JPH0281015A - Telephoto lens capable of short-distance photographing - Google Patents
Telephoto lens capable of short-distance photographingInfo
- Publication number
- JPH0281015A JPH0281015A JP63234432A JP23443288A JPH0281015A JP H0281015 A JPH0281015 A JP H0281015A JP 63234432 A JP63234432 A JP 63234432A JP 23443288 A JP23443288 A JP 23443288A JP H0281015 A JPH0281015 A JP H0281015A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- lens group
- focusing
- object side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 4
- 230000004075 alteration Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 230000005499 meniscus Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 206010010071 Coma Diseases 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000035936 sexual power Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/02—Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、無限遠から等倍までの全撮影範囲にわたり諸
収差を良好に補正でき、口径比l:4程度で焦点距離が
200111R+程度の近距離撮影可能な望遠レンズに
関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention can satisfactorily correct various aberrations over the entire photographing range from infinity to 1:1 magnification, and has an aperture ratio of about 1:4 and a focal length of about 200111R+. This invention relates to a telephoto lens capable of distance photography.
従来の望遠レンズにおいては、無限遠から1/lO程度
までの撮影範囲に限定されているものがほとんどである
ため、クローズアップレンズや中間リング等(所謂、接
写用アクセサリ−)を利用して、等倍撮影を行っていた
。Most conventional telephoto lenses are limited to a shooting range from infinity to about 1/1O, so close-up lenses, intermediate rings, etc. (so-called accessories for close-up photography) are used to I was taking double shots.
しかしながら、接写用アクセサリ−を用いる方法におい
ては、収差補正がなされた望遠レンズにおける通常の使
用条件から外れたものとなり、性能の点においては不十
分なものとなる。However, the method using a close-up accessory deviates from the normal usage conditions for a telephoto lens corrected for aberrations, resulting in insufficient performance.
これに対して、望遠マクロレンズとして等倍まで撮影可
能なものがいくつか知られているが、はとんどのものが
100 mm前後の焦点距離の準望遠用レンズである。On the other hand, there are some known telephoto macro lenses that can take images up to 100% magnification, but most of them are semi-telephoto lenses with a focal length of around 100 mm.
ところが、このような準望遠用レンズが有しているワー
キングデイスタンス(レンズと被写体との距離)では不
十分であるために、近接時における被写体の照明や昆虫
などの生物の撮影においては問題がある。However, since the working distance (distance between the lens and the subject) that these semi-telephoto lenses have is insufficient, there are problems with illuminating the subject at close range and photographing living things such as insects. be.
そのため、近接撮影を行う場合にある程度の長いワーキ
ングデイスタンスが取れ、しかも接写用アクセサリ−を
必要とせず等倍までの1M影ができ、しかも操作性の向
上を図った高性能な望遠マクロレンズが望まれている。Therefore, we have created a high-performance telephoto macro lens that allows for a reasonably long working distance when taking close-up shots, can produce 1M shadows up to life-size without the need for close-up accessories, and has improved operability. desired.
そこで、無限遠から等倍までの撮影が可能で焦点距離が
20011程度の望遠レンズが、特開昭55−1408
10号公報、特開昭61−132916号公報において
提案されている。Therefore, a telephoto lens with a focal length of about 20,011 mm and capable of photographing from infinity to 1:1 magnification was developed in Japanese Patent Application Laid-Open No. 55-1408.
This method has been proposed in Japanese Patent Publication No. 10 and Japanese Patent Application Laid-open No. 61-132916.
〔発明が解決しようとする課題〕
しかしながら、特開昭55−140810号公報におい
ては、等倍までの撮影を行うことが可能であるが、撮影
距離の変化に伴う球面収差、コマ収差、非点収差及び色
収差の変動が大きい為に十分に満足行くものとは言い難
い。[Problems to be Solved by the Invention] However, in JP-A-55-140810, it is possible to take pictures up to the same magnification, but spherical aberration, coma aberration, and astigmatism occur due to changes in the shooting distance. Since the aberrations and chromatic aberrations fluctuate greatly, it is difficult to say that this is completely satisfactory.
また、特開昭61−132916号公報においては、諸
収差のti影距離の変化に伴う変動は少なく、しかも、
等倍1最影を行った状態の繰り出し量が全体繰り出し方
式に比べて比較的少なくなっている。ところが、レンズ
構成枚数が多く、しかも重い第1レンズ群を繰り出す合
焦方式を主に採用しているために、近接撮影を行う際で
のレンズの重心の移動が大きいために好ましくない。Furthermore, in Japanese Patent Application Laid-Open No. 61-132916, there are few variations in various aberrations due to changes in the ti shadow distance, and furthermore,
The amount of extension in the state where the 1st shadow at the same magnification is performed is relatively small compared to the entire extension method. However, since the focusing system mainly employs a focusing method in which the first lens group, which has a large number of lenses and is heavy, is extended, the center of gravity of the lens moves significantly during close-up photography, which is not preferable.
