JPH0282167A - Current measuring instrument with optical system - Google Patents

Current measuring instrument with optical system

Info

Publication number
JPH0282167A
JPH0282167A JP63234662A JP23466288A JPH0282167A JP H0282167 A JPH0282167 A JP H0282167A JP 63234662 A JP63234662 A JP 63234662A JP 23466288 A JP23466288 A JP 23466288A JP H0282167 A JPH0282167 A JP H0282167A
Authority
JP
Japan
Prior art keywords
optical
signals
optical signal
current
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63234662A
Other languages
Japanese (ja)
Other versions
JP2668127B2 (en
Inventor
Genji Takahashi
高橋 源治
Masaru Higaki
勝 檜垣
Tsutomu Takai
勉 高井
Minoru Kanai
叶井 実
Isao Takagi
勲 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Hitachi Ltd
Original Assignee
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP63234662A priority Critical patent/JP2668127B2/en
Publication of JPH0282167A publication Critical patent/JPH0282167A/en
Application granted granted Critical
Publication of JP2668127B2 publication Critical patent/JP2668127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure currents in the range from the small to the large currents in the manner of using a single magnetooptical element by branching an optical signal outputted from a light detecting element to plural optical signals having the different light intensities and processing the signals with a photoelectric conversion respectively. CONSTITUTION:By the light detecting element 44, optical signals P0, S0 having the components of a P-polarization and a S-polarization among the optical signals A are transmitted to optical branching devices 56, 58 respectively. In the branching devices 56, 58, the signals P0, S0 are branched to the optical signals P1, P2, S1, S2 respectively and set in the relations of P1>P2, S1>S2, P1/P2=S1/S2. Further, the signals P1, S1 are set to correspond to the currents for the measurement in the small currents range, and the signals P2, S2 are set to correspond to those in the large currents range. The signals P1 - S2 are subjected to photoelectric conversion respectively by light receiving elements 68, 72, 70, 74. Voltage signals VA, VB proportional to the current (i) are calculated in the manner of processing the signals CH-1,CH-2 respectively based on the signals P1, S1 and P2, S2 subjected to the photoelectric conversion. Then, the signal VA is outputted up to the time when the signal VA exceeds a rated value, and when it exceeds the rated value, the signals VB is outputted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光方式電流測定装置に係り、特に被測定対象か
ら発生する磁界に感応する磁気光学素子の出力を光電変
換して被測定対象の電流を測定するに好適な光方式電流
測定装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to an optical current measuring device, and in particular, to photoelectrically convert the output of a magneto-optical element that is sensitive to a magnetic field generated from an object to be measured. The present invention relates to an optical current measuring device suitable for measuring current.

〔従来の技術〕[Conventional technology]

従来、商用電力系統においては、f[!力系統の電流を
巻線型電流変成器(CT)によって測定し、この測定値
を基に電力系統の送電系統の制御や保護を図ることが行
われていた。ところが、CTを50万ボルトや100万
ボルトの電力系統に用いる場合には、高電圧による絶縁
性を維持するためにギアツブを大きくしたり、鉄心磁気
飽和特性を改善するために、鉄心を大きくしたりしなけ
ればならず、装置が大型化するという不具合があった。
Conventionally, in commercial power systems, f[! BACKGROUND ART Current in a power system is measured using a wire-wound current transformer (CT), and the power transmission system of the power system is controlled and protected based on the measured value. However, when CTs are used in power systems of 500,000 volts or 1 million volts, the gear knobs must be made larger to maintain high voltage insulation, and the iron core must be made larger to improve the magnetic saturation characteristics of the iron core. However, there was a problem in that the device had to be larger.

そこで、近年磁気光学効果を利用した光方式電流測定装
置(光CT)が特開昭58−153174号公報により
提案されている。この装置は 第9図に示されるように
、発光素子11がff1ilfi1.oからの信号によ
って発光すると、この非偏光の光が光ファイバー12を
介してコリメータ13へ伝送され、平行光に変換された
後偏光子14に入射する。偏光子14に入射した光は鉛
ガラスなどで構成されるファラデー素子(磁気光学素子
)15に入射する。ファラデー素子15に入射した直線
偏光による光信号Aは、ファラデー素子15に設けられ
た6ケ所の全反射面15A、15B、15G。
Therefore, in recent years, an optical current measuring device (optical CT) using the magneto-optical effect has been proposed in Japanese Patent Laid-Open No. 153174/1983. In this device, as shown in FIG. 9, the light emitting elements 11 are ff1ilfil1. When emitted by the signal from o, this unpolarized light is transmitted to the collimator 13 via the optical fiber 12, converted into parallel light, and then enters the polarizer 14. The light incident on the polarizer 14 is incident on a Faraday element (magneto-optical element) 15 made of lead glass or the like. The optical signal A of linearly polarized light incident on the Faraday element 15 is reflected by six total reflection surfaces 15A, 15B, and 15G provided on the Faraday element 15.

