JPH0282070A - Refrigerating cycle testing method - Google Patents

Refrigerating cycle testing method

Info

Publication number
JPH0282070A
JPH0282070A JP23316488A JP23316488A JPH0282070A JP H0282070 A JPH0282070 A JP H0282070A JP 23316488 A JP23316488 A JP 23316488A JP 23316488 A JP23316488 A JP 23316488A JP H0282070 A JPH0282070 A JP H0282070A
Authority
JP
Japan
Prior art keywords
test
cooling performance
low voltage
power source
performance test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23316488A
Other languages
Japanese (ja)
Inventor
Hiroshi Inoue
洋 井上
Kazuo Kawamura
和夫 川村
Toru Hamaguchi
徹 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23316488A priority Critical patent/JPH0282070A/en
Publication of JPH0282070A publication Critical patent/JPH0282070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce time required for low voltage starting test and cooling performance test and practice both the two tests smoothly and definitely by using a variable frequency power source for a low voltage starting test power source and raising an output frequency for said low voltage starting test and cooling performance test prior to an attempt to change over the power source to the cooling performance test power source. CONSTITUTION:A low voltage starting test power source 7 comprises an inverter device for variable frequency/variable voltage. A cooling performance test power source 9 is available from a commercial power source boosted by a transformer. The low voltage starting test is carried out prior to the cooling performance test. The power supply is momentarily cut off for a short time when a relay 8 of both the tests is changed over. However, a sufficient amount of rotation energy is stored in a rotary system by a high frequency operation directly before the power supply is changed over. Therefore, this stored rotation energy can get over the loss of a drive torque induced by the cut off power supply, and carry out smooth operation based on the power source 9 for the cooling performance test with halting a compressor motor 6. Therefore, it is not necessary to install relatively long standby time during the change over time between both the tests.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、冷蔵庫等に用いられる冷凍サイクルの試験を
製造ラインにおいて行なう場合に好適する冷凍サイクル
の試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a method for testing a refrigeration cycle suitable for testing a refrigeration cycle used in a refrigerator or the like on a production line.

(従来の技術) 従来より、例えば冷蔵庫を製造するに際には、その冷蔵
庫に用いられる冷凍サイクルの試験を、冷凍サイクル組
立ラインの最終段階で行なうようにしている。この試験
内容としては、冷凍サイクル用のコンプレッサモータを
定格入力電圧で運転してその基本的な冷却特性を試験す
る冷却性能試験と、上記コンプレッサモータに定格入力
電圧以下の低電圧を印加することによりそのコンプレッ
サモータの起動特性を試験する低電圧起動試験が含まれ
る。この場合、従来は、上記冷却性能試験及び低電圧起
動試験を切離して行なうようにしており、具体的には、
冷凍サイクルを組上げた後にこれを運転させてまず性能
試験を行ない、この後に冷凍サイクルの運転を停止させ
て低電圧起動試験を行なうようにしていた。
(Prior Art) Conventionally, for example, when manufacturing a refrigerator, the refrigeration cycle used in the refrigerator is tested at the final stage of the refrigeration cycle assembly line. The test includes a cooling performance test in which the compressor motor for the refrigeration cycle is operated at the rated input voltage to test its basic cooling characteristics, and a low voltage below the rated input voltage is applied to the compressor motor. It includes a low voltage start-up test that tests the start-up characteristics of the compressor motor. In this case, conventionally, the cooling performance test and low voltage startup test are conducted separately, and specifically,
After the refrigeration cycle is assembled, it is operated to perform a performance test, and then the refrigeration cycle is stopped and a low voltage startup test is conducted.