したがって、本発明はこの様な従来の問題点に鑑みてな
されたもので、比較的長いワーキングデイスタンスを確
保しながら、無限遠から等倍にわたる撮影範囲において
高性能な結像性能を有し、しかも、極力重心移動が少な
く操作性の向上を図れる退路#逼影可能な望遠レンズを
提供する事を目的とする。Therefore, the present invention has been made in view of these conventional problems, and has high-performance imaging performance in an imaging range from infinity to 1:1 magnification while ensuring a relatively long working distance. It is an object of the present invention to provide a telephoto lens capable of retreating and shooting images, with as little movement of the center of gravity as possible and improved operability.
本発明は上記の目的を達成するために、物体側から順に
、正の屈折力を持つ第1レンズ群G1と、負の屈折力の
持つ第2レンズ群G2とを有し、第1レンズ群G1は物
体側から11ルに、正の屈折力を持つ前群GFと、正の
屈折力を持つ後群GRとを有し、無限遠から近距離への
合焦の際に、第1レンズ群G1と前記第2レンズ群Gt
との両群間隔が拡大するようにこの両群を互いに反対方
向へ移動させ、さらに以下の条件を満足するようにした
ものである。In order to achieve the above object, the present invention includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. G1 has a front group GF with positive refractive power and a rear group GR with positive refractive power located at 11 from the object side, and when focusing from infinity to short distance, the first lens group G1 and the second lens group Gt
The two groups are moved in opposite directions so that the distance between the two groups is widened, and the following conditions are further satisfied.
(1)−1≦Δt/Δ1<0
(2) 0.06< Dcz< r <0.175但し
、
Δ1 :合焦による第1レンズ群G1の移動量。(1) -1≦Δt/Δ1<0 (2) 0.06<Dcz<r<0.175 However, Δ1: Amount of movement of the first lens group G1 due to focusing.
Δ2 :合焦による第2レンズ群G2の移動量。Δ2: Amount of movement of the second lens group G2 due to focusing.
Dcm:第2レンズ群G2の最も物体側面の頂点から第
2レンズ群G2の最も像側面の頂点までの軸上厚。Dcm: Axial thickness from the vertex closest to the object side of the second lens group G2 to the vertex closest to the image side of the second lens group G2.
f :無限遠合焦状態における全系の焦点路#。f: Focal path # of the entire system in the infinity focus state.
尚、条件(1)における各群の移動量は移動方向も考慮
したものであり、物体側へ移動する移動方向を負、像側
へ移動する移動方向を正としている。Note that the movement amount of each group in condition (1) also takes into account the movement direction, with the movement direction moving toward the object side being negative, and the movement direction moving toward the image side being positive.
本発明の如き正負の2群レンズタイプにおいて第1レン
ズ群G1を繰り出す合焦方式により繰り出し量を減少さ
せるためには、第1レンズ群GFの屈折力を強くしなけ
ればならない。ところが、この第1レンズ群G1の屈折
力を強(すると、第1レンズ群GFの明るさを確保する
ことが困難となるばかりか、球面収差も甚大に発生する
。しがも、第2レンズ群G2の倍率が大きくなるため、
特に歪曲収差の補正が困難になる。In order to reduce the amount of extension of the first lens group G1 using a focusing method in which the first lens group G1 is extended in the positive and negative two-group lens type of the present invention, the refractive power of the first lens group GF must be strengthened. However, if the refractive power of the first lens group G1 is increased (then, not only will it be difficult to ensure the brightness of the first lens group GF, but also a large amount of spherical aberration will occur. Since the magnification of group G2 increases,
In particular, it becomes difficult to correct distortion aberration.
そこで、本発明においては、無限遠がら近距離への合焦
による第1レンズ群GFの繰り出し量及びレンズ系の重
心移動を極力小さく抑えるために、第2レンズ群を像側
へ繰り下げて、操作性の格段の向上を図っている。Therefore, in the present invention, in order to minimize the amount of extension of the first lens group GF and the movement of the center of gravity of the lens system due to focusing from infinity to a short distance, the second lens group is moved down toward the image side and operated. We aim to significantly improve sexual performance.
以下、本発明における各条件式について詳述する。Each conditional expression in the present invention will be explained in detail below.
