JPH0280531A - Manufacture of wear-resistant material - Google Patents

Manufacture of wear-resistant material

Info

Publication number
JPH0280531A
JPH0280531A JP63233082A JP23308288A JPH0280531A JP H0280531 A JPH0280531 A JP H0280531A JP 63233082 A JP63233082 A JP 63233082A JP 23308288 A JP23308288 A JP 23308288A JP H0280531 A JPH0280531 A JP H0280531A
Authority
JP
Japan
Prior art keywords
powder
matrix
wear
diamond
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63233082A
Other languages
Japanese (ja)
Inventor
Yasuji Chikaoka
近岡 保二
Masayuki Iwai
岩井 雅行
Yasuo Okawa
康夫 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP63233082A priority Critical patent/JPH0280531A/en
Publication of JPH0280531A publication Critical patent/JPH0280531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily mass-produce a material having high wear resistance at low cost by mixing super abrasives such as diamond and CBN to matrix powder such as iron powder, subjecting it to press forming and thereafter subjecting the formed body to hot sintering. CONSTITUTION:Super abrasives such as diamond and CBN are mixed to matrix powder of iron powder or consisting essentially of the above. The mixing rate of the super abrasives is regulated to about 10 to 50vol.%, preferably about 30 to 50%. The mixture is subjected to press forming into a desired shape. The forming pressure is suitably regulated to about 3 to 8ton/cm<2>. The obtd. formed body is then subjected to hot sintering. The sintering is executed preferably in a reducing atmosphere at about 1050 to 1140 deg.C for about 10 to 60min. In this way, the wear-resistant material of which the above super abrasives are integraly and tightly held in a matrix phase constituted of the above matrix powder and are distributed at least into a surface layer can be obtd.

Description

【発明の詳細な説明】 (技術分野) 本発明は、耐摩耗材料の製造方法に関し、更に詳細には
、ダイヤモンド砥石等、相手を非常に摩耗させ易い材料
に対して有利に用いられ得る耐摩耗材料を製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method of manufacturing a wear-resistant material, and more particularly, the present invention relates to a method for manufacturing a wear-resistant material, and more particularly, a wear-resistant material that can be advantageously used for materials that are highly susceptible to wear, such as diamond grindstones. The present invention relates to a method of manufacturing the material.

(背景技術) 従来から、耐摩耗材料としては、セラミックスを代表に
、超硬合金材料、コーティング材料、焼入れ鋼材料等が
知られている。
(Background Art) Conventionally, as wear-resistant materials, ceramics are representative, cemented carbide materials, coating materials, hardened steel materials, and the like have been known.

しかしながら、それら従来の耐摩耗材料にあっても、相
手がダイヤモンド等の非常に硬い材料になると、どうし
ても摩耗を受けることは避けられ得ないものであった。
However, even with these conventional wear-resistant materials, when the mating material is a very hard material such as diamond, it is inevitable that the material will be subject to wear.

例えば、ダイヤモンド砥石の径をマイクロメーター等の
測定器で測定する際、かかる砥石の接触する測定器の端
子を超硬合金材料にて構成した場合にあっても、摩耗が
惹起されてしまうのである。
For example, when measuring the diameter of a diamond grinding wheel with a measuring device such as a micrometer, wear will occur even if the terminal of the measuring device that comes into contact with the grinding wheel is made of cemented carbide material. .

また、かかる耐摩耗材料の製造に際しても、例えばダイ
ヤモンドコーティング材料にあっては、高圧が必要とな
るために、設備が非常に高価となり、量産性に乏しい等
の製造上の問題も内在している。
In addition, when manufacturing such wear-resistant materials, for example, diamond coating materials require high pressure, which makes the equipment extremely expensive and has manufacturing problems such as poor mass production. .

(解決課題) ここにおいて、本発明は、かかる事情を背景にして為さ
れたものであって、その解決課題とするところは、ダイ
ヤモンド砥石等の硬度の高い材料に対しても、高い耐摩
耗性を有する材料を、複雑な製造工程を採用することな
く、従って製造コストの上昇を惹起することなく、量産
性良(製造することにある。
(Problem to be solved) The present invention has been made against this background, and the problem to be solved is to provide high wear resistance even to hard materials such as diamond grindstones. The objective is to manufacture materials with high mass productivity without employing complicated manufacturing processes and without causing an increase in manufacturing costs.

(解決手段) そして、本発明は、かかる課題解決のために、ダイヤモ
ンド、CBN等の超砥粒を、鉄粉若しくはそれを主体と
するマトリックス粉体に混合せしめ、その得られた混合
物をプレス成形した後、加熱焼結させる゛ことにより、
前記超砥粒を前記マトリックス粉体からなるマトリック
ス相にて一体的に保持せしめると共に、少なくとも表面
層に前記超砥粒を分布させたことを特徴とする耐摩耗材
料の製造方法を、その要旨とするものである。
(Solution Means) In order to solve this problem, the present invention mixes superabrasive grains such as diamond and CBN with iron powder or matrix powder mainly composed of iron powder, and press-forms the obtained mixture. After that, by heating and sintering,
The gist of the method is to provide a method for producing a wear-resistant material, characterized in that the superabrasive grains are integrally held in a matrix phase made of the matrix powder, and the superabrasive grains are distributed at least in a surface layer. It is something to do.

(作用・効果) このような本発明手法によれば、その製造工程が基本的
に通常のプレス成形−焼結操作と同様なものとなるとこ
ろから、従来のダイヤモンドコーティング材料の如き高
圧は必要でなく、従って高圧設備も必要ではなくなると
ころから、その量産性が著しく高められ、また製造コス
トも有利に低減され得るのである。
(Function/Effect) According to the method of the present invention, the manufacturing process is basically the same as a normal press forming-sintering operation, so high pressures like conventional diamond coating materials are not required. Since there is no need for high-pressure equipment, mass productivity can be significantly improved, and manufacturing costs can also be advantageously reduced.

そして、得られる耐摩耗材料は、ダイヤモンド等の超砥
粒が表面に分散して存在(分布)しているところから、
ダイヤモンドコーテイング材と同等の優れた耐摩耗性を
備えていることは勿論、ダイヤモンド等の超砥粒を砥粒
保持力の高い鉄マトリックス、例えば鋳鉄マトリックス
やカーボニル鉄マトリックスにより強固に保持している
ために、砥粒が非常に脱落し難く、これによって、その
耐摩耗性が著しく高められているのである。
The resulting wear-resistant material has superabrasive grains such as diamond dispersed (distributed) on its surface.
Not only does it have excellent wear resistance equivalent to that of diamond coating materials, but it also strongly holds superabrasive grains such as diamond with an iron matrix that has high abrasive retention power, such as a cast iron matrix or a carbonyl iron matrix. In addition, the abrasive grains are extremely difficult to fall off, which significantly increases its wear resistance.

また、本発明にあっては、所定の超砥粒とマトリックス
粉体との混合粉のプレス成形体を焼結することにより得
られる焼結体に対して、その砥粒の存在する面を表面仕
上げ加工して、平坦化せしめる操作が有利に実施される
こととなるが、その場合においては、材料表面に砥粒の
突出がないために、相手材を傷つけないことに加えて、
砥粒部の受は面積が大きくなるという特徴も発揮するの
である。
In addition, in the present invention, for a sintered body obtained by sintering a press-formed body of a mixed powder of predetermined superabrasive grains and matrix powder, the surface where the abrasive grains are present is Finishing and flattening operations are advantageously carried out, but in that case, since there are no protruding abrasive grains on the material surface, in addition to not damaging the mating material,
Another feature of the abrasive grain support is that it has a large area.

(具体的構成) ところで、かかる本発明手法に従って、耐摩耗材料を製
造するに際して、ダイヤモンドやCBN(立方晶窒化硼
素)等の超砥粒は、得られる耐摩耗材料の用途やその要
求特性等に応じて適宜の粒度のものが選択され、例えば
40メツシユ〜4000メツシユの範囲内のものが用い
られるが、より微細な粒度の砥粒を用いた方が、相手材
を傷つけないようにする上において有利である。
(Specific configuration) By the way, when manufacturing a wear-resistant material according to the method of the present invention, superabrasive grains such as diamond or CBN (cubic boron nitride) are used depending on the use of the resulting wear-resistant material and its required characteristics. An appropriate abrasive grain size is selected depending on the abrasive grain size, for example, one in the range of 40 mesh to 4000 mesh is used, but it is better to use a finer grain size to avoid damaging the mating material. It's advantageous.

また、かかる超砥粒に混合せしめられるマトリックス粉
体は、焼結によって一体的なマトリックス相を形成して
、かかる砥粒を一体的に保持するものであって、本発明
では、そのような砥粒保持力を高めるために、鉄粉若し
くはそれを主体とする粉末が用いられている。かかる鉄
粉末は、鋳鉄粉の如き通常の鉄系材料の粉末やカーボニ
ル鉄粉の如き純鉄粉であり、それらが砥粒に応じて単独
で用いられたり或いは組み合わせて用いられたりして、
マトリックス粉体が構成されることとなるのである。よ
り具体的には、鋳鉄を粉砕したダライ粉やこれにカーボ
ニル鉄粉を20〜40重量%程度混ぜた混合粉末、更に
はカーボニル鉄粉に黒鉛を2〜5重量%程度混ぜた混合
粉末等によって、マトリックス粉体が構成されることと
なる。なお、このマトリックス粉体には、更に微量のC
u、P。
Further, the matrix powder mixed with such superabrasive grains forms an integral matrix phase by sintering, and holds the abrasive grains together. Iron powder or powder mainly composed of iron powder is used to increase grain retention. Such iron powders are powders of ordinary iron-based materials such as cast iron powders and pure iron powders such as carbonyl iron powders, and these may be used alone or in combination depending on the abrasive grains.
A matrix powder is thus formed. More specifically, it can be made by using powder made by crushing cast iron, a mixed powder of about 20 to 40% by weight of carbonyl iron powder mixed with it, or a mixed powder of about 2 to 5% of graphite mixed with carbonyl iron powder, etc. , a matrix powder is formed. Furthermore, this matrix powder also contains a trace amount of C.
u, p.

Si、Cr、Mn等の強化元素が必要に応して添加され
、これによってマトリックス相の強度が高められる。
Strengthening elements such as Si, Cr, and Mn are added as necessary to increase the strength of the matrix phase.

ところで、このマトリックス粉体の主構成成分たる鉄粉
は、使用される砥粒の粒度により適宜の粒度において用
いられることとなるが、一般に砥粒よりも小さな粒度の
鉄粉末が用いられ、特に砥粒の粒径が約50μm以下(
300メツシュ以上)の場合にあっては、1〜5μmと
粒径の小さなカーボニル鉄粉に黒鉛を配合してなる混合
粉末がマトリックス粉体として有利に用いられ、これに
よって微細砥粒の保持が向上される。また、このような
カーボニル鉄粉ベースのマトリックス粉体は、比較的低
温で焼結するところから、砥粒へのダメージも少ない等
の利点を有している。尤も、50μmを越えるような粒
径の大きな砥粒の場合にあっては、鋳鉄ダライ粉(50
〜60μm)の如き粒径の大きな鉄粉末でも使用可能で
あるが、焼結性を考えると、上記したカーボニル鉄粉ベ
ースのマトリックス粉体の使用が推奨されるのである。
By the way, iron powder, which is the main component of this matrix powder, is used at an appropriate particle size depending on the particle size of the abrasive grains used, but iron powder with a particle size smaller than the abrasive grains is generally used, and in particular, iron powder with a particle size smaller than the abrasive grains is used. The particle size of the particles is approximately 50 μm or less (
300 mesh or more), a mixed powder made by blending graphite with carbonyl iron powder with a small particle size of 1 to 5 μm is advantageously used as the matrix powder, which improves the retention of fine abrasive grains. be done. Further, such matrix powder based on carbonyl iron powder has advantages such as less damage to abrasive grains because it is sintered at a relatively low temperature. However, in the case of large abrasive grains exceeding 50 μm, cast iron powder (50 μm
Although it is possible to use iron powder with a large particle size such as 60 .mu.m), in consideration of sinterability, it is recommended to use the above-mentioned matrix powder based on carbonyl iron powder.

また、かかるカーボニル鉄粉ベースのマトリックス粉体
の場合においては、4000メ、ツシュ以上の超微細砥
粒の保持も可能となる。
Furthermore, in the case of matrix powder based on carbonyl iron powder, it is possible to retain ultrafine abrasive grains of 4000 mesh or more.

本発明は、このようなマトリックス粉体と砥粒とを混合
して、目的とする耐摩耗材料を得るべくプレス成形に供
するものであって、それらの混合割合は、得られる耐摩
耗材料に対する要求特性に応じて適宜に決定されるもの
であるが、一般に砥粒が混合物中において容量基準でl
O〜50%程度、好ましくは30〜50%程度の割合と
なるように゛混合せしめられることとなるのである。
In the present invention, such matrix powder and abrasive grains are mixed and subjected to press molding in order to obtain the desired wear-resistant material, and the mixing ratio thereof is determined according to the requirements for the resulting wear-resistant material. This is determined as appropriate depending on the characteristics, but generally speaking, the amount of abrasive grains in the mixture is
They are mixed at a ratio of about 0 to 50%, preferably about 30 to 50%.

次いで、この砥粒とマトリックス粉体との混合粉末には
、通常のプレス成形操作が施され、以て板状、ブロック
状、円筒状等の所定の形状のプレス成形品とされる。な
お、このプレス成形に際しての成形圧力は、通常3〜8
  ton/cm”程度とされ、マトリックス粉体の粒
度等に応じて有効な成形圧力が選定されることとなる。
Next, this mixed powder of abrasive grains and matrix powder is subjected to a normal press molding operation to form a press molded product in a predetermined shape such as a plate shape, a block shape, or a cylindrical shape. Note that the molding pressure during this press molding is usually 3 to 8
ton/cm", and an effective molding pressure is selected depending on the particle size of the matrix powder, etc.

また、耐摩耗材料の用途に応じて、かかるプレス成形操
作として、所謂二層成形法を採用して、砥粒とマトリッ
クス粉体からなる耐摩耗砥粒層と、かかるマトリックス
粉体のみから形成される砥粒不含のマトリックス層とか
ら構成される二層構造の成形品をプレス成形して、耐摩
耗材料を製造することも可能である。
In addition, depending on the use of the wear-resistant material, a so-called two-layer molding method may be adopted as the press forming operation to form a wear-resistant abrasive layer consisting of abrasive grains and matrix powder, and only the matrix powder. It is also possible to produce a wear-resistant material by press-molding a molded product with a two-layer structure consisting of an abrasive-free matrix layer and a matrix layer containing no abrasive grains.

その後、かかるプレス成形品は、通常の加熱焼結操作に
従って焼結せしめられ、以て混合された砥粒が、マトリ
ックス粉体からなるマトリックス相にて一体的に保持さ
れてなる焼結体が形成されるのである。なお、この焼結
操作は、通常、還元性雰囲気中、1050〜1140°
Cの温度で10〜60分間実施されることとなる。
Thereafter, this press-formed product is sintered according to a normal heating and sintering operation to form a sintered body in which the mixed abrasive grains are integrally held in a matrix phase made of matrix powder. It will be done. Note that this sintering operation is usually performed at 1050 to 1140° in a reducing atmosphere.
It will be carried out for 10 to 60 minutes at a temperature of C.

そして、このようにして得られた少なくとも表面層に砥
粒が分布せしめられてなる焼結体、即ち耐摩耗材料には
、有利には表面仕上げ操作が施されることとなる。この
表面仕上げ操作は、研磨により砥粒の突出を取って、面
を平坦化する操作であって、例えばダイヤモンド砥粒を
用いた場合にあっては、ダイヤモンドラップ盤を用いて
ダイヤモンド同士の共擦りを行なうことによって、実施
される。このような表面仕上げによる平坦化(表面平滑
化)によって、かかる耐摩耗材料が相手材を傷つけるよ
うなことも、効果的に回避され得るのである。
The thus obtained sintered body, ie, the wear-resistant material in which abrasive grains are distributed in at least the surface layer, is advantageously subjected to a surface finishing operation. This surface finishing operation is an operation in which the protrusion of the abrasive grains is removed by polishing to flatten the surface. For example, when diamond abrasive grains are used, a diamond lapping machine is used to rub the diamonds together. It is implemented by doing the following. By flattening (surface smoothing) by such surface finishing, it is possible to effectively prevent the wear-resistant material from damaging the mating material.

ところで、以上の如き製造手法に従って製作された耐摩
耗材料は、適宜の形状に仕上げられて、耐摩耗性の要請
される各種の用途に有利に用いられるものであり、例え
ばその応用例の一つとして、ダイヤモンド砥石等の計測
に用いられるマイクロメーターの端子への適用がある。
By the way, the wear-resistant material manufactured according to the above manufacturing method is finished into an appropriate shape and can be advantageously used in various applications that require wear resistance. One example of this is its application to the terminals of micrometers used to measure diamond grindstones, etc.

即ち、第1図に示されるように、ダイヤモンドの如き砥
粒とマトリックス粉体からなる1 mm程度の砥粒層1
aとマトリックス粉体のみからなるマトリックス層1b
を有する端子部1を、上記の如き手法に従ってプレス成
形及び焼結し、表面仕上げをして、スチールシャフト2
に接合することによって、マイクロメーターの端子が構
成されるのである。なお、3は、接合部である。このよ
うなマイクロメーターの端子構造にあっては、ダイヤモ
ンド砥石等の被測定物体に接触する端子面が砥粒層1a
にて形成されているところから、その耐摩耗性が著しく
向上され得るのである。
That is, as shown in FIG. 1, an abrasive grain layer 1 of about 1 mm consisting of abrasive grains such as diamond and matrix powder is formed.
matrix layer 1b consisting only of a and matrix powder
The terminal portion 1 having a
The micrometer terminal is constructed by bonding it to the micrometer. Note that 3 is a joint portion. In such a micrometer terminal structure, the terminal surface that comes into contact with the object to be measured, such as a diamond grindstone, is coated with the abrasive grain layer 1a.
Since it is made of aluminum, its wear resistance can be significantly improved.

また、このようなマイクロメーターの端子構成において
、表面に占めるダイヤモンド等の砥粒の面積率は出来る
だけ高い方が良いところから、ダイヤモンド砥粒等の含
有量を多くすることが望ましい。この砥粒の含有量は集
中度で表し、体積率が25%の時を100としたとき、
鋳鉄等の鉄粉マトリックス粉体は強度が高いために集中
度をかなり高くすることが出来、集中度=200 (5
0体積%)も可能であり、その時の面積率は約35%と
なる。
In addition, in such a terminal configuration of a micrometer, it is preferable to increase the content of diamond abrasive grains, etc., since it is better to have as high an area ratio of abrasive grains, such as diamond, as possible on the surface. The content of this abrasive grain is expressed in terms of concentration, and when the volume ratio is 25% as 100,
Because the iron powder matrix powder such as cast iron has high strength, the degree of concentration can be made quite high, and the degree of concentration = 200 (5
0 volume %) is also possible, and the area ratio in that case will be about 35%.

また、砥粒の粒度、集中度を適宜に選定することにより
、本発明に従って得られる耐摩耗材料をメカニカルシー
ルや軸受け、更にはラップ定盤等に適用することも可能
である。なお、これらの用途においては、砥粒は微細な
方が良り、一般に5μm以下の砥粒が好適に用いられ、
またメカニカルシールや軸受は等への適用に際しては、
マトリックス粉体として、多量に黒鉛を含む鋳鉄粉や黒
鉛粉を配合せしめてなるマトリックス粉体が、その良好
な摺動性の故に有利に用いられることとなる。
Furthermore, by appropriately selecting the particle size and concentration of abrasive grains, the wear-resistant material obtained according to the present invention can be applied to mechanical seals, bearings, and even lap plates. In addition, in these applications, the finer the abrasive grains, the better, and generally abrasive grains of 5 μm or less are preferably used.
In addition, when applying to mechanical seals, bearings, etc.
As the matrix powder, a matrix powder blended with cast iron powder or graphite powder containing a large amount of graphite is advantageously used because of its good sliding properties.

(実施例) 以下に、本発明の幾つかの実施例を示し、本発明を更に
具体的に明らかにすることとするが、本発明が、そのよ
うな実施例の記載によって、何等の制約をも受けるもの
でないことは、言うまでもないところである。
(Examples) Below, some examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited in any way by the description of such examples. Needless to say, it is not something that can be accepted.

また、本発明には、以下の実施例の他にも、更には上記
の具体的記述以外にも、本発明の趣旨を逸脱しない限り
において、当業者の知識に基づいて種々なる変更、修正
、改良等を加え得るものであることが、理解されるべき
である。
In addition to the following examples and the above-mentioned specific description, the present invention includes various changes, modifications, and changes based on the knowledge of those skilled in the art, as long as they do not depart from the spirit of the present invention. It should be understood that improvements and the like may be made.

先ず、粒径が1〜5μmのカーボニル鉄粉に対して3重
量%の黒鉛粉を加えてなる混合粉末を、マトリックス粉
体として用意する一方、砥粒として、粒径が88〜10
5μm (#140/170)及び3〜8μm (#2
000/4000)の二種類のダイヤモンド砥粒を準備
した。そして、この二種類のダイヤモンド砥粒を、それ
ぞれ上記マド、1ツクス粉体に砥粒割合が50容量%及
び30容量%となるように配合して、砥粒粒度の異なる
二種の原料粉末を調整した。
First, a mixed powder made by adding 3% by weight of graphite powder to carbonyl iron powder with a particle size of 1 to 5 μm is prepared as a matrix powder, while abrasive grains with a particle size of 88 to 10 μm are prepared as a matrix powder.
5μm (#140/170) and 3~8μm (#2
Two types of diamond abrasive grains (000/4000) were prepared. Then, these two types of diamond abrasive grains are blended with the above-mentioned Mado and 1Tx powders so that the abrasive grain ratios are 50% by volume and 30% by volume, respectively, and the two types of raw material powders with different abrasive grain sizes are mixed. It was adjusted.

次いで、この得られた砥粒とマトリックス粉体との混合
粉からなる二種の原料粉末を、常法に従って、4  t
on/cm2の成形圧力にてプレス成形した後、還元性
雰囲気下において1050°C×40分の焼結操作を施
した。その後、この得られた焼結体に、ダイヤモンドラ
ップ盤上でダイヤモンド同士の共擦りを行なうことによ
って表面仕上げを施し、かかる焼結体の表面に突出する
砥粒を研磨して、その表面を平坦化した。
Next, two kinds of raw material powders consisting of a mixed powder of the obtained abrasive grains and matrix powder were mixed in a conventional manner for 4 t.
After press molding at a molding pressure of on/cm2, a sintering operation was performed at 1050°C for 40 minutes in a reducing atmosphere. Thereafter, the obtained sintered body is surface-finished by rubbing together diamonds on a diamond lapping machine, and the abrasive grains protruding from the surface of the sintered body are polished to make the surface flat. It became.

かくして得られた平坦な表面を有する二つの焼結体(耐
摩耗材料)について、その表面を走査型電子顕微鏡(S
EM)にて調べたところ、各場合とも、砥粒が非常によ
く保持されているのが確認された。なお、第2図及び第
3図にそれぞれの表面SEM写真を示すが、第2図は、
粒径が88〜105μmのダイヤモンド砥粒を用いた場
合のもの、第3図は、粒径が3〜8μmのダイヤモンド
砥粒を用いた場合のものである。
The surfaces of the two sintered bodies (wear-resistant materials) with flat surfaces thus obtained were examined using a scanning electron microscope (S
EM), it was confirmed that the abrasive grains were retained very well in each case. In addition, FIG. 2 and FIG. 3 show respective surface SEM photographs, and FIG.
Figure 3 shows the case where diamond abrasive grains with a particle size of 88 to 105 μm are used, and FIG. 3 shows the case where diamond abrasive grains with a particle size of 3 to 8 μm are used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従って製造された耐摩耗材料をマイ
クロメーターの端子部に用いた例を示す要部斜視図であ
り、第2図及び第3図は、それぞれ、粒径が88〜10
5μm及び3〜8μmのダイヤモンド砥粒を用いて得ら
れた焼結体(耐摩耗材料)の仕上げ表面を示す走査型電
子顕微鏡写真である。 第1図 1一端子部焼結体 1a:砥粒層    1b=マトリックス層2ニスチー
ルシャフト 3:接合部 手続補正書 (方式) %式% 発明の名称 耐摩耗材料の製造方法 補正をする者 事件との関係     特許出願人
FIG. 1 is a perspective view of a main part showing an example in which the wear-resistant material manufactured according to the present invention is used in the terminal part of a micrometer, and FIGS. 2 and 3 show a particle size of 88 to 10, respectively.
It is a scanning electron micrograph showing the finished surface of a sintered body (wear-resistant material) obtained using diamond abrasive grains of 5 μm and 3 to 8 μm. Figure 1 1 - Terminal part sintered body 1a: Abrasive grain layer 1b = Matrix layer 2 Steel shaft 3: Joint part procedure amendment (method) % formula % Name of invention Case of person who amends the manufacturing method of wear-resistant material Relationship with patent applicant

Claims (1)

【特許請求の範囲】[Claims]  ダイヤモンド、CBN等の超砥粒を、鉄粉若しくはそ
れを主体とするマトリックス粉体に混合せしめ、その得
られた混合物をプレス成形した後、加熱焼結させること
により、前記超砥粒を前記マトリックス粉体からなるマ
トリックス相にて一体的に保持せしめると共に、少なく
とも表面層に前記超砥粒を分布させたことを特徴とする
耐摩耗材料の製造方法。
Superabrasive grains such as diamond or CBN are mixed with iron powder or matrix powder mainly composed of iron powder, the resulting mixture is press-molded, and then heated and sintered to form the superabrasive grains into the matrix. A method for manufacturing a wear-resistant material, characterized in that the superabrasive grains are integrally held in a matrix phase made of powder, and the superabrasive grains are distributed in at least the surface layer.
JP63233082A 1988-09-17 1988-09-17 Manufacture of wear-resistant material Pending JPH0280531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233082A JPH0280531A (en) 1988-09-17 1988-09-17 Manufacture of wear-resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233082A JPH0280531A (en) 1988-09-17 1988-09-17 Manufacture of wear-resistant material

Publications (1)

Publication Number Publication Date
JPH0280531A true JPH0280531A (en) 1990-03-20

Family

ID=16949519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233082A Pending JPH0280531A (en) 1988-09-17 1988-09-17 Manufacture of wear-resistant material

Country Status (1)

Country Link
JP (1) JPH0280531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911283B2 (en) 2010-08-06 2014-12-16 Saint-Gobain Abrasives, Inc. Abrasive tool and a method for finishing complex shapes in workpieces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274034A (en) * 1986-05-23 1987-11-28 Toyota Central Res & Dev Lab Inc Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPS6345346A (en) * 1986-08-11 1988-02-26 ド・ビ−アズ・インダストリアル・ダイヤモンド・ディビジョン(プロプライエタリ−)リミテッド Abrasion resistant material and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274034A (en) * 1986-05-23 1987-11-28 Toyota Central Res & Dev Lab Inc Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPS6345346A (en) * 1986-08-11 1988-02-26 ド・ビ−アズ・インダストリアル・ダイヤモンド・ディビジョン(プロプライエタリ−)リミテッド Abrasion resistant material and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911283B2 (en) 2010-08-06 2014-12-16 Saint-Gobain Abrasives, Inc. Abrasive tool and a method for finishing complex shapes in workpieces

Similar Documents

Publication Publication Date Title
US6096107A (en) Superabrasive products
KR860002585A (en) Diamond sintered body for tool and manufacturing method thereof
CN106956223A (en) A kind of metallic bond and its diamond abrasive tool and diamond abrasive tool preparation method
TW495418B (en) Polishing compact and polishing surface plate using the same
JP3542520B2 (en) Vitrified whetstone
JP2002066928A (en) Hybrid grinding wheel and manufacturing method therefor
JPS62205203A (en) Production of ultrafine short metallic fiber
US4832707A (en) Metal-bonded tool and method of manufacturing same
JPH03264263A (en) Porous metal bond grinding wheel and manufacture thereof
JPH0280531A (en) Manufacture of wear-resistant material
JP3380125B2 (en) Porous superabrasive stone and its manufacturing method
JP2987485B2 (en) Superabrasive grindstone and method of manufacturing the same
JPS606356A (en) Sintered minute short fiber abrasive
CN109678518A (en) It is used to prepare the high sphericity silicon carbide grinding bead of high intensity of high pure and ultra-fine powder
KR100334430B1 (en) Tip manufacturing method of grinding wheel
JP3690966B2 (en) Metal bond grinding