(発明が解決しようとする課題) しかし、上記従来方法では、冷却性能試験の終了後に、
コンプレッサモータの運転を停止させて冷蔵庫を検査ラ
イン上に比較的長い時間(例えば20分程度)放置して
からしか低電圧起動試験を行なうことができない。これ
は、コンプレッサモータの起動特性を正確に評価するに
は、冷凍サイクルの内部圧力が平衡している条件下で低
電圧起動試験を行なう必要があり、そのために冷却性能
試験が終了してから冷媒ガス圧力が安定化するまで待た
ねばならないからである。このため、従来方法では、検
査ラインを相当に長くしなければならず、これが工場内
スペースの有効利用の障害になると共に、検査ライン上
に多数の試験待ち冷蔵庫が滞ることになって生産性の悪
化を招く原因となっていた。
(Problem to be solved by the invention) However, in the above conventional method, after the cooling performance test is completed,
The low voltage startup test can only be performed after the compressor motor has been stopped and the refrigerator has been left on the inspection line for a relatively long time (for example, about 20 minutes). This is because in order to accurately evaluate the starting characteristics of a compressor motor, it is necessary to perform a low-voltage starting test under conditions where the internal pressure of the refrigeration cycle is balanced. This is because it is necessary to wait until the gas pressure stabilizes. For this reason, in the conventional method, the inspection line must be made quite long, which becomes an obstacle to the effective use of space within the factory, and also causes a large number of refrigerators waiting to be tested on the inspection line, which reduces productivity. This was causing deterioration.

これに対処すべく、従来とは逆に、まず低電圧起動試験
を行い、この後、起動時における冷凍サイクルの内部圧
力の平衡・不平衡が問題とならない冷却性能試験を引続
き行うようにすることも考えられる。しかし、このよう
にすると、低電圧起動試験時にはコンプレッサモータの
駆動トルクが相当に小さいため、低電圧起動試験用の電
源から冷却性能試験用の電源に切替える際の瞬間的な停
電によりコンプレッサモータが停止してしまい、冷却性
能試験に円滑に移行できない場合が生じてしまう。
In order to deal with this, contrary to the conventional method, a low voltage startup test is first performed, followed by a cooling performance test in which the balance/imbalance of the internal pressure of the refrigeration cycle at the time of startup is not a problem. can also be considered. However, with this method, the drive torque of the compressor motor is quite small during the low-voltage start-up test, so the compressor motor will stop due to a momentary power outage when switching from the power supply for the low-voltage start-up test to the power supply for the cooling performance test. As a result, a smooth transition to the cooling performance test may not be possible.

本発明は上記事情に鑑みてなさたれものであり、その目
的は、低電圧起動試験及び冷却性能試験の両試験を行う
だめの所要時間を短縮し17てその試験に必要なライン
長を短くでき、しかも両試験を円滑且つ確実に実行する
ことができる冷凍サイクルの試験方法を提供するにある
The present invention has been made in view of the above circumstances, and its purpose is to shorten the time required to conduct both the low voltage start-up test and the cooling performance test17, thereby shortening the line length required for the test. Moreover, it is an object of the present invention to provide a refrigeration cycle testing method that can smoothly and reliably execute both tests.

[発明の構成] (課題を解決するための手段) 本発明による冷凍サイクルの試験方法は、低電圧起動試
験を行なった後に電源を切替えて冷却性能試験を引続き
行なうようにすると共に、低電圧起動試験用電源に可変
周波数電源を使用し、冷却性能試験用電源への切替え直
前には低電圧起動試験用電源の出力周波数を上昇させる
ようにした点に特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) The refrigeration cycle testing method according to the present invention switches the power supply after performing a low voltage startup test to continue the cooling performance test, and also performs a low voltage startup test. A variable frequency power supply is used as the test power supply, and the output frequency of the low voltage startup test power supply is increased immediately before switching to the cooling performance test power supply.

(作用) まず低電圧起動試験を行うものであるから、その試験の
開始時には冷凍サイクル内の冷媒ガス圧力は安定してお
り、起動特性の適切な評価ができる。そして、起動時に
おける冷凍サイクルの内部圧力の平衡・不平衡が問題と
ならない冷却性能試験を低電圧起動試験後に引続き行う
ようにしているから、冷却性能試験を低電圧起動試験後
に直ちに開始することができ、両試験を完了するために
要する所要時間を短縮することができる。
(Function) Since a low voltage startup test is first performed, the refrigerant gas pressure within the refrigeration cycle is stable at the start of the test, and the startup characteristics can be appropriately evaluated. In addition, since we continue to conduct cooling performance tests after low-voltage start-up tests in which the balance or imbalance of the internal pressure of the refrigeration cycle at startup is not a problem, it is possible to start cooling performance tests immediately after low-voltage start-up tests. This reduces the time required to complete both tests.

