JPH0282562A - Semiconductor cooling apparatus - Google Patents

Semiconductor cooling apparatus

Info

Publication number
JPH0282562A
JPH0282562A JP63232466A JP23246688A JPH0282562A JP H0282562 A JPH0282562 A JP H0282562A JP 63232466 A JP63232466 A JP 63232466A JP 23246688 A JP23246688 A JP 23246688A JP H0282562 A JPH0282562 A JP H0282562A
Authority
JP
Japan
Prior art keywords
cooling
flow
refrigerant liquid
buffer
pressing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63232466A
Other languages
Japanese (ja)
Inventor
Heikichi Kuwabara
桑原 平吉
Tadakatsu Nakajima
忠克 中島
Shigeo Ohashi
繁男 大橋
Motohiro Sato
佐藤 元宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63232466A priority Critical patent/JPH0282562A/en
Publication of JPH0282562A publication Critical patent/JPH0282562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

PURPOSE:To suppress the temperature of a heat generating device uniformly by a method wherein the tip sides of cooling fins are pressed by a pressing plate and a buffer is provided along the direction perpendicular to the pressing plate and, further, gaps formed between the buffer and the inside walls of a cooling structure are closed with partition blocks. CONSTITUTION:In order to cool a heat generating device 2 which generates heat during its operation, coolant is made to flow into a cooling structure through a flexible bellows 10 (arrow 17). The coolant is introduced into a cool ant introducing part 7 and divided into a flow (arrow 18) passing through a coolant path 12 formed in a buffer 11 and a flow (arrow 19) flowing toward the heat generating device 2. The flow 19 is guided toward a cooling block and made to flow (flow 20) into a space defined by a pressing plate 13, the buffer 11, partition blocks 14 and the inside walls of the cooling block. The flow 20 is made to flow radially (arrows 21) toward gaps 22 formed on one end of the pressing plate 13 and made to flow (flow 23) uniformly between cooling fins 4. With this constitution, cooling performance can be made uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子などに代表される電子部品の発熱
体に柔軟性冷却流路を接しさせて、その冷却流路内に冷
却水を流すことにより、発熱体を冷却する半導体冷却装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a flexible cooling channel that is brought into contact with a heating element of an electronic component such as a semiconductor element, and cooling water is introduced into the cooling channel. The present invention relates to a semiconductor cooling device that cools a heating element by flowing water.

〔従来の技術〕[Conventional technology]

従来の装置は1例えば特開昭58−72896号公報に
記載のように1発熱体(例えば半導体チップ)の裏面に
、冷却フィンを内蔵する冷却構造体を取り付けて、冷却
フィン部に冷却水を流すことにより発熱体を冷却する0
発熱体チップは一般に基板上に複数個、固定されており
、チップ内の配線と、基板内の配線は、フリップチップ
方式によって接続され信号のやりとりをしている6発熱
体の発熱量が大きい場合は、冷却構造体を発熱体に半田
接合などによって金属的に接合して、この部分の熱抵抗
を小さくする。
A conventional device, for example, as described in Japanese Unexamined Patent Publication No. 58-72896, is to attach a cooling structure with built-in cooling fins to the back side of a heating element (for example, a semiconductor chip), and to supply cooling water to the cooling fins. Cooling the heating element by flowing water 0
Generally, multiple heating element chips are fixed on a board, and the wiring inside the chip and the wiring inside the board are connected using a flip-chip method to exchange signals. 6 When the amount of heat generated by the heating elements is large In this method, the cooling structure is metallically joined to the heating element by soldering or the like to reduce the thermal resistance of this part.

ところで半導体チップを実装する場合、演算速度を高め
るために、発熱体の配置ピッチをできるだけ小さくして
、信号配線長を短くしなければならない、さらに、演算
速度を高めるには、半導体チップに加えるパワーも大き
くなる傾向をもつ。
By the way, when mounting a semiconductor chip, in order to increase the calculation speed, it is necessary to minimize the arrangement pitch of the heating elements and shorten the signal wiring length.Furthermore, to increase the calculation speed, it is necessary to increase the power applied to the semiconductor chip. also tends to increase.