15D、15E、15Fを介して検光子17に導かれる
。ファラデー素子15は被測定導体16の周囲に光路を
形成するようになっているので、光信号Aが被測定導体
16から発生する磁界の強さに応じて光信号Aの偏波面
が回転する。この時の光信号Aの偏光回転角0は次の (1)式によって表わされる。
It is led to the analyzer 17 via 15D, 15E, and 15F. Since the Faraday element 15 forms an optical path around the conductor to be measured 16, the plane of polarization of the optical signal A rotates in accordance with the strength of the magnetic field generated by the conductor to be measured 16. The polarization rotation angle 0 of the optical signal A at this time is expressed by the following equation (1).

0 = f Ve−He−d n      ・・−4
1)ここで、 ve:ヴエルデ定数 He:光の進行方向の磁界の強さ Q =ファラデー素子中の光路長 (1)式から偏光回転角θの大小は被測定導体16を流
れる電流によって発生する磁界の強さに比例することが
わかる。つまり、磁界の強弱は偏光回転角Oの大小に比
例する。
0 = f Ve-He-d n...-4
1) Here, ve: Vuelde constant He: Strength of magnetic field in the direction of propagation of light Q = Optical path length in Faraday element (1) From formula (1), the magnitude of the polarization rotation angle θ is generated by the current flowing through the conductor 16 to be measured. It can be seen that it is proportional to the strength of the magnetic field. In other words, the strength of the magnetic field is proportional to the polarization rotation angle O.

偏光回転角θの光信号が検光子17に入射すると、偏光
子14と方位が45°異なった検光子17によってP偏
光の光信号PとS偏光成分の光信号Sとに分岐され、そ
れぞれコリメータ18.19に集光された後、光ファイ
バー20・21を介して受光素子22・23へ伝送され
る。そして受光素子22・23によって光電変換され、
信号処理回路24によって被測定導体16を流れる電流
iに比例する電圧信号Voutが算出される。この電圧
信号Voutから被測定導体16の電流iを算出するこ
とができる。
When an optical signal with a polarization rotation angle θ is incident on the analyzer 17, the analyzer 17 whose orientation differs by 45 degrees from the polarizer 14 splits it into an optical signal P of P polarization and an optical signal S of S polarization component, and each is sent to a collimator. After the light is focused on 18 and 19, it is transmitted to light receiving elements 22 and 23 via optical fibers 20 and 21. Then, it is photoelectrically converted by the light receiving elements 22 and 23,
The signal processing circuit 24 calculates a voltage signal Vout proportional to the current i flowing through the conductor 16 to be measured. The current i in the conductor 16 to be measured can be calculated from this voltage signal Vout.

ところで、電力系統における電流測定は系統の制御及び
、保護のために行われるが、電流測定に際しては、定格
電流以下の数A〜数1OAの小電流領域から短絡事故な
どを想定しての150kA付近までの大電流領域を精度
良く検出できることが要求されている。ところが、第9
図に示す装置の場合には、単一のファラデー素子15を
用いて小電流領域から大電流領域までの電流を精度良く
検出することができなかった。即ち、ファラデー素子1
5として鉛ガラスなどヴエルデ定数の比較的大きい材質
のものを用いた場合5偏光回転角θは小電流領域におい
ては電流iに比例して大きくなるが、このθがπ/4よ
り大きくなると電流の増加に従ってθの値が小さくなる
。このため、40〜60kAでθ=π/4となる鉛ガラ
スは系統事故時のように大電流を測定できなくなる。
By the way, current measurement in power systems is performed for the purpose of controlling and protecting the system, but when measuring current, it ranges from a small current range of several A to several 1 OA below the rated current, to around 150 kA assuming a short circuit accident. It is required to be able to accurately detect large current ranges up to However, the 9th
In the case of the device shown in the figure, it was not possible to accurately detect current from a small current region to a large current region using a single Faraday element 15. That is, Faraday element 1
When a material with a relatively large Werde constant such as lead glass is used as 5, the polarization rotation angle θ increases in proportion to the current i in the small current region, but when this θ becomes larger than π/4, the current The value of θ becomes smaller as the value increases. For this reason, with lead glass where θ=π/4 at 40 to 60 kA, it is no longer possible to measure large currents as in the case of a system failure.