しかも、低電圧起動試験用電源に可変周波数電源を使用
し、電源切替えの直前には低電圧起動試験用電源の出力
周波数を上昇させるようにしているから、電源切替えに
先立ってコンプレッサモータの回転数が高くなり、この
結果、電源切替え時に不可避的に生ずる瞬間的な停電に
よるトルクの落ち込みがあっても、はずみ車効果によっ
てこれを乗り切ることができるようになる。
Moreover, since a variable frequency power supply is used as the power supply for low voltage startup tests, and the output frequency of the power supply for low voltage startup tests is increased immediately before switching the power supply, the rotational speed of the compressor motor As a result, even if there is a drop in torque due to a momentary power outage that inevitably occurs when switching the power source, the flywheel effect can overcome this.

(実施例) 第3図には例えば冷蔵庫の製造ラインの概略的な平面図
が示されている。同図において、1は冷凍サイクルの組
立ラインで、これは図中矢印方向へ移動するスラットコ
ンベアより成り、このコンベア上で冷蔵庫本体2の組立
及びその冷蔵庫本体2への冷凍サイクルの組付けを含む
組立工程が行なわれる。特に、この場合、上記組立工程
の最終段階で冷凍サイクル内への冷媒ガスの充填工程が
行なわれて冷凍サイクルが完成されるようになっている
。3は組立ライン1を経た冷蔵庫本体2を搬送しつつ検
査する第1の検査ラインで、これは図中矢印方向へ移動
するスラットコンベアより成り、このコンベア上の冷蔵
庫本体2に対し後述する低電圧起動試験及び冷却性能試
験が順に行なわれる。そして、上記各試験を経た冷蔵庫
本体2は、図示しない最終組立ライン上及び図中矢印方
向へ移動する第2の検査ライン4上にて、最終的な組立
工程及び出荷検査工程が夫々行なわれた後に、梱包出荷
ライン5を経て出荷される。尚、上記第1及び第2の検
査ライン3及び4は、一定温度雰囲気内に設置されてい
る。
(Example) FIG. 3 shows a schematic plan view of a manufacturing line for refrigerators, for example. In the figure, reference numeral 1 denotes a refrigeration cycle assembly line, which consists of a slat conveyor that moves in the direction of the arrow in the figure, and includes the assembly of the refrigerator body 2 and the assembly of the refrigeration cycle to the refrigerator body 2 on this conveyor. An assembly process is performed. Particularly in this case, at the final stage of the assembly process, a process of filling the refrigerant gas into the refrigeration cycle is performed to complete the refrigeration cycle. Reference numeral 3 denotes a first inspection line that inspects the refrigerator bodies 2 while conveying them after passing through the assembly line 1. This consists of a slat conveyor that moves in the direction of the arrow in the figure. A start-up test and a cooling performance test are performed in sequence. After passing through each of the above tests, the refrigerator body 2 was subjected to a final assembly process and a shipping inspection process on a final assembly line (not shown) and on a second inspection line 4 moving in the direction of the arrow in the figure. Afterwards, it is shipped via the packaging and shipping line 5. Note that the first and second inspection lines 3 and 4 are installed in a constant temperature atmosphere.

さて、第1の検査ライン3上で行なわれる前記低電圧起
動試験は、冷蔵庫本体2に設けられている冷凍サイクル
用のコンプレッサモータ6(第2図に示す)に対して低
電圧起動試験用電源7から定格入力端子以下の低電圧を
印加することにより、そのコンプレッサモータ6の起動
特性を試験するものである。例えば、冷蔵庫の定格入力
端子が220Vの場合には、150〜170V (50
H7)の入力電圧を印加したときに、そのコンプレ・ン
サモー タロが正常に起動するか否かが判断される。
Now, in the low voltage starting test conducted on the first inspection line 3, the low voltage starting test power supply is applied to the compressor motor 6 (shown in FIG. 2) for the refrigeration cycle provided in the refrigerator body 2. By applying a low voltage below the rated input terminal to the compressor motor 7, the starting characteristics of the compressor motor 6 are tested. For example, if the rated input terminal of the refrigerator is 220V, 150 to 170V (50
When the input voltage of H7) is applied, it is determined whether the compressor motor starts normally or not.