したがって、このような条件下においては、小さな面精
から多量の熱を除去する冷却装置が必要となる、そこで
、平面状冷却部に冷却水の噴流をぶつけて、冷却効率を
高める方法がある。また、噴流が衝突する部分にピン状
フィンを備えて、冷却効率を富める方法もある。
Therefore, under such conditions, a cooling device that removes a large amount of heat from a small surface is required.Therefore, there is a method of impinging jets of cooling water on the planar cooling part to improve cooling efficiency. Another method is to provide pin-shaped fins at the portion where the jet collides to improve cooling efficiency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

半導体チップにおいては、各チップごと、あるいは、ひ
とつのチップ内において、ジャンクション温度をできる
だけ一様に押えることが要求される。
In semiconductor chips, it is required to keep the junction temperature as uniform as possible for each chip or within one chip.

前述のように、演算速度などを高めるために、パワーが
増大し、ジャンクションが密に配置され。
As mentioned above, power is increased and junctions are placed densely to increase calculation speed.

しかも配線長を短くするために、狭い面積から放熱しな
ければならない、冷却方法としては、パワーが小さい場
合は、空気などの気体によって行われたため、空気流を
すみずみまで流すことができ。
Moreover, in order to shorten the wiring length, heat must be dissipated from a narrow area.When the power is low, the cooling method is performed using a gas such as air, which makes it impossible to spread the air flow to every corner.

ジャンクション温度の均一化を図ることがたやすかった
。ところが、放熱しなければならない熱社が増してくる
にしたがって、冷却手段は水に代表される冷媒液による
冷却法をとらざるを得ない。
It was easy to equalize the junction temperature. However, as the number of heat sinks that must dissipate heat increases, cooling methods using refrigerant liquids, such as water, have no choice but to be used.

そうすると、微細な流路の中を冷媒液が流れることにな
る。その場合、冷媒液の偏流力(生じやすく、微細流路
の中での伝熱性能の分布が大きくなる。
In this case, the refrigerant liquid will flow through the fine channels. In that case, the refrigerant liquid tends to have a biased flow force, which increases the distribution of heat transfer performance in the microchannels.

冷媒液の温度はほぼ一様であるから、伝熱性能の悪いと
ころのジャンクション温度は高くなりやすく、逆に伝熱
性能の良いところのジャンクション温度は低くなる。
Since the temperature of the refrigerant liquid is almost uniform, the junction temperature in areas with poor heat transfer performance tends to be high, and conversely, the junction temperature in areas with good heat transfer performance becomes low.

このような原因により、大電力半導体を冷媒液で冷却す
る場合には、ジャンクション温度のバラツキが大きくな
る傾向にある。しかるに、従来技術においては、ジャン
クション温度の均一化についての配慮がされていなかっ
た。
Due to such causes, when a high-power semiconductor is cooled with a refrigerant liquid, variations in junction temperature tend to increase. However, in the prior art, no consideration was given to making the junction temperature uniform.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するためには、冷媒液の偏流をなくすこ
とが重要である。冷媒液は微細流路内を流れるわけであ
るが、冷却効率を高めるためにチップ裏面側に冷却フィ
ンを列状に装着している場合が多い、冷却フィンが密に
装着されるため、冷却フィン列の間を流れる時の冷媒液
の流動抵抗が、流路の他の部分よりも大きい、したがっ
て、流路の冷却フィン列以外のところに冷媒流が流れる
隙間があると、冷却フィン列間よりも、この隙間のほう
に冷媒液が流れてしまう、まずこのような隙間をなくす
ことが重要である。
In order to achieve the above objective, it is important to eliminate uneven flow of the refrigerant liquid. The refrigerant liquid flows in microchannels, and in order to increase cooling efficiency, cooling fins are often installed in a row on the back side of the chip. The flow resistance of the refrigerant liquid when flowing between the rows is greater than other parts of the flow path. Therefore, if there is a gap in the flow path where the refrigerant flows other than the cooling fin rows, the flow resistance of the refrigerant liquid when flowing between the rows of cooling fins is greater However, the refrigerant liquid flows towards this gap, so it is important to first eliminate such gaps.