一方、ファラデー素子15としてヴエルデ定数の小さい
材質のものを用いれば、150kA程度の短絡電流が流
れても0がπ/4以下のため、この電流を検出すること
はできるが、数A程度の小電流領域においてはθの値が
小さく、θの値から電流を測定しても、S/Nが悪くな
り、電流を精度良く測定することができなくなる。
On the other hand, if a material with a small Welde constant is used as the Faraday element 15, even if a short-circuit current of about 150 kA flows, 0 is less than π/4, so this current can be detected. In the current region, the value of θ is small, and even if the current is measured from the value of θ, the S/N will be poor, making it impossible to accurately measure the current.

そこで、特開昭59−35−156号公報に記載されて
いるように、偏光回転角の大きい材質のファラデー素子
を小電流測定用に用い、−力価光回転角の小さい材質の
ファラデー素子を大電流測定用に用い、複数個のファラ
デー素子によって小電流領域から大電流領域までの電流
を測定するようにしたものが提案されている。
Therefore, as described in JP-A-59-35-156, a Faraday element made of a material with a large polarization rotation angle is used for small current measurement, and a Faraday element made of a material with a small titer light rotation angle is used. A device has been proposed that is used for measuring large currents and measures current from a small current region to a large current region using a plurality of Faraday elements.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来技術では、複数個のファラデー素子を必要
とすると共に各ファラデー素子の出力信号を伝送するた
めの信号伝送路が必要となり、装置が大型化すると共に
部品点数の増加によって信頼性が低下する恐れがあった
However, the conventional technology requires a plurality of Faraday elements and a signal transmission path for transmitting the output signal of each Faraday element, which increases the size of the device and reduces reliability due to an increase in the number of parts. There was fear.

本発明の目的は、単一の磁気光学素子を用いて小電流領
域から大電流領域までの電流を測定することができる光
方式電流測定装置を提供することにある。
An object of the present invention is to provide an optical current measuring device that can measure current from a small current region to a large current region using a single magneto-optical element.

〔課題を解決するための手段〕 前記目的を達成するために、本発明は、非偏光の光信号
を発生する発光手段と、発光手段からの光信号を直線偏
光の光信号に変換する偏光子と、偏光子出力の光信号を
受け、該光信号の偏波面を被測定対象から発生する磁界
の強さに応じて回転させる磁気光学素子と、磁気光学素
子出力の光信号を受け、該光信号の内特定の方向成分の
光信号を透過させる検光子と、検光子出力の光信号を光
強度の異なる複数の光信号に分岐する光分岐手段と、光
分岐手段出力の各光信号をそれぞれ光強度に応じた電気
信号に変換する光電変換手段と、光電変換手段出力の各
電気信号から被測定対象の電流値を算出する算出手段と
、を有する光方式電流測定装置を構成したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a light emitting means for generating a non-polarized optical signal, and a polarizer for converting the optical signal from the light emitting means into a linearly polarized optical signal. a magneto-optical element that receives an optical signal output from a polarizer and rotates the plane of polarization of the optical signal according to the strength of a magnetic field generated from an object to be measured; An analyzer that transmits an optical signal of a specific direction component of the signal, an optical branching means that branches the optical signal output from the analyzer into a plurality of optical signals with different light intensities, and each optical signal output from the optical branching means This is an optical current measuring device comprising a photoelectric conversion means for converting into an electric signal according to the light intensity, and a calculation means for calculating the current value of the object to be measured from each electric signal output from the photoelectric conversion means. .

〔作用〕[Effect]

発光手段から偏光子に非偏光の光が入射すると直線偏光
の光信号に変換された後磁気光学素子に伝送される。こ
の光信号は被測定対象から発生する磁界の強さに応じて
その偏波面が回転し、検光子へ伝送される。この光信号
のうち特定の方向成分の光信号が検光子によって抽出さ
れ、光分岐手段へ出力される。即ち、検光子からは偏光
回転角に応じた光強度の光信号が出力される。光分岐手
段は検光子出力の光信号を光強度の異なる複数の光信号
、例えば高強度の光信号と低強度の光信号とに分岐し、
分岐した信号をそれぞれ光電変換手段へ伝送する。そし
て、この光信号はそれぞれ光強度に応じた電気信号に変
換され、この電気信号から被測定対象の電流値が算出さ
る。例えば、高強度の光信号を基に計測制御用の電流値
が算出さ、低強度の光信号を基に保護用の電流値が算出
される。これにより、単一の磁気光学素子を用いても小
電流領域から大電流領域までの電流を測定することがで
きる。
When unpolarized light enters the polarizer from the light emitting means, it is converted into a linearly polarized optical signal and then transmitted to the magneto-optical element. The plane of polarization of this optical signal is rotated according to the strength of the magnetic field generated from the object to be measured, and the optical signal is transmitted to the analyzer. Of this optical signal, an optical signal having a specific direction component is extracted by an analyzer and outputted to the optical branching means. That is, the analyzer outputs an optical signal having a light intensity corresponding to the polarization rotation angle. The optical branching means branches the optical signal output from the analyzer into a plurality of optical signals having different optical intensities, for example, a high-intensity optical signal and a low-intensity optical signal,
The branched signals are each transmitted to photoelectric conversion means. Then, each of these optical signals is converted into an electrical signal corresponding to the light intensity, and a current value of the object to be measured is calculated from this electrical signal. For example, a current value for measurement control is calculated based on a high-intensity optical signal, and a current value for protection is calculated based on a low-intensity optical signal. Thereby, even if a single magneto-optical element is used, current from a small current region to a large current region can be measured.

〔実施例〕〔Example〕

以下5本発明の一実施例を第1図に基いて説明する。 Hereinafter, one embodiment of the present invention will be explained based on FIG.

第1図において、発光手段を構成する発光ダイオード3
2は駆動回路に接続されており、駆動回路30からの駆
動信号によって非偏光(自然光)の光信号を発生するよ
うになっている。そして、この光信号は光ファイバー3
4を介してコリメータ36に伝送され、平行光に変換さ
れたのち、偏光子38に入射するようになっている。偏
光子38は磁気光学素子としてのファラデーガラス40
に固定されており、偏光子38に入射した光信号が直線
偏光の光信号に変換され、ファラデーガラス40内に導
かれるようになっている。ファラデーガラス40は被測
定対象としての被測定導体42の周囲を囲むように形成
されており、被測定導体42がファラデーガラス4oの
貫通孔40A内に挿通されている。・そして直線偏光の
光信号Aがファラデーガラス40の光通路を介して被測
定導体42の周囲を1周すると、光信号Aの偏波面が被
測定導体42から発生す、る磁界の強さに応じて回転す
るようになっている。この偏光回転角は前記(1)式に
よって表わされ、偏光回転角は被測定導体42を流れる
電流iに比例した値となる。この偏光回転角θを有する
光信号は検光子44に入射する。
In FIG. 1, a light emitting diode 3 constituting the light emitting means is shown.
2 is connected to a drive circuit, and generates a non-polarized (natural light) optical signal in response to a drive signal from the drive circuit 30. This optical signal is transmitted to the optical fiber 3
The light is transmitted to the collimator 36 via the light beam 4, is converted into parallel light, and then enters the polarizer 38. The polarizer 38 is a Faraday glass 40 as a magneto-optical element.
The optical signal incident on the polarizer 38 is converted into a linearly polarized optical signal and guided into the Faraday glass 40. The Faraday glass 40 is formed to surround a conductor to be measured 42 as an object to be measured, and the conductor to be measured 42 is inserted into a through hole 40A of the Faraday glass 4o. - When the linearly polarized optical signal A goes around the conductor to be measured 42 once through the optical path of the Faraday glass 40, the plane of polarization of the optical signal A changes depending on the strength of the magnetic field generated from the conductor to be measured 42. It rotates accordingly. This polarization rotation angle is expressed by the above equation (1), and the polarization rotation angle has a value proportional to the current i flowing through the conductor 42 to be measured. The optical signal having this polarization rotation angle θ is incident on the analyzer 44.

検光子44は偏光子38と方位が45°異なって構成さ
れており、光信号AのうちP偏光成分の光信号POをプ
リズム46、コリメータ48、光ファイバー52を介し
て光分岐器56へ伝送し、S偏光成分の光信号SOをコ
リメータ5o、光ファイバー54を介して光分岐器58
へ伝送するように構成されている。光分岐手段としての
光分岐器56.58はビームスプリッタ又は、光ファイ
バーで構成されており、光信号po、soをそれぞれ光
強度の異なる複数の光信号PL、P2と光信号SL、S
2に分岐し、分岐した光信号をそれぞれ光ファイバー6
0.62,64.66を介してSiやGeなどの発光ダ
イオードで構成される受光素子68,70,72.74
へ伝送するようになっている。
The analyzer 44 is configured to have an orientation different from the polarizer 38 by 45 degrees, and transmits the optical signal PO of the P-polarized component of the optical signal A to the optical splitter 56 via the prism 46, the collimator 48, and the optical fiber 52. , the S-polarized component optical signal SO is sent to the optical splitter 58 via the collimator 5o and the optical fiber 54.
is configured to transmit to. The optical splitters 56 and 58 as optical branching means are composed of beam splitters or optical fibers, and split the optical signals po and so into a plurality of optical signals PL and P2 having different optical intensities and optical signals SL and S, respectively.
2, and the branched optical signals are each connected to an optical fiber 6.
0.62, 64.66, and light receiving elements 68, 70, 72.74 composed of light emitting diodes such as Si and Ge.
It is designed to be transmitted to.

光信号PL、P2と光信号S1、S2は、それぞれ光信
号PL、SLの光強度が光信号P2.S2よりも高くな
るように、光分岐器56.58によって調整さいる。即
ち、各信号PL、P2.S1、S2の光強度をそれぞれ
PL、P2.Sl。
The optical signals PL, P2 and the optical signals S1, S2 are such that the optical intensity of the optical signals PL, SL is equal to the optical signal P2. It is adjusted by optical splitters 56 and 58 so that it is higher than S2. That is, each signal PL, P2 . The light intensities of S1 and S2 are respectively PL and P2. Sl.

S2とした場合、PL>P2.Sl>S2でかつPL/
P2=SL/S2の関係に、各光信号の分配比率が設定
されている。さらに、高強度の光信号PL、SLはそれ
ぞれ小電流領域の電流を測定するための電流に対応付け
て設定されており、光信号P2.S2は大電流領域の電
流を測定するための電流に対応付けて設定されている。
If S2, PL>P2. Sl>S2 and PL/
The distribution ratio of each optical signal is set to the relationship P2=SL/S2. Furthermore, the high-intensity optical signals PL and SL are set to correspond to the currents for measuring currents in the small current region, respectively, and the optical signals P2. S2 is set in association with a current for measuring a current in a large current region.

光信号PL、P2.Sl、S2はそれぞれ受光素子68
.70,72.74によって光電交換され、電流電圧変
換増幅器76.78,80.82によって増幅された後
割算器92,94,96゜98に供給されるようになっ
ている。なお、増幅器76.78,80.82の増幅度
は抵抗84゜86.88.90の値によって調整される
ようになっている。各割算器92,94,96.98は
各増幅器76.78,80.82の出力信号を割算し、
割算した値をそれぞれ差動回路100゜102に出力し
、各割算器92,94,96.98の出力信号から電流
iに比例した電圧信号VA。
Optical signals PL, P2. Sl and S2 are light receiving elements 68, respectively.
.. The signals are photoelectrically exchanged by 70, 72.74, amplified by current-voltage conversion amplifiers 76.78, 80.82, and then supplied to dividers 92, 94, 96.98. Note that the amplification degrees of the amplifiers 76.78 and 80.82 are adjusted by the value of the resistor 84°86.88.90. Each divider 92, 94, 96.98 divides the output signal of each amplifier 76.78, 80.82,
The divided values are output to the differential circuit 100° 102, and a voltage signal VA proportional to the current i is obtained from the output signal of each divider 92, 94, 96.98.

VBを出力するように構成されている。割算器92.9
4,96.98の出力をそれぞれ差動回路100.10
2を介して電圧信号VA、VBを算出することによって
、測定系の偶数次の歪が打ち消されるようになっている
。又光信号po、soをそれぞれ光信号PL、P2と光
信号SL、82に分岐して電圧信号VA、VBを求める
ことにより、光源の変動による誤差を抑制することがで
きる。
It is configured to output VB. Divider 92.9
The outputs of 4 and 96.98 are connected to differential circuits 100.10 and 100.10, respectively.
By calculating the voltage signals VA and VB via 2, even-order distortion of the measurement system is canceled out. Further, by branching the optical signals po and so into the optical signals PL and P2 and the optical signal SL and 82, respectively, to obtain the voltage signals VA and VB, it is possible to suppress errors caused by fluctuations in the light source.

即ち、光信号の伝送系を2系統に分岐することによって
光源の直流分がキャンセルできるようになっている。な
お、受光素′f−68、70、72。
That is, by branching the optical signal transmission system into two systems, the direct current component of the light source can be canceled. Note that the light receiving elements 'f-68, 70, and 72.

74、増幅器76.78,80,82.抵抗84゜86
.88.90によって光電変換素子が構成され、割算器
92,94,96,98、差動回路100.102によ
・〕で算出手段が構成されている。
74, amplifier 76.78,80,82. Resistance 84°86
.. 88 and 90 constitute a photoelectric conversion element, and dividers 92, 94, 96, 98, and differential circuits 100 and 102 constitute calculation means.

このように、本実施例においては、光信号PI。In this way, in this embodiment, the optical signal PI.

P2,31.S2の光強度をPi>P2,5l)S2の
関係に設定しまたため、第2図に示されるように、小電
流領域においては小電流のOol、 T nから定格電
流I nまで、割算器92.94に入力される電圧信号
Vaが電流lに比例して順次大きくなり、電流iが定格
電流Inを越えた後は電圧信号Vaが一定となる。一方
、電圧信号vbは電流iの増加に従って徐々に大きくな
り、短18電流Imaxによって最大値に至るようにな
る。電圧信号Vaは小電流領域において急激に立ち上が
るため、小電流領域の電流をSN比の高い信号として検
出することができる。
P2,31. Since the light intensity of S2 is set to the relationship Pi>P2,5l)S2, as shown in Fig. 2, in the small current region, from the small current Ool, Tn to the rated current In, the divider The voltage signal Va input to 92.94 gradually increases in proportion to the current l, and after the current i exceeds the rated current In, the voltage signal Va becomes constant. On the other hand, the voltage signal vb gradually increases as the current i increases, and reaches its maximum value at the short 18 current Imax. Since the voltage signal Va rises rapidly in the small current region, the current in the small current region can be detected as a signal with a high signal-to-noise ratio.

ここで、ヴエルデ定数として(2,0〜4.0)X 1
0”” (r a d /AT)であって、短絡事故時
の電流値が150kAであっても、偏光回転角がπ/4
を越えない磁気光学素子を用いて電圧信号VA、VBか
ら比誤差を測定したところ第3図に示されるように、信
号処理回路CH−1の比誤差が小電流領域において小さ
く、信号処理回路CH−2の比誤差が大電流領域におい
て小さくなる結果が得られた。第3図から、小電流領域
から大電流領域においても被測定導体42の電流を精度
良く測定すことが可能となる。
Here, as Werde's constant (2,0 to 4.0)
0"" (r a d /AT), and even if the current value at the time of a short circuit accident is 150 kA, the polarization rotation angle is π/4
When the ratio error was measured from the voltage signals VA and VB using a magneto-optical element that did not exceed The results show that the -2 ratio error becomes smaller in the large current region. From FIG. 3, it is possible to accurately measure the current of the conductor to be measured 42 even in a small current region to a large current region.

又、第4図に示されるように、電圧信号VAの大小を判
別器104で判別し、電圧信号VAが定格値を越えるま
で電圧信号VAの信号をスイッチング回路106を介し
て出力し、VAが定格値を越えたときに、電圧信号VA
の代わりに電圧信号VBをスイッチング回路106を介
して出力し、スイッチング回路106の出力から被測定
導体42の電流を測定するようにすれば、信号処理回路
CH−1,CH−2のダイナミックレンジが広くなくて
も、全体としてダイナミックレンジを広くする ことが可能となる。
Further, as shown in FIG. 4, the magnitude of the voltage signal VA is determined by the discriminator 104, and the signal of the voltage signal VA is outputted via the switching circuit 106 until the voltage signal VA exceeds the rated value. When the rated value is exceeded, the voltage signal VA
By outputting the voltage signal VB through the switching circuit 106 instead of , and measuring the current of the conductor under test 42 from the output of the switching circuit 106, the dynamic range of the signal processing circuits CH-1 and CH-2 can be increased. Even if it is not wide, it is possible to widen the dynamic range as a whole.

又、前記実施例においては、検光子44の出力信号をコ
リメータ48.50、光ファイバー52゜54を介して
光分岐器56.58へ伝送するようにしたものについて
述べたが、第5図に示されるように光分岐器56をプリ
ズム46に、光分岐器58を検光子44に直接固着して
も、前記実施例と同様な効果を得ることができる。この
場合には、コリメータ48,50.光ファイバー52.
54が不要となるので、部品点数の低減を図ることがで
きる。
Furthermore, in the above embodiment, the output signal of the analyzer 44 was transmitted to the optical splitter 56.58 via the collimator 48.50 and the optical fiber 52.54. Even if the optical splitter 56 is directly fixed to the prism 46 and the optical splitter 58 is directly fixed to the analyzer 44, the same effect as in the previous embodiment can be obtained. In this case, the collimators 48, 50 . Optical fiber 52.
Since 54 is no longer necessary, the number of parts can be reduced.

又、前記実施例においては、光信号Aを検光子44によ
って光信号PO,Soに分岐するものについて述べたが
、第6図に示されるように検光子44に、光分岐器56
を直接接続し、光信号AをP偏光成分の光信号PL、P
2に分岐し、光信号PL、P2を店番5電圧信号VA、
VBを算出するここも可能である。
Furthermore, in the embodiment described above, the optical signal A is branched into the optical signals PO and So by the analyzer 44, but as shown in FIG.
directly connect the optical signal A to the optical signals PL and P of P polarization components.
2, and the optical signal PL, P2 is sent to the store number 5 voltage signal VA,
It is also possible to calculate VB.

第′7図は、光分岐器56.58の代わりに、2分岐の
光ファイバー108,110を用いた実施例であり、光
ファイバー108.110の各分岐部M、Hに口径の異
なるもの、あるいは、HA(開[1数)の異なる光ンア
イバー108A、108B、110A、ll0Bを溶着
し、各光ファイバ108A、108B、ll0A、ll
0Bを伝送する光信号P1..P2.SL、 S2の光
強度の関係を、PL>P2及び、S l > 52の関
係に設定すれば、前記実施例と同様の効果を得ることが
できる。
Fig. '7 shows an embodiment in which two-branch optical fibers 108, 110 are used instead of the optical splitter 56, 58, and each branch part M, H of the optical fiber 108, 110 has a different diameter, or Weld optical fibers 108A, 108B, 110A, and 110B with different HA (number of openings) to form each optical fiber 108A, 108B, 110A, 11
Optical signal P1 transmitting 0B. .. P2. By setting the relationship between the light intensities of SL and S2 as PL>P2 and S l >52, the same effects as in the embodiment described above can be obtained.

また、第8図に示めされるように、光ファイバー108
,110にそれぞれ各ファイバーから分岐した光7 y
−(バー108A、108B−108A、ll0A、1
10B・−11ONを設け、各光ファイバーを伝送する
光信号の光強度をそれぞれP 1 > P 2 > P
 n及び、S 1 > S 2 > S nに設定すれ
ば、鉛ガラス、硼珪クラウン、石英ガラスなどのように
、ヴエルデ定数の異なった磁気光学素子を組合せたもの
と同様な効果を得ることができる。
Further, as shown in FIG. 8, the optical fiber 108
, 110 respectively branched from each fiber 7 y
-(bar 108A, 108B-108A, ll0A, 1
10B and -11ON are provided, and the optical intensity of the optical signal transmitted through each optical fiber is P 1 > P 2 > P.
By setting n and S 1 > S 2 > S n, it is possible to obtain the same effect as a combination of magneto-optical elements with different Werde constants, such as lead glass, borosilica crown, quartz glass, etc. can.

又、前記実施例においては、磁気光学素子としてファラ
デーガラス40を用いたもの限らず、ポイントセンサー
、鉄心付光センサーを用いても同様な効果を得ることが
できる。
Further, in the above embodiment, the same effect can be obtained not only by using the Faraday glass 40 as the magneto-optical element but also by using a point sensor or an optical sensor with an iron core.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、単一の磁気光学
素子を用いて小?1流領域から大電流領域までの電流を
測定することが可能となるので、部品点数の低減及び信
頼性の向上に寄与することができる。
As explained above, according to the present invention, a single magneto-optical element is used to create a small optical system. Since it is possible to measure currents from a single current region to a large current region, it is possible to contribute to a reduction in the number of parts and an improvement in reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体構成図、第2図は
電流と電圧との関係を示す線図、第3図は電流と比誤差
との関係を示す線図、第4図は判別器とスイッチ回路の
構成図、第5図は本発明の他の実施例を示す構成図、第
6図は一偏光面の光信号を用いる場合の要部構成図、第
7図は光分岐器の代わりに光ファイバーを用いたときの
実施例を示す要部構成図、第8図は光分岐器の代わりに
光ファイバーを用いた場合の実施例を示す構成図、第9
図は従来例の構成図である。 32・・・発光ダイオード、 36.48.50・・・コリメータ、 38・・・偏光子。 40・・・ファラデーガラス、 42・・・被測定導体、 44・・・検索子、 56.58・・・光分岐器。 68.70,72,74・・・受光素子、92.94,
96.98・・・割算器、100.102・・・差動回
路。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between current and voltage, FIG. 3 is a diagram showing the relationship between current and ratio error, and FIG. 4 is a diagram showing the relationship between current and ratio error. is a block diagram of a discriminator and a switch circuit, FIG. 5 is a block diagram showing another embodiment of the present invention, FIG. 6 is a block diagram of the main part when using an optical signal of one plane of polarization, and FIG. 7 is a block diagram of the optical signal. FIG. 8 is a configuration diagram of main parts showing an example in which an optical fiber is used instead of a splitter; FIG. 8 is a configuration diagram showing an example in which an optical fiber is used instead of an optical splitter; FIG.
The figure is a configuration diagram of a conventional example. 32...Light emitting diode, 36.48.50...Collimator, 38...Polarizer. 40... Faraday glass, 42... Conductor to be measured, 44... Search element, 56.58... Optical splitter. 68.70,72,74...light receiving element, 92.94,
96.98...Divider, 100.102...Differential circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、非偏光の光信号を発生する発光手段と、発光手段か
らの光信号を直線偏光の光信号に変換する偏光子と、偏
光子出力の光信号を受け、該光信号の偏波面を被測定対
象から発生する磁界の強さに応じて回転させる磁気光学
素子と、磁気光学素子出力の光信号を受け、該光信号の
うち特定の方向成分の光信号を透過させる検光子と、検
光子出力の光信号を光強度の異なる複数の光信号に分岐
する光分岐手段と、光分岐手段出力の各光信号をそれぞ
れ光強度に応じた電気信号に変換する光電変換手段と、
光電変換手段出力の各電気信号から被測定対象の電流値
を算出する算出手段とを有することを特徴とする光方式
電流測定装置。
1. A light emitting means that generates an unpolarized optical signal, a polarizer that converts the optical signal from the light emitting means into a linearly polarized optical signal, and a polarizer that receives the optical signal output from the polarizer and changes the plane of polarization of the optical signal. A magneto-optical element that rotates according to the strength of a magnetic field generated from a measurement target, an analyzer that receives an optical signal output from the magneto-optical element and transmits an optical signal of a specific direction component of the optical signal, and an analyzer. an optical branching means for branching the output optical signal into a plurality of optical signals having different optical intensities; a photoelectric conversion means for converting each optical signal output from the optical branching means into electrical signals corresponding to the respective optical intensities;
1. An optical current measuring device comprising: calculation means for calculating a current value of a target to be measured from each electrical signal output from the photoelectric conversion means.
JP63234662A 1988-09-19 1988-09-19 Optical current measurement device Expired - Lifetime JP2668127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63234662A JP2668127B2 (en) 1988-09-19 1988-09-19 Optical current measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63234662A JP2668127B2 (en) 1988-09-19 1988-09-19 Optical current measurement device

Publications (2)

Publication Number Publication Date
JPH0282167A true JPH0282167A (en) 1990-03-22
JP2668127B2 JP2668127B2 (en) 1997-10-27

Family

ID=16974518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63234662A Expired - Lifetime JP2668127B2 (en) 1988-09-19 1988-09-19 Optical current measurement device

Country Status (1)

Country Link
JP (1) JP2668127B2 (en)

Also Published As

Publication number Publication date
JP2668127B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US4564754A (en) Method and apparatus for optically measuring a current
US4698497A (en) Direct current magneto-optic current transformer
JP2818300B2 (en) Optical AC measurement method with temperature compensation and apparatus for implementing the method
US5834933A (en) Method for magnetooptic current measurement and magnetooptic current-measuring device
WO2010008029A1 (en) Fiber optic current sensor, current-measuring method and fault section-detection device
US6166816A (en) Combination fiber optic current/voltage sensor
CA2243211A1 (en) Optical measuring method and device for measuring a magnetic alternating field with an expanded measuring range and good linearity
US6297625B1 (en) Method and device for measuring a magnetic field
JPH0282167A (en) Current measuring instrument with optical system
CA2238971A1 (en) Process and device for measuring a quantity, in particular an electric current, with a high measurement resolution
JP4467842B2 (en) Optical applied measuring equipment
Ghosh et al. Development of a fiber-optic current sensor with range-changing facility using shunt configuration
JPH07306095A (en) Polarization-analysis evaluation method of polarization modulation optical signal
JP3041637B2 (en) Optical applied DC current transformer
KR100307639B1 (en) Current / temperature measurement optical sensor using multi-wavelength light source and its method
JP3350280B2 (en) Optical current transformer
JPS59659A (en) Method and device for magnetooptic current measurement
JP4065243B2 (en) Optical CT with failure judgment function
KR100288157B1 (en) Optoelectronic Overcurrent Protection Relay System
SU1137403A1 (en) Device for touch-free measuring of current
JPH0283456A (en) Optical current transformer
JPH01276074A (en) Optical demodulator
JPH06186256A (en) Circumferentially turning photocurrent transformer sensor
JP3011244B2 (en) Optical applied DC current transformer
JPS5935156A (en) Optical current transformer