条件(1)は第1レンズ群G1を繰り出しながら第2レ
ンズ群G2を繰り下げる合焦方式における各群の最適な
移動量の比率を規定ものである。この条件(1)の上限
を越えると、第2レンズ群GFに入射する軸外光束の入
射高が高くなり過ぎるため、非点収差やコマ収差の変動
が甚大となる為に好ましくない。逆にこの条件の下限を
越えると、第1レンズ群G1の繰り出し量を増加させる
ばかりか、レンズ移動に伴う重心の移動の増大を招くた
め好ましくない。尚、この条件(1)の下限が0.15
であることがより好ましい。Condition (1) defines the optimal ratio of the amount of movement of each group in a focusing method in which the first lens group G1 is advanced while the second lens group G2 is moved down. If the upper limit of this condition (1) is exceeded, the incident height of the off-axis light beam entering the second lens group GF will become too high, which is not preferable because fluctuations in astigmatism and coma aberration will become significant. On the other hand, exceeding the lower limit of this condition is not preferable because it not only increases the amount of extension of the first lens group G1 but also causes an increase in the movement of the center of gravity as the lens moves. Note that the lower limit of this condition (1) is 0.15
It is more preferable that
条件式(2)は最適な第2レンズ群G2の軸上厚を規定
するものである。条件(2)の上限を越えると、第2レ
ンズ群G2の全長が長くなり、第2レンズ群G2の後端
のレンズ径を大きくしないと、第2レンズ群G2を繰り
下げた時に主光線切れが発生する。しかも、−眼レフレ
ックスカメラの場合には、所定のマウントの内径に合う
ようなレンズ径にすることが困難となる。逆にこの条件
の下限を越えると、第1レンズ群G1で発生する正の歪
曲収差を第2レンズ群GFで相殺することが困難となり
、全体として正の歪曲収差が増大する為に好ましくない
。Conditional expression (2) defines the optimal axial thickness of the second lens group G2. If the upper limit of condition (2) is exceeded, the total length of the second lens group G2 becomes long, and unless the lens diameter at the rear end of the second lens group G2 is made large, principal ray breakage will occur when the second lens group G2 is moved down. Occur. Moreover, in the case of a negative-eye reflex camera, it is difficult to make the lens diameter match the inner diameter of a predetermined mount. On the contrary, if the lower limit of this condition is exceeded, it becomes difficult for the second lens group GF to cancel out the positive distortion generated in the first lens group G1, and the positive distortion increases as a whole, which is not preferable.
上記の如く本発明における具体的なレンズ構成としては
、前群GFが、正レンズL、と物体側により強い曲率の
面を向けた正レンズL2と、物体側に凸面を向けた正メ
ニスカスレンズし3と、像側により強い曲率の凹面を向
けた負レンズL4とを有し、後群GFが、物体側により
強い曲率の凹面を向けた負レンズL、と、正レンズL、
と、両凸レンズ14.とを有し、第2レンズ群Gtが、
正レンズL8と、両凹レンズし、と、物体側に凸面を向
けた正メニスカスレンズLIOとを有するように構成す
ることが望ましい。As mentioned above, the specific lens configuration of the present invention is that the front group GF includes a positive lens L, a positive lens L2 with a surface of stronger curvature facing the object side, and a positive meniscus lens with a convex surface facing the object side. 3, a negative lens L4 having a concave surface with a stronger curvature facing the image side, and a negative lens L having a rear group GF having a concave surface having a stronger curvature facing the object side, a positive lens L,
and a biconvex lens 14. The second lens group Gt has
It is desirable to configure the lens to include a positive lens L8, a biconcave lens, and a positive meniscus lens LIO with a convex surface facing the object side.
さらに、本発明においては、以下の条件を満足するよう
に構成することにより、高性能化の点でより有利となる
。Further, in the present invention, by configuring the device so as to satisfy the following conditions, it becomes more advantageous in terms of high performance.
(3) 0.07< DGII/ f <0.12(4
) 0.5 < (GW/f < 1f (n、
−1)
(5)−4< <−2,5但し、
Dc*:後群GFの最も物体側面の頂点から後群Glの
最も像側面の頂点までの軸上厚。(3) 0.07<DGII/f<0.12(4
) 0.5 < (GW/f < 1f (n,
-1) (5) -4<<-2,5 However, Dc*: On-axis thickness from the vertex closest to the object side of the rear group GF to the vertex closest to the image side of the rear group GL.
r GF I前群GFの焦点距離。r GF I Focal length of front group GF.
r、:後群GF中の物体側に凹面を向けた負レンズし、
の物体側面の曲率半径。r: Negative lens with concave surface facing the object side in the rear group GF,
Radius of curvature of the side of the object.
nl :後群Gえ中の物体側に凹面を向けた負レンズL
、の屈折率。nl: Negative lens L with a concave surface facing the object side in the rear group G
, the refractive index of .