また、同じく第1の検査ライン3上で行なわれる冷却性
能試験は、リレー8を切替えることによりコンプレッサ
モータ、6を冷却性能試験用電源9に接続して定格入力
端子220V (60Hz)で運転し、しって冷凍サイ
クルの諸特性を試験するためのものである。そして、本
実施例では、低電圧起動試験用電源7は1■変周波数・
可変電圧のインバータ装置から構成し、冷却性能試験用
電源9は商用電源から変圧器で昇圧して得ている。
In addition, the cooling performance test, which is also conducted on the first inspection line 3, connects the compressor motor 6 to the cooling performance test power supply 9 by switching the relay 8, and operates at the rated input terminal 220V (60Hz). It is used to test various characteristics of the refrigeration cycle. In this embodiment, the low voltage startup test power supply 7 has 1.
It is composed of a variable voltage inverter device, and the cooling performance test power source 9 is obtained by boosting the voltage from a commercial power source using a transformer.

しかして、本実施例では、上述のような低電圧起動試験
は冷却性能試験に先立ち行うようにしており、これは冷
凍サイクル内へ冷媒ガスを充填してから所定時間経過し
たときに開始されるようにしている(第1図中時刻1+
)。勿論、低電圧起動試験が開始される前は、コンプレ
ッサモータ6は運転されない。従って、冷凍サイクル内
の冷媒ガス圧力は、コンプレッサモータ6の停止直後の
ように著しい不平衡は生じておらず、安定した状態にあ
るから、冷凍サイクルの起動特性を適切に評価すること
が可能である。尚、このときの冷凍サイクルの温度は第
1の検査ライン3の温度ではなく、組立ライン1での温
度になじんでいる。このため、コンプレッサモータ6に
印加する電圧は、組立ライン1の温度(つまり冷凍サイ
クルの実際の温度)と法定の低電圧起動試験を行うため
の温度との差に基づいてhli正するようにしている。
Therefore, in this embodiment, the above-mentioned low voltage start-up test is conducted prior to the cooling performance test, and is started when a predetermined period of time has elapsed after the refrigerant gas was filled into the refrigeration cycle. (time 1+ in Figure 1)
). Of course, the compressor motor 6 is not operated before the low voltage startup test is started. Therefore, the refrigerant gas pressure in the refrigeration cycle does not become significantly unbalanced as it does immediately after the compressor motor 6 stops, and is in a stable state, making it possible to appropriately evaluate the startup characteristics of the refrigeration cycle. be. Note that the temperature of the refrigeration cycle at this time is not the temperature of the first inspection line 3, but is adjusted to the temperature of the assembly line 1. Therefore, the voltage applied to the compressor motor 6 is adjusted based on the difference between the temperature of the assembly line 1 (that is, the actual temperature of the refrigeration cycle) and the temperature for performing the legal low voltage start-up test. There is.

さて、低電圧起動試験の開始から5〜15秒が経過して
同試験が終了すると(第1図中時刻tz)まず低電圧起
動試験用電源7の出力電圧が例えば240Vにまで高め
られ、この後1例えば02〜1秒が経過して時刻t、に
至ると、低電圧起動試験用電源7の出力周波数が例えば
70H2に高められる。これによりコンプレッサモータ
6の回転数が高まり、回転エネルギーが大きく蓄積され
る。そして、この状態が約1〜5秒読いて時刻t、に至
ると、リレー8が作動してコンプレッサモータ6の電源
か低電圧起動試験用電源7から冷却性能試験用電源9に
切替えられ、コンプレッサモータ4は定格電圧・定格周
波数の220V、60H2で運転される。ところが、こ
のようなリレー8の切替え作動の瞬間には短時間(数l
ll5〜数10aS)だけ電源が遮断状態になる。しか
しながら、7ト源切替え直前の高周波数運転により回転
系に回転エネルギーが十分に蓄えられているから、電源
の遮断による駆動トルクの消失もはずみ車効果により乗
り越えることができ、コンプレ・ンサモータ6は停止す
ることなく円滑に冷却性能試験用電源9によって運転さ
れるようになる。
Now, when the test ends after 5 to 15 seconds have passed from the start of the low voltage startup test (time tz in Figure 1), the output voltage of the low voltage startup test power supply 7 is increased to, for example, 240V, and this When time t is reached after 1 second elapses, for example, from 02 to 1 second, the output frequency of the low voltage starting test power supply 7 is increased to, for example, 70H2. This increases the rotational speed of the compressor motor 6 and accumulates a large amount of rotational energy. When this state reaches time t after reading for about 1 to 5 seconds, the relay 8 is activated and the power source for the compressor motor 6 or the power source for the low-voltage start-up test is switched from the power source 7 for the cooling performance test to the power source 9 for the cooling performance test. The motor 4 is operated at a rated voltage and frequency of 220V and 60H2. However, at the moment when the relay 8 switches, it takes a short time (several liters).
The power supply is cut off for 15 to several tens of seconds). However, since sufficient rotational energy is stored in the rotating system due to the high-frequency operation immediately before switching between the 7 and 7 power sources, the flywheel effect can overcome the loss of drive torque due to power cutoff, and the compressor motor 6 stops. The cooling performance test power supply 9 can be operated smoothly without any trouble.

上記した本実施例によれば、冷凍サイクルの内部圧力が
平衡している状態でまず低電圧起動試験を行い、その後
に、冷凍サイクルの内部圧力の平衡・不平衡が問題にな
らない冷却性能試験を行なうようにしているから、両試
験の間に比較的長い待機時間を設ける必要がなくなり、
低電圧起動試験の終了後直ちに冷却性能試験を行なうこ
とができる。これにより、両試験を完了させるために要
する所要時間を短縮することができるから、その分、検
査のためのライン長を短くでき、ちってl−場内スペー
スの有効利用及び生産性の向上を図ることができる。ま
た、この場合、低電圧起動試験は冷凍サイクルの内部圧
力が下山している状態で行うことになるから、起動特性
を適切且つ正確に3・ド価することができることは勿論
である。しかも、冷却性能試験に移行するために低電圧
起動試験用電源7から冷却性能試験用電源9に切替える
に先立ち、低電圧起動試験用電源7の出力周波数を高め
るようにしたから、電源切替に伴う瞬間的停電をはずみ
車効果で乗り越えることができ、もって低電圧起動試験
から冷却性能試験に円滑に移行することができる。また
、本実施例では特に、低?Ii圧起動試験用電源7の出
力周波数を50H7から70H2に高めるに先立ち、そ
の出力電圧を上昇させるようにしているから、周波数の
切り替え時にすべりの急増に起因するコンプレッサモー
タ6の失速を未然に防止することができる。しかし、コ
ンプレッサモータの容量によっては必ずしも上述のよう
に出力電圧を前もって上げておく必要はなく、周波数の
切り替えに併せて出力電圧を上昇させるようにしても良
い。また、周波数の切り替えは必ずしも一気に行わずと
も、例えば50H7から70H2まで5H2刻みで段階
的に上昇させるようにしても良く、このようにすれば上
述の失速現縁を防止するにも効果がある。
According to this embodiment described above, a low voltage startup test is first performed with the internal pressure of the refrigeration cycle balanced, and then a cooling performance test is performed in which the balance/unbalance of the internal pressure of the refrigeration cycle is not a problem. This eliminates the need for a relatively long waiting period between the two tests.
A cooling performance test can be performed immediately after the low voltage start-up test is completed. As a result, the time required to complete both tests can be shortened, and the line length for inspection can be shortened by that amount, which in turn leads to more effective use of space within the factory and improved productivity. be able to. Furthermore, in this case, since the low voltage startup test is conducted while the internal pressure of the refrigeration cycle is decreasing, it goes without saying that the startup characteristics can be evaluated appropriately and accurately. Moreover, before switching from the low-voltage start-up test power supply 7 to the cooling performance test power supply 9 in order to proceed to the cooling performance test, the output frequency of the low-voltage start-up test power supply 7 was increased, so that Momentary power outages can be overcome by the flywheel effect, allowing a smooth transition from low voltage startup tests to cooling performance tests. In addition, in this example, especially low? Before increasing the output frequency of the Ii pressure startup test power supply 7 from 50H7 to 70H2, the output voltage is increased, thereby preventing the compressor motor 6 from stalling due to a sudden increase in slip when changing the frequency. can do. However, depending on the capacity of the compressor motor, it is not necessarily necessary to increase the output voltage in advance as described above, and the output voltage may be increased in conjunction with frequency switching. Further, the frequency does not necessarily have to be switched all at once, but may be increased stepwise in steps of 5H2, for example from 50H7 to 70H2.This is effective in preventing the above-mentioned stall situation.

その他、本発明は上記し且つ図面に示した実施例に限定
されるものではなく、例えば冷蔵庫用の冷凍サイクルに
限らずエアコン用の冷凍サイクルの試験にも適用できる
等、その要旨を逸脱しない範囲で種々変形して実施する
ことができる。
In addition, the present invention is not limited to the embodiments described above and shown in the drawings, and can be applied, for example, to testing not only refrigeration cycles for refrigerators but also refrigeration cycles for air conditioners, within the scope of the invention. It can be implemented with various modifications.

[発明の効果] 以上の説明によって明らかなように、本発明によれば、
低電圧起動試験を行なった後に電源を切替えて冷却性能
試験を引続き行なうようにすると共に、゛電源の切替え
直前には低電圧起動試験用電源の出力周波数を上昇させ
るようにしたから、両試験を行うに要する所要時間を短
縮でき、しかもはずみ車効果を利用して低電圧起動試験
から冷却性能試験に円滑且つ確実に移行できるという優
れた効果を奏するものである。
[Effects of the Invention] As is clear from the above explanation, according to the present invention,
After performing the low-voltage start-up test, we switched the power supply and continued the cooling performance test.We also increased the output frequency of the low-voltage start-up test power supply immediately before switching the power supply, so both tests This has the excellent effect of shortening the time required to perform the test, and making use of the flywheel effect to smoothly and reliably transition from the low voltage startup test to the cooling performance test.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を説明するためのもので、第1
図はコンプレッサモータへの印加電圧・周波数を示す波
形図、第2図は低電圧起動試験及び冷却性能試験のため
の電気回路を示すブロック図、第3図は製造ラインの概
略を示す([面図である。 図中、1は組立ライン、2は冷蔵庫本体、3は第1の検
査ライン、4は第2の検査ライン、6はコンプレッサモ
ータ、7は低電圧起動試験用電源、8はリレー 9は冷
却試験用電源、10はリレー駆動回路を示す。 U 第 2 図 第1図
The drawings are for explaining one embodiment of the present invention.
The figure is a waveform diagram showing the voltage and frequency applied to the compressor motor, Figure 2 is a block diagram showing the electric circuit for low voltage start-up tests and cooling performance tests, and Figure 3 is a schematic diagram of the production line. In the figure, 1 is the assembly line, 2 is the refrigerator body, 3 is the first inspection line, 4 is the second inspection line, 6 is the compressor motor, 7 is the power supply for low voltage startup test, and 8 is the relay 9 is a power supply for cooling test, and 10 is a relay drive circuit. U Fig. 2 Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 1、冷凍サイクル用のコンプレッサモータを定格入力電
圧で運転してその冷凍サイクルの諸特性を試験する冷却
性能試験及び前記コンプレッサモータに定格入力電圧以
下の低電圧を印加することによりそのコンプレッサモー
タの起動特性を試験する低電圧起動試験を行なうにあた
って、前記低電圧起動試験を行なった後に電源を切替え
て前記冷却性能試験を引続き行なうようにすると共に、
前記低電圧起動試験用電源に可変周波数電源を使用し、
冷却性能試験用電源への切替え直前には前記低電圧起動
試験用電源の出力周波数を上昇させることを特徴とする
冷凍サイクルの試験方法。
1. A cooling performance test in which the compressor motor for the refrigeration cycle is operated at the rated input voltage to test various characteristics of the refrigeration cycle, and the compressor motor is started by applying a low voltage below the rated input voltage to the compressor motor. When conducting a low voltage starting test to test the characteristics, the power supply is switched after the low voltage starting test and the cooling performance test is continued.
Using a variable frequency power supply as the power supply for the low voltage startup test,
A method for testing a refrigeration cycle, characterized in that immediately before switching to a power source for cooling performance testing, the output frequency of the power source for low voltage startup testing is increased.
JP23316488A 1988-09-16 1988-09-16 Refrigerating cycle testing method Pending JPH0282070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23316488A JPH0282070A (en) 1988-09-16 1988-09-16 Refrigerating cycle testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23316488A JPH0282070A (en) 1988-09-16 1988-09-16 Refrigerating cycle testing method