各発熱チップが密に配置されているため1発熱チツプの
上方から、各発熱チップへ冷媒液の供給が杼打われる。
Since the heat generating chips are closely arranged, refrigerant liquid is supplied to each heat generating chip from above one heat generating chip.

したがって、冷媒液は発熱チップに垂直な方向から流入
する。冷媒液流路としては、流入口と流出口が必要とな
るわけである。そこで垂直流路の中央部にし切板を備え
て2分して、冷媒液の流入通路と流出通路を設ける。一
方、冷却フィン列間において、冷媒液の流量が均一にな
ることが重要である。それには、冷却フィンの先端側を
ふさいでしまい、冷Jtlを冷却フィン列の一方端側か
ら流入させ、他方端側から流出させる。
Therefore, the refrigerant liquid flows into the heat generating chip from a direction perpendicular to the heat generating chip. The refrigerant liquid flow path requires an inlet and an outlet. Therefore, a cutting plate is provided in the center of the vertical flow path to divide it into two, providing an inflow path and an outflow path for the refrigerant liquid. On the other hand, it is important that the flow rate of the refrigerant liquid be uniform between the cooling fin rows. To do this, the tips of the cooling fins are blocked, and the cold Jtl is allowed to flow in from one end of the cooling fin row and to flow out from the other end.

つまり冷却フィン列の全領域を冷媒液が一様に流れるよ
うにする。
In other words, the refrigerant liquid is made to flow uniformly over the entire area of the cooling fin row.

(作用〕 複数個の発熱チップが基板上に密に搭載されるため、基
板と反対側の発熱チップ裏面側から冷媒液が供給される
。冷媒液は垂直流路の流入通路を通って流入する。流入
した冷媒液の全流量がフィン列の一方端側へ導びかれて
、全流量がフィン列のフィン間隙を流れる。フィン間隙
を流れつつ、フィン部を冷却する0発熱チツプで発熱し
た熱はこのフィン部を介して冷媒液側へ伝えられる。そ
して、加熱された冷媒液は、他方のフィン端部側からフ
ィン列を流出して、垂直流路の流出通路から、例えば隣
接する発熱チップ側へと尋びかれる。
(Operation) Since multiple heat-generating chips are mounted closely on the substrate, refrigerant liquid is supplied from the back side of the heat-generating chips on the opposite side from the substrate.The refrigerant liquid flows through the inflow passage of the vertical flow path. .The entire flow rate of the inflowing refrigerant liquid is guided to one end side of the fin row, and the entire flow rate flows through the fin gaps of the fin row.As it flows through the fin gaps, the heat generated by the zero heat generation chip that cools the fin portion is absorbed. is transmitted to the refrigerant liquid side through this fin part.Then, the heated refrigerant liquid flows out of the fin row from the other fin end side and flows from the outflow passage of the vertical flow path to, for example, an adjacent heat generating chip. asked to the side.