条件式(3)は第1レンズ群G1の後群G。の最適な軸
上厚を規定するものである0条件(3)の上限を越える
と、収差補正上は有利になるが、全長が大きくなるので
好ましくない。逆にこの条件の下限を越えると全長が短
くなるものの、各屈折面が接近して後群中の光路長が短
くなる。その結果、前群を通過した光軸に平行な無限遠
からの光線(ランド光線)は後群の最も物体側に位置す
る凹面による発散効果を十分に受けられずに、この凹面
の後方に位置する正レンズの収斂作用を受けるため、球
面収差の補正が困難となる。特に至近距離撮影の時は球
面収差の補正に余裕がないので、球面収差の脹らみが大
きくなる。そのため、絞りを絞って使われる事の多い近
接1最影においては、絞りを絞った時の像面の移動が大
きくなるので好ましくない。Conditional expression (3) is the rear group G of the first lens group G1. Exceeding the upper limit of the zero condition (3), which defines the optimum axial thickness of the lens, is advantageous in terms of aberration correction, but is not preferable because the overall length increases. On the other hand, if the lower limit of this condition is exceeded, the total length will be shortened, but the refracting surfaces will come closer together and the optical path length in the rear group will be shortened. As a result, rays from infinity (land rays) that are parallel to the optical axis and pass through the front group are not sufficiently affected by the divergence effect of the concave surface located closest to the object in the rear group, and are positioned behind this concave surface. Since it is subject to the convergence effect of the positive lens, it becomes difficult to correct spherical aberration. Especially when shooting at close range, there is not enough room to correct spherical aberration, so the swell of spherical aberration becomes large. Therefore, in the close-up 1st shadow, which is often used with the aperture closed down, the movement of the image plane becomes large when the aperture is stopped down, which is not preferable.
条件式(4)は第1121群の前群GFと全系との最適
な焦点距離の比率を規定するものである。Conditional expression (4) defines the optimum focal length ratio between the front group GF of the 1121st group and the entire system.
この条件の上限を越えると、前群GFの屈折力が弱くな
り収差補正上には有利になるが、屈折力の最適なバラン
スをとるために、第1121群の後群GF中の負レンズ
の屈折力を小さくせざるを得す、結果的にレンズ系の大
型化を招くために好ましくない。逆にこの条件の下限を
越えると、小型化には有利になるが、第1121群の前
群GFで色収差や球面収差が大きく発生し、この前群G
。If the upper limit of this condition is exceeded, the refractive power of the front group GF becomes weaker, which is advantageous in terms of aberration correction. This is undesirable because it forces the refractive power to be reduced, resulting in an increase in the size of the lens system. Conversely, if the lower limit of this condition is exceeded, it is advantageous for downsizing, but large chromatic aberrations and spherical aberrations occur in the front group GF of the 1121st group, and this front group G
.
の後方に配置されたレンズ系で、これらの収差を相殺さ
せることが困難となる。It becomes difficult to cancel out these aberrations with a lens system placed behind the lens.
条件式(5)は後群GF中の物体側に凹面を向けた負レ
ンズL、の物体側面における適切な面層折力を規定する
ものである。この条件(5)の上限を越えると、負の面
圧折力が弱くなり球面収差が補正不足となり、逆にこの
条件の下限を越えると、負の面圧折力が強くなり球面収
差が過剰補正となるため好ましくない。Conditional expression (5) defines an appropriate surface layer refracting power at the object side of the negative lens L in the rear group GF, which has a concave surface facing the object side. If the upper limit of this condition (5) is exceeded, the negative surface pressure refracting power becomes weaker and spherical aberration becomes insufficiently corrected, and conversely, if the lower limit of this condition is exceeded, the negative surface pressure refractive power becomes stronger and spherical aberration becomes excessive. This is not preferable because it is a correction.
以下に本発明による実施例について説明する。 Examples according to the present invention will be described below.
各実施例はいずれもFナンバーが4.0程度でW、点距
離が200mm程度の近距離↑最影司能な望遠レンズで
ある。Each of the embodiments is a telephoto lens with an F number of about 4.0, W, and a point distance of about 200 mm, which allows close-range ↑ maximum shadow.
第1、第2実施例はいずれも、前群GFと後群Gllよ
り成り正の屈折力を持つ第1レンズ群G1と、負の屈折
力を持つ第2レンズ群G2より成り、第1図に示した第
1実施例と同様なレンズ構成を有している。The first and second embodiments both consist of a first lens group G1, which is made up of a front group GF and a rear group Gll, and has a positive refractive power, and a second lens group G2, which has a negative refractive power. It has a lens configuration similar to that of the first embodiment shown in .
そして、本発明の各実施例おける具体的なレンズ構成は
、正レンズL+と物体側により強い曲率の面を向けた正
レンズL!と、物体側に凸面を向けた正メニスカスレン
ズI5.と、像側により強い曲率の凹面を向けた負レン
ズL4よりなる前群GFと、物体側により強い曲率の凹
面を向けた負レンズL、と、正しノンズL、と、両凸レ
ンズL7よりなる後群GRと、正レンズL8と、両凹レ
ンズL、と、物体側に凸面を向けた正メニスカスレンズ
L1゜よりなる第2レンズ群G2とから成っている。そ
して、絞りSは11力群GFと後群G8との間に配置さ
れている。The specific lens configuration in each embodiment of the present invention is a positive lens L+ and a positive lens L! with a surface of stronger curvature facing the object side. and a positive meniscus lens I5 with the convex surface facing the object side. , a front group GF consisting of a negative lens L4 with a concave surface with a stronger curvature facing the image side, a negative lens L with a concave surface with a stronger curvature facing the object side, a positive lens L, and a biconvex lens L7. It consists of a rear group GR, a positive lens L8, a biconcave lens L, and a second lens group G2 consisting of a positive meniscus lens L1° with a convex surface facing the object side. The aperture S is arranged between the 11th power group GF and the rear group G8.
無限遠から近距離への合焦は、第1レンズ群Gを物体側
へ移動させながら、第2レンズ群GFを像側へ移動させ
ている。Focusing from infinity to a short distance is achieved by moving the first lens group G toward the object side and moving the second lens group GF toward the image side.
以下の表1、表2にて、第1、第2実施例の諸元の値を
掲げる。表中、左端の数字は物体側からの順序を表し、
rはレンズ面の曲率半径、dはレンズ面間隔、屈折率n
及びア、へ数νはdim(λ−587.6nm)に対す
る値であり、2ωと画角、βは撮影倍率、Doは物体か
ら第1レンズ面の頂点までの距離である。Tables 1 and 2 below list the values of the specifications of the first and second embodiments. In the table, the leftmost number represents the order from the object side.
r is the radius of curvature of the lens surface, d is the distance between the lens surfaces, and the refractive index n
The number ν is a value for dim (λ-587.6 nm), 2ω is the angle of view, β is the imaging magnification, and Do is the distance from the object to the apex of the first lens surface.
表」−を刊土ノ」1汁L
f =200.0、Fナンバー:4.0,2ω:’12
.33゜153.456
1202.508
57.677
2232.993
41.228
81.122
147.800
34.745
46゜402
176.213
56.323
147.0B1
147.141
201.022
51.944
38.089
46.429
81.698
f =199.9979
2.0038
96.0478
5゜00
0.40
8.00
0.40
6.70
2.50
5.00
12.00
54.0
82.6
82.6
45.4
2.00 38.0
10.00 60.1
0.20
9.00 45.9
(可変)
5.00 33.9
4.00 45.0
15.00
4.00 46.4
(Bf)
β−−0,5000
479,1689
31,4918
91,1331
1,61720
1,49782
1,49782
1,79668
1,60342
1、62041
1,54814
1,80384
1,74400
1,58267
β−−1,0000
278,9999
62,2837
86,0011
表1−リし「友り則−
f =200.0、Fナンバ
137.573
2471.254
58.107
266.097
35.149
89.766
82.922
28.392
:4.0.2ω: 12.33 ’
5.00 54.6 1.514540.40
8.00 82.6 1.497820.40
6.70 82.6 1.497822.20
5.00 45.4 1.7966814.00
46.81? 5.00 37.9 1.72
342209.747 10.00 60.3 1
.5183547.512 0.40
567.655
−99.366
118.725
36.004
47.843
102.975
f・199.9973
3.4707
87.6036
4.40
1.70
15.00
4.40
(Br)
28.6
45.4
45.4
β、、−0,5000
454,8821
38,1937
70,2421
1,79504
1,79668
1,79668
β・−1゜ooo。1 juice L f = 200.0, F number: 4.0, 2ω: '12
.. 33゜153.456 1202.508 57.677 2232.993 41.228 81.122 147.800 34.745 46゜402 176.213 56.323 147.0B1 147.141 201.022 51.944 38.089 46.429 81.698 f =199.9979 2.0038 96.0478 5゜00 0.40 8.00 0.40 6.70 2.50 5.00 12.00 54.0 82.6 82.6 45.4 2.00 38.0 10.00 60.1 0.20 9.00 45.9 (Variable) 5.00 33.9 4.00 45.0 15.00 4.00 46.4 (Bf ) β--0,5000 479,1689 31,4918 91,1331 1,61720 1,49782 1,49782 1,79668 1,60342 1,62041 1,54814 1,80384 1,74400 1,58267 β--1 ,0000 278,9999 62,2837 86,0011 Table 1 - Friendship rule - f = 200.0, F number 137.573 2471.254 58.107 266.097 35.149 89.766 82.922 28.392 :4.0.2ω: 12.33' 5.00 54.6 1.514540.40 8.00 82.6 1.497820.40 6.70 82.6 1.497822.20 5.00 45.4 1.7966814.00 46.81? 5.00 37.9 1.72
342209.747 10.00 60.3 1
.. 5183547.512 0.40 567.655 -99.366 118.725 36.004 47.843 102.975 f・199.9973 3.4707 87.6036 4.40 1.70 15.00 4.40 (Br ) 28.6 45.4 45.4 β,, -0,5000 454,8821 38,1937 70,2421 1,79504 1,79668 1,79668 β・-1°ooo.
251.6147
81.2176
48.7302
以下、表3において、各実施例の合焦による各レンズ群
の移動量及び全長の変化量を示し、比較例として表4に
おいて、各実施例の第1レンズ群を繰り出す方式とした
際での合焦による各レンズ群の移動量及び全長の変化量
を示す。尚、各表において、第1レンズ群GFの移動量
をΔ1、第2レンズ群G2の移動量をΔ2、全長の変化
量をΔLとして示している。251.6147 81.2176 48.7302 Below, in Table 3, the amount of movement and change in total length of each lens group due to focusing in each example is shown, and as a comparative example, in Table 4, the amount of change in the first lens of each example is shown. The amount of movement and the amount of change in overall length of each lens group due to focusing when the group is extended is shown. In each table, the amount of movement of the first lens group GF is shown as Δ1, the amount of movement of the second lens group G2 is shown as Δ2, and the amount of change in the overall length is shown as ΔL.
の
lレンズ
また、全体繰り出し合焦方式を採用すると、レンズ系が
有する焦点距離程度の繰り出し量が必要となる。すなわ
ち、上記の各実施例に示す焦点距離が200のレンズは
全体繰り出し合焦方式を採用すると、200程度の繰り
出し量が必要となる。Furthermore, if the entire extension focusing method is adopted, an extension amount equivalent to the focal length of the lens system is required. That is, if the lens with a focal length of 200 shown in each of the above embodiments employs the entire extension focusing method, an extension amount of approximately 200 is required.
このように、本発明においては、第1レンズ群G1を物
体側へ一体に繰り出しながら第2レンズ群G2を像側へ
一体に繰り下げて行う合焦方式の採用により、レンズの
重心移動が比較的小さくなって操作性の向上を図れるば
かりか、全長の変化量も小さく抑えられるため、非常に
有利であることが分かる。As described above, in the present invention, by adopting a focusing method in which the first lens group G1 is integrally extended toward the object side and the second lens group G2 is integrally lowered toward the image side, the center of gravity of the lens can be relatively moved. It can be seen that this is very advantageous because it is not only possible to improve the operability by being smaller, but also to suppress the amount of change in the overall length to a small value.
以下、表5において本発明の各実施例における条件対応
値を示す。Table 5 below shows the condition corresponding values in each example of the present invention.
第2図及び第4図にて本発明における諸収差図を示し、
(A)は無限遠合焦状態における諸収差図、(B)はt
i影倍率βが−0,5の状態における諸収差図、(C)
は撮影倍率βが−1,0(等倍)の状態における諸収差
図を示している。2 and 4 show various aberration diagrams in the present invention,
(A) is a diagram of various aberrations when focused at infinity, (B) is t
Various aberration diagrams when the i-shadow magnification β is -0,5, (C)
shows various aberration diagrams in a state where the imaging magnification β is -1, 0 (equal magnification).
各収差図の比較から、コンパクトな形状を維持し、Fナ
ンバー4.0程度の明るさを確保しながら無限遠から等
倍まで優れた結像性能ををしていることが分かる。Comparison of each aberration diagram shows that the lens maintains a compact shape and maintains brightness at an F number of about 4.0, while providing excellent imaging performance from infinity to life-size.
本発明によれば、合焦による全長の変化量及び重心移動
を小さく抑えながら比較的長いワーキングデイスタンス
を確保して操作性の向上が図れ、しかも無限遠から等倍
まで極めて良好な結像性能を有する近距離撮影可能な望
遠レンズを達成することができる。According to the present invention, it is possible to improve operability by ensuring a relatively long working distance while suppressing the amount of change in overall length and movement of the center of gravity due to focusing, and also to achieve extremely good imaging performance from infinity to life-size. A telephoto lens capable of close-range photography can be achieved.
第1図、第3図はそれぞれ順に本発明の第1実施例、第
2実施例におけるレンズ構成図であり、第2図(A)、
第4図(A)はそれぞれ順に本発明の第1実施例、第2
実施例での無限遠合焦状態における諸収差図であり、第
2図(B)、第4図(B)はそれぞれ順に本発明の第1
実施例、第2実施例での撮影倍率βが−0,5の状態に
おける諸収差図であり、第2図(C)、第4図(C)は
それぞれ順に本発明の第1実施例、第2実施例での撮影
倍率βが
1.0(等倍)
の状態における諸収
差図である。
〔主要部分の説明〕
第2レンズ群1 and 3 are lens configuration diagrams in a first embodiment and a second embodiment of the present invention, respectively, and FIG. 2(A),
FIG. 4(A) shows the first embodiment and the second embodiment of the present invention, respectively.
FIG. 2(B) and FIG. 4(B) are diagrams of various aberrations in the infinity focused state in the embodiment, and FIG. 2(B) and FIG. 4(B) are respectively
FIGS. 2(C) and 4(C) are diagrams showing various aberrations in the state where the photographing magnification β is -0 and 5 in the embodiment and the second embodiment, respectively. FIG. 7 is a diagram showing various aberrations in a state where the photographing magnification β is 1.0 (equal magnification) in the second embodiment. [Description of main parts] Second lens group
Claims (1)
と、負の屈折力の持つ第2レンズ群G_2とを有し、前
記第1レンズ群G_1は、正の屈折力を持つ前群G_F
と、正の屈折力を持つ後群G_Rとを有し、無限遠から
近距離への合焦の際に、前記第1レンズ群G_1と前記
第2レンズ群G_2との両群間隔が拡大するように該両
群を光軸に沿って互いに反対方向へ移動させ、以下の条
件を満足することを特徴とする近距離撮影可能な望遠レ
ンズ。 (1)−1≦Δ_2/Δ_1<0 (2)0.06<D_G_2<f<0.175但し、 Δ_1:前記第1レンズ群G_1の合焦による移動量。 Δ_2:前記第2レンズ群G_2の合焦による移動量。 D_G_2:前記第2レンズ群G_2の最も物体側面の
頂点から前記第2レンズ群G_2の最も像側面の頂点ま
での軸上厚。 f:無限遠合焦状態における全系の焦点距離。[Claims] In order from the object side, the first lens group G_1 having positive refractive power;
and a second lens group G_2 with negative refractive power, and the first lens group G_1 has a front group G_F with positive refractive power.
and a rear group G_R having positive refractive power, so that the distance between the first lens group G_1 and the second lens group G_2 is expanded when focusing from infinity to a short distance. A telephoto lens capable of close-range photography, characterized in that both groups are moved in opposite directions along the optical axis, and the following conditions are satisfied. (1) -1≦Δ_2/Δ_1<0 (2) 0.06<D_G_2<f<0.175 However, Δ_1: Movement amount due to focusing of the first lens group G_1. Δ_2: Movement amount of the second lens group G_2 due to focusing. D_G_2: Axial thickness from the vertex closest to the object side of the second lens group G_2 to the vertex closest to the image side of the second lens group G_2. f: Focal length of the entire system when focused at infinity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63234432A JP2712370B2 (en) | 1988-09-19 | 1988-09-19 | Telephoto lens for short-distance shooting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63234432A JP2712370B2 (en) | 1988-09-19 | 1988-09-19 | Telephoto lens for short-distance shooting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0281015A true JPH0281015A (en) | 1990-03-22 |
JP2712370B2 JP2712370B2 (en) | 1998-02-10 |
Family
ID=16970922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63234432A Expired - Fee Related JP2712370B2 (en) | 1988-09-19 | 1988-09-19 | Telephoto lens for short-distance shooting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2712370B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11133312A (en) * | 1997-10-31 | 1999-05-21 | Tochigi Nikon:Kk | Observation optical system capable of focusing from infinite object to short-distance object |
JP2006251529A (en) * | 2005-03-11 | 2006-09-21 | Nikon Corp | Zoom lens |
JP2010033061A (en) * | 2009-09-09 | 2010-02-12 | Olympus Corp | Imaging lens, and imaging lens device using the same |
WO2013073155A1 (en) * | 2011-11-14 | 2013-05-23 | 富士フイルム株式会社 | Medium telephoto lens, and imaging device |
JP2021173954A (en) * | 2020-04-30 | 2021-11-01 | 株式会社コシナ | Large-diameter imaging lens |
JP2022513263A (en) * | 2018-12-17 | 2022-02-07 | ライカ カメラ アクチエンゲゼルシャフト | Wide-angle objective lens for photography |
JP2022113092A (en) * | 2021-01-22 | 2022-08-03 | 北京小米移動軟件有限公司 | Image capturing lens, image capturing device, and electronic device |
CN114994879A (en) * | 2022-07-12 | 2022-09-02 | 舜宇光学(中山)有限公司 | Unmanned aerial vehicle camera lens |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61132916A (en) * | 1984-11-30 | 1986-06-20 | Asahi Optical Co Ltd | Telephoto macro lens system |
JPS63139311A (en) * | 1986-05-28 | 1988-06-11 | Nikon Corp | Large aperture ratio lens being capable of closeup photographing |
JPH01316714A (en) * | 1988-06-17 | 1989-12-21 | Sigma:Kk | Macrolens |
-
1988
- 1988-09-19 JP JP63234432A patent/JP2712370B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61132916A (en) * | 1984-11-30 | 1986-06-20 | Asahi Optical Co Ltd | Telephoto macro lens system |
JPS63139311A (en) * | 1986-05-28 | 1988-06-11 | Nikon Corp | Large aperture ratio lens being capable of closeup photographing |
JPH01316714A (en) * | 1988-06-17 | 1989-12-21 | Sigma:Kk | Macrolens |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11133312A (en) * | 1997-10-31 | 1999-05-21 | Tochigi Nikon:Kk | Observation optical system capable of focusing from infinite object to short-distance object |
JP2006251529A (en) * | 2005-03-11 | 2006-09-21 | Nikon Corp | Zoom lens |
JP2010033061A (en) * | 2009-09-09 | 2010-02-12 | Olympus Corp | Imaging lens, and imaging lens device using the same |
WO2013073155A1 (en) * | 2011-11-14 | 2013-05-23 | 富士フイルム株式会社 | Medium telephoto lens, and imaging device |
JP5629389B2 (en) * | 2011-11-14 | 2014-11-19 | 富士フイルム株式会社 | Medium telephoto lens and imaging device |
US8917456B2 (en) | 2011-11-14 | 2014-12-23 | Fujifilm Corporation | Medium telephoto lens and imaging device |
JP2022513263A (en) * | 2018-12-17 | 2022-02-07 | ライカ カメラ アクチエンゲゼルシャフト | Wide-angle objective lens for photography |
JP2021173954A (en) * | 2020-04-30 | 2021-11-01 | 株式会社コシナ | Large-diameter imaging lens |
JP2022113092A (en) * | 2021-01-22 | 2022-08-03 | 北京小米移動軟件有限公司 | Image capturing lens, image capturing device, and electronic device |
CN114994879A (en) * | 2022-07-12 | 2022-09-02 | 舜宇光学(中山)有限公司 | Unmanned aerial vehicle camera lens |
CN114994879B (en) * | 2022-07-12 | 2024-03-19 | 舜宇光学(中山)有限公司 | Unmanned aerial vehicle camera lens |
Also Published As
Publication number | Publication date |
---|---|
JP2712370B2 (en) | 1998-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2915985B2 (en) | Large aperture medium telephoto lens | |
JPH09325274A (en) | Zoom lens | |
JP2558138B2 (en) | Zoom lens | |
JPH0777656A (en) | Zoom lens | |
US11796774B2 (en) | Internal focus large-aperture telephoto lens | |
JPH0119126B2 (en) | ||
JP3811311B2 (en) | Camera with zoom lens system | |
JP3373913B2 (en) | Zoom lens | |
JPH0431091B2 (en) | ||
JPH07294816A (en) | Zoom lens | |
US5539581A (en) | Zoom lens system | |
JPH0281015A (en) | Telephoto lens capable of short-distance photographing | |
JPH0123763B2 (en) | ||
JPH0414763B2 (en) | ||
JPH0660971B2 (en) | Zoom lenses | |
JPH028282B2 (en) | ||
US5054899A (en) | Medium telephoto lens system | |
JPH0727979A (en) | Zoom lens | |
JPH0560971A (en) | Rear focus zoom lens | |
JP2581204B2 (en) | 3-group zoom lens | |
JPS58127908A (en) | High variable power zoom lens system including wide angle region | |
JPS6014214A (en) | Zoom lens including wide view angle | |
JPS6144289B2 (en) | ||
JPH08179213A (en) | Zoom lens | |
JPH09152551A (en) | Zoom lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |