きる。
Furthermore, with the transparent resistance value according to the present invention, since the vapor deposition agent can be applied to the cut surface by vapor deposition from the two sides, it is possible to easily electrically connect the transparent resistive films on the seven sides and the voltage application electrodes on the cut surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電圧測定装置を示す構成図、第2
図は本発明のLiNb0.単結晶内部における等電位面
を示す概略図、第3図は本発明の電気的等価回路、第4
図は本発明の他の実施例を示す概略図、第5図は電気光
学結晶による電圧測定を説明する構成図、第6図は従来
の電圧測定装置を示す構成図であり、第7図は従来のL
iNbO3単結晶内部における等電位面を示す概略図で
ある。 1・・・LiNb0.単結晶   2・・・光ビーム3
.3′・・・電圧印加用電極 4・・・偏光子      5・・・検光子6・・・1
/4波長板    7f7′・・・透明抵抗膜8・・・
等電位面     9,9′・・・角部面取り10・・
・透明電極     11・・・金リード線代理人 弁
理士 則 近 憲 佑 同  第子丸 健 (oL) Cb) 図
FIG. 1 is a configuration diagram showing a voltage measuring device according to the present invention, and FIG.
The figure shows LiNb0. A schematic diagram showing equipotential surfaces inside a single crystal, FIG. 3 is an electrical equivalent circuit of the present invention, and FIG.
5 is a schematic diagram showing another embodiment of the present invention, FIG. 5 is a block diagram explaining voltage measurement using an electro-optic crystal, FIG. 6 is a block diagram showing a conventional voltage measuring device, and FIG. 7 is a block diagram showing a conventional voltage measuring device. Conventional L
FIG. 3 is a schematic diagram showing equipotential surfaces inside an iNbO3 single crystal. 1...LiNb0. Single crystal 2...light beam 3
.. 3'...Electrode for voltage application 4...Polarizer 5...Analyzer 6...1
/4 wavelength plate 7f7'...transparent resistive film 8...
Equipotential surface 9, 9'... Corner chamfer 10...
・Transparent electrode 11...Gold lead wire agent Patent attorney Noriyuki Chika Ken Yudo Daishimaru Ken (oL) Cb) Figure

Claims (1)

【特許請求の範囲】[Claims] 電気光学結晶を用いた電圧測定装置において、前記電気
光学結晶のそれぞれZ面に1MΩ以上かつ1000MΩ
以下の抵抗値をもつ透明抵抗膜を設け、これらの透明抵
抗膜をx面に設けられた電圧印加用電極と電気的に接続
したことを特徴とする電圧測定装置。
In a voltage measuring device using an electro-optic crystal, each Z-plane of the electro-optic crystal has a resistance of 1 MΩ or more and 1000 MΩ.
1. A voltage measuring device comprising: transparent resistive films having the following resistance values; these transparent resistive films are electrically connected to a voltage applying electrode provided on the x-plane.
JP63234763A 1988-09-21 1988-09-21 Voltage measuring apparatus Pending JPH0283457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234763A JPH0283457A (en) 1988-09-21 1988-09-21 Voltage measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234763A JPH0283457A (en) 1988-09-21 1988-09-21 Voltage measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0283457A true JPH0283457A (en) 1990-03-23

Family

ID=16975975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234763A Pending JPH0283457A (en) 1988-09-21 1988-09-21 Voltage measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0283457A (en)

Similar Documents

Publication Publication Date Title
CA1199068A (en) Voltage and electric field measuring device using light
Santos et al. Pockels high-voltage measurement system
EP0083196B1 (en) Voltage and electric field measuring device using light
CN102426281A (en) Longitudinal modulation optical voltage sensor
CN107015048B (en) A kind of surface acoustic wave current sensor based on magnetostrictive effect
CN110596472A (en) Dielectric polarization capacitance type electrostatic field measuring method and system
EP0641444B1 (en) Optical voltage and electric field sensor based on the pockels effect
US5247244A (en) Electro-optic voltage measuring system with temperature compensation
US3572897A (en) Optical modulator having dissipative matching boundaries
EP0324611B1 (en) Optical unit including electrooptical crystal elements
US5635831A (en) Optical voltage and electric field sensor based on the pockels effect
JPH0283457A (en) Voltage measuring apparatus
JPH06109710A (en) Surface acoustic wave device for measuring liquid characteristics
Ettinger et al. High voltage pulse measuring system based on Kerr effect
JPH03259753A (en) Dc voltage transformer of optical system
JPS63241366A (en) Optical part
KR100606420B1 (en) Optical potential transformer interleaved detector
JPWO2020152820A1 (en) Voltage measuring device and gas insulated switchgear
Zhao et al. Fiber optic voltage sensor based on capacitance current measurement with temperature and wavelength error correction capability
Santos et al. Improved optical sensor for high voltage measurement using white light interferometry
Jaeger Integrated-optic sensors for high-voltage substation applications
DeReggi Effects of the measuring circuit on broadband piezo and pyroelectric measurements
JPH0560818A (en) Optical electric field measuring instrument
JPH09251036A (en) Optical electric-field sensor and transformer for optical instrument using sensor thereof
JP2969035B2 (en) Optical PT