以上のような作用によって、発熱チップの全領域を均一
に冷却することとなり、ジャンクション温度を一様にす
ることが可能となる。
Due to the above-described effects, the entire area of the heat generating chip is uniformly cooled, and the junction temperature can be made uniform.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第4図により説明す
る。配線基板1上に多数の発熱体2(半導体チップなど
)が搭載され、両者内の信号線が半田球3によって接続
されている。発熱体2の裏面側(基板2とは反対側)に
は、冷却フィン4で構成された冷却フィン列5を、その
内部にもつ冷却ブロック6が接合されている。冷却ブロ
ック6には、冷媒液を導入する液導入部7が0リング8
を介して挿入されている。冷却ブロック6と液導入部7
によって、冷却構造体9を構成する。基板上に複数個搭
載された各々の発熱体2に、各々の冷却構造体9が対応
している。隣接する冷却構造体9は、柔軟性ベローズ1
0によって連結されている。柔軟性ベローズ10は、各
々の冷却構造体9の液導入部7の側面に、半田あるいは
銀ロウ等によって接合されている。液導入部7の内部に
は。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. A large number of heating elements 2 (semiconductor chips, etc.) are mounted on a wiring board 1, and signal lines therein are connected by solder balls 3. A cooling block 6 having a cooling fin row 5 made up of cooling fins 4 therein is joined to the back side of the heating element 2 (the side opposite to the substrate 2). In the cooling block 6, a liquid introduction part 7 for introducing the refrigerant liquid is connected to an O ring 8.
has been inserted through. Cooling block 6 and liquid introduction part 7
The cooling structure 9 is configured by: Each cooling structure 9 corresponds to each of the plural heating elements 2 mounted on the substrate. The adjacent cooling structure 9 has a flexible bellows 1
Connected by 0. The flexible bellows 10 is joined to the side surface of the liquid introduction part 7 of each cooling structure 9 by solder, silver solder, or the like. Inside the liquid introduction part 7.

バッファ11が、柔軟性ベローズ10の方向に直交する
ように設けられている。バッファ11の柔軟性ベローズ
10の配置される中心軸付近に、冷媒液通路孔12が備
えられている。一方、冷却ブロック6内においては1発
熱体2側の内面側に冷却フィン4が複数個列状に走って
おり、冷却フィン4の先端側には、おさえ板13が設け
られている。そして、バッファ11の先端がおさえ板1
3に接している。一般に冷却フィン4を内部に備える冷
却ブロック部は矩形断面形状をしている。冷却ブロック
部の液導入部と接する側は内筒形状をしており、0リン
グ8による冷媒液のシールを行い易くしている。この円
筒形状部の通路の大きさは、冷却フィン4を内部に備え
る冷却ブロック部の断面より小さい、矩形断面形状をし
た冷却ブロック部の内壁と、おさえ板13とで作られる
空間には、し切りブロック14が2つ設けられている。
A buffer 11 is provided perpendicular to the direction of the flexible bellows 10. A refrigerant liquid passage hole 12 is provided near the central axis of the buffer 11 where the flexible bellows 10 is arranged. On the other hand, inside the cooling block 6, a plurality of cooling fins 4 run in a row on the inner surface on the side of the first heating element 2, and a pressing plate 13 is provided on the tip side of the cooling fin 4. Then, the tip of the buffer 11 is connected to the holding plate 1.
It borders on 3. Generally, a cooling block portion having cooling fins 4 therein has a rectangular cross-sectional shape. The side of the cooling block that comes into contact with the liquid introduction part has an inner cylindrical shape, making it easy to seal the refrigerant liquid with the O-ring 8. The size of the passage of this cylindrical part is smaller than the cross section of the cooling block part that has the cooling fins 4 therein, and the space created by the inner wall of the cooling block part having a rectangular cross-sectional shape and the presser plate 13 has no space. Two cutting blocks 14 are provided.

し切りブロック14は、板状のバッファ11の先端側の
両サイドに配置されており、第2図でわかるように、矩
形断面形状をした冷却ブロック部内部の冷却フィン列5
以外の冷媒液通路をふさぐ構造となる。ところで、本発
明の冷却装置においては、冷媒液が柔軟性ベローズ10
及び冷却構造体9の内部を流れる。冷媒液はポンプ駆動
される場合が多く流路内部は加圧されている。したがっ
て、冷却ブロック6と液導入部7がOリング8によって
シールされている構造のため、液導入部7を基板上側へ
押えておかなければならない、ささえ板15はそのため
のもので、ゴム層16を介して設置されている。
The cutting blocks 14 are arranged on both sides of the tip side of the plate-shaped buffer 11, and as shown in FIG. 2, the cooling fin rows 5 inside the cooling block portion having a rectangular cross section
The structure blocks other refrigerant liquid passages. By the way, in the cooling device of the present invention, the refrigerant liquid flows through the flexible bellows 10.
and flows inside the cooling structure 9. The refrigerant liquid is often driven by a pump and the inside of the flow path is pressurized. Therefore, since the cooling block 6 and the liquid introduction part 7 are sealed by the O-ring 8, it is necessary to hold the liquid introduction part 7 above the substrate.The supporting plate 15 is used for this purpose. It is installed through.

次に本発明の詳細な説明する0作動時において発熱する
発熱体2を冷却するために、冷媒液が例えば第1図にお
いては、右側の柔軟性ベローズ10から流入する(矢印
17)、この冷媒液17は液導入部7に導びかれ、バッ
ファ11に設けられた冷媒液通路孔12を通過する流れ
(矢印18)と1発熱体側へ向かって流れる流れ(矢印
19)とに分かる。流れ19は、冷却ブロック側へ導び
かれて、おさえ板13.バンファ11.し切りブロック
14、及び、冷却ブロック14の内壁とによって構成さ
れる空間へ流入する(流れ20)。
Next, in order to cool the heating element 2 which generates heat during operation, a refrigerant liquid flows in from the flexible bellows 10 on the right side (arrow 17) in FIG. The liquid 17 is led to the liquid introduction part 7, and can be seen as a flow passing through the refrigerant liquid passage hole 12 provided in the buffer 11 (arrow 18) and a flow flowing toward the first heating element (arrow 19). The flow 19 is guided to the cooling block side and passes through the holding plate 13. Banfa 11. It flows into the space defined by the cutting block 14 and the inner wall of the cooling block 14 (flow 20).

流れ20は、放射状に流れ(第3図矢印21)、おさえ
板13の一方端に存在する隙間22に向かう、ここにお
いて、流れは冷却フィン4の間に一様に流入する(流れ
23)、多数の冷却フィン4の間を一様に流れることに
より、発熱体2で発生した熱は除熱され、冷媒液は加熱
される。加熱された冷媒液は、もう一方の隙間24から
おさえ板13、バッファ11.し切りブロック14、及
び、冷却ブロック内壁とで構成される。もう一方の空間
へと流出される(矢印25)、流れ25は、液導入部側
へ向かって流れ(矢印26)、冷媒液通路孔12を通過
した流れ18と合流して、もう−方の柔軟性ベローズ1
0内を隣接する発熱体へと流れる(矢印27)。
The flow 20 flows radially (arrow 21 in FIG. 3) towards the gap 22 present at one end of the holding plate 13, where it flows uniformly between the cooling fins 4 (flow 23). By uniformly flowing between the many cooling fins 4, the heat generated by the heating element 2 is removed and the refrigerant liquid is heated. The heated refrigerant liquid flows from the other gap 24 to the holding plate 13, buffer 11. It is composed of a cutting block 14 and an inner wall of the cooling block. The flow 25 that flows out to the other space (arrow 25) flows toward the liquid introduction section (arrow 26), merges with the flow 18 that has passed through the refrigerant liquid passage hole 12, and flows into the other space. Flexible bellows 1
0 to the adjacent heating element (arrow 27).

本実施例によれば次の効果がある。冷却ブロック内へ導
びかれた冷媒液20は、バッファ11、及びし切りブロ
ック14が配置されていることにより、隙間22へ全て
の流量が流れる。そのため、冷却フィン4の間を全ての
冷媒液が流れるようになり、冷却性能を一様にすること
が可能になる。
This embodiment has the following effects. The entire flow rate of the refrigerant liquid 20 introduced into the cooling block flows into the gap 22 due to the arrangement of the buffer 11 and the cutting block 14 . Therefore, all of the refrigerant liquid flows between the cooling fins 4, making it possible to make the cooling performance uniform.