Publications (1)

Publication Number Publication Date
JPH0282070A true JPH0282070A (en) 1990-03-22

Family

ID=16950726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23316488A Pending JPH0282070A (en) 1988-09-16 1988-09-16 Refrigerating cycle testing method

Country Status (1)

Country Link
JP (1) JPH0282070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137087A (en) * 2010-12-22 2012-07-19 Nuovo Pignone Spa Similitude testing of compressor performance
CN102620515A (en) * 2011-01-25 2012-08-01 思科普有限责任公司 System comprising cooling device and controller
CN106596154A (en) * 2016-11-18 2017-04-26 浙江工业大学 Variable frequency refrigerating compressor load starting and operation performance test system
CN111426496A (en) * 2020-04-05 2020-07-17 新疆正通石油天然气股份有限公司 Buckling pipe column drilling simulation device in reducing well

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137087A (en) * 2010-12-22 2012-07-19 Nuovo Pignone Spa Similitude testing of compressor performance
CN102620515A (en) * 2011-01-25 2012-08-01 思科普有限责任公司 System comprising cooling device and controller
CN102620515B (en) * 2011-01-25 2014-12-31 思科普有限责任公司 System comprising cooling device and controller
CN106596154A (en) * 2016-11-18 2017-04-26 浙江工业大学 Variable frequency refrigerating compressor load starting and operation performance test system
CN111426496A (en) * 2020-04-05 2020-07-17 新疆正通石油天然气股份有限公司 Buckling pipe column drilling simulation device in reducing well

Similar Documents

Publication Publication Date Title
KR930004379B1 (en) Control device in refrigerator
US6370888B1 (en) Method for controlling variable speed drive with chiller equipped with multiple compressors
CN100435471C (en) Electric refrigerator controlling device
KR880014329A (en) Method for minimizing cell cycle loss in refrigeration system and apparatus
JPH0282070A (en) Refrigerating cycle testing method
EP3917000A1 (en) Rotary machine control device, refrigerant compression apparatus, and air-conditioner
JPH0274843A (en) Method of testing refrigerating cycle
JPH02171569A (en) Test method for refrigerating cycle
JP3799017B2 (en) Improved control method for 3-phase motor starting procedure
CN101349614A (en) Multi-stress reinforced simulation test method of air conditioner
JPH0652224B2 (en) Refrigeration cycle test method
CN113007965B (en) Main control frequency conversion integrated plate compressor rotating speed rapid adjusting device and implementation method thereof
CN111238007A (en) Central air conditioner control method
CN214225291U (en) Pad life detection circuit and device
JPH01124743A (en) Testing method for freezing cycle
CN217484410U (en) Motor winding measuring device
JPH07260234A (en) Operation controller for air conditioner
JPS60111842A (en) Refrigerator
JPS61272481A (en) Start control device for refrigerating cycle machinery
KR960024443A (en) Generator and battery tester for small aircraft
SU1094988A1 (en) Stand for testing hydromechanical transmission
JPS58224271A (en) Method of controlling operation of refrigerator
CN114861409A (en) Mobile generator car simulation method based on RTDS
JPH01243899A (en) Starting of hydraulic power plant
JPS63131969A (en) Operation controller for refrigerator, etc.