第5図に他の実施例を示す、おさえ板13の上面に傾斜
28を設ける。そして、冷却ブロックの内壁にも傾斜2
9を設ける。こうすることにより、流れ21、及び、流
れ25にもとづく、冷媒液の流動抵抗を小さく押えるこ
とができ、冷却フィン4の間の冷媒液の流れを、より一
様にすることができる。
Another embodiment is shown in FIG. 5, in which a slope 28 is provided on the upper surface of the holding plate 13. The inner wall of the cooling block also has a slope of 2.
9 will be provided. By doing so, the flow resistance of the refrigerant liquid based on the flow 21 and the flow 25 can be kept small, and the flow of the refrigerant liquid between the cooling fins 4 can be made more uniform.

第6図に更に他の実施例を示す、おさえ板13の形状を
矩形状ではなく、冷却フィン列に対して。
FIG. 6 shows still another embodiment, in which the shape of the presser plate 13 is not rectangular but in relation to a cooling fin row.

中央部がフィンをおさえる面積が小さく、冷却フィン列
の両端になるにしたがって、フィンをおさえる面積が大
きくなる形状とする。こうすることによって、冷却ブロ
ック内へ導びかれた冷媒液を冷却フィン4の間に、より
一層均−に流れるようにして、冷却性能の安定化を図る
The area for holding the fins is small at the center, and the area for holding the fins increases toward both ends of the cooling fin row. By doing so, the refrigerant liquid introduced into the cooling block is made to flow more evenly between the cooling fins 4, thereby stabilizing the cooling performance.

第7図は基板上に多数並んだ発熱体及びそれに対応する
冷却構造体をささえ板15で基板1に押え付けた場合の
構成図を示す、基板1とささえ板15を四方向から、固
定わく30及びネジ31によっておさえつける。
FIG. 7 shows a configuration diagram in which a large number of heating elements arranged on a board and their corresponding cooling structures are held down to the board 1 by the support plate 15. 30 and screws 31.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷却フィン間に、冷媒液を一様に流れ
るようにすることにより1発熱体の温度を一様に押える
ことができる。多数の半導体素子のジャンクションm度
をある一定の温度幅に押えることにより、半導体素子の
寿命の向上を図ることができる。
According to the present invention, the temperature of one heating element can be kept uniform by allowing the refrigerant liquid to flow uniformly between the cooling fins. By suppressing the junction temperature of a large number of semiconductor elements to a certain constant temperature range, it is possible to improve the life of the semiconductor elements.

さらに、冷媒液の流動抵抗を小さくおさえることにより
、冷媒液を駆動するポンプ動力の低減を図ることができ
る。
Furthermore, by keeping the flow resistance of the refrigerant liquid low, it is possible to reduce the power of the pump that drives the refrigerant liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、第2図は第
1図に直交する縦断面図、第3図は第1図のA−A断面
図、第4図は第1図のB−B断面図、第5図は他の実施
例を示す縦断面図、第6図は更に他の実施例を示す横断
面図、第7図は基板上に多数並んだ発熱体及びそれに対
応する冷却構造体をささえ板で基板に押え付けた状態の
構造を示す斜視図である。 1・・・基板、2・・・発熱体、3・・・半田球、4・
・・冷却フィン、11・・・バッファ、13・・・おさ
え板、14・・・し切りブロック。 代理人 弁理士 小川勝−一′・) 第 図 箋 7オ末反 2・・・・発熱、1本 不 已 第 す 図 某 口 某 図
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention, FIG. 2 is a longitudinal sectional view orthogonal to FIG. 1, FIG. 3 is a sectional view taken along line A-A in FIG. FIG. 5 is a vertical sectional view showing another embodiment, FIG. 6 is a cross sectional view showing still another embodiment, and FIG. 7 shows a large number of heating elements arranged on a substrate and FIG. 3 is a perspective view showing a structure in which a corresponding cooling structure is pressed against a substrate with a support plate. 1... Board, 2... Heating element, 3... Solder ball, 4...
...Cooling fin, 11... Buffer, 13... Pressing plate, 14... Cutting block. Agent: Patent attorney Masaru Ogawa - 1') Diagram 7: End of the letter 2: Fever, one bottle is broken, a certain mouth, a certain figure

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に複数の発熱体である半導体チップを配置し
て、基板とは反対側の発熱体裏面側へ冷却構造体を接合
し、各冷却構造体に冷媒液を流すことによつて、発熱体
を冷却する装置において、冷却構造体内に冷却フィン列
を有し、冷却フィンの先端側をおさえ板でおさえ、冷却
フィンとは反対側の面のおさえ板ほぼ中央部に接し、お
さえ板に直交する方向にバッファが備えつけられ、さら
に、バッファと冷却構造体内壁との間に生じる隙間を仕
切りブロックで塞いだことを特徴とする半導体冷却装置
1. By arranging a plurality of semiconductor chips that are heating elements on a substrate, joining a cooling structure to the back side of the heating element opposite to the substrate, and flowing a refrigerant liquid to each cooling structure, A device that cools a heating element has a cooling fin row within the cooling structure, the tip side of the cooling fin is held down by a holding plate, and the holding plate on the opposite side of the cooling fin is in contact with almost the center, and the holding plate is in contact with the holding plate. A semiconductor cooling device characterized in that a buffer is provided in a direction perpendicular to each other, and a gap between the buffer and an inner wall of the cooling structure is closed with a partition block.
JP63232466A 1988-09-19 1988-09-19 Semiconductor cooling apparatus Pending JPH0282562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232466A JPH0282562A (en) 1988-09-19 1988-09-19 Semiconductor cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232466A JPH0282562A (en) 1988-09-19 1988-09-19 Semiconductor cooling apparatus

Publications (1)

Publication Number Publication Date
JPH0282562A true JPH0282562A (en) 1990-03-23

Family

ID=16939735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232466A Pending JPH0282562A (en) 1988-09-19 1988-09-19 Semiconductor cooling apparatus

Country Status (1)

Country Link
JP (1) JPH0282562A (en)

Similar Documents

Publication Publication Date Title
US4296455A (en) Slotted heat sinks for high powered air cooled modules
US8505617B2 (en) Structure and apparatus for cooling integrated circuits using copper microchannels
US5021924A (en) Semiconductor cooling device
KR100605446B1 (en) Liquid-cooled power semiconductor device heatsink
US5592363A (en) Electronic apparatus
US5083194A (en) Air jet impingement on miniature pin-fin heat sinks for cooling electronic components
US5001548A (en) Multi-chip module cooling
JP6050617B2 (en) Cooling device for power supply module and related method
US5203401A (en) Wet micro-channel wafer chuck and cooling method
EP0447835A2 (en) Heat removal apparatus for liquid cooled semiconductor modules
KR930005491B1 (en) Device for cooling integrated circuit chip
US6351384B1 (en) Device and method for cooling multi-chip modules
US5099910A (en) Microchannel heat sink with alternating flow directions
JP2894243B2 (en) Heat sink with excellent heat dissipation characteristics
US20180090417A1 (en) Fluid Routing Devices And Methods For Cooling Integrated Circuit Packages
JPH0334229B2 (en)
US5705854A (en) Cooling apparatus for electronic device
KR20210110165A (en) Heat dissipation device
KR100232810B1 (en) Heat sink structure with corrugated wound wire heat conductive elements
JPH05335454A (en) Cooler for electronic apparatus
JPS61226946A (en) Cooling device for integrated circuit chip
JPH06120387A (en) Heat sink
JP3002611B2 (en) Heating element cooling device
US4833766A (en) Method of making gas heat exchanger
US4901201A (en) Plate fin/chic heat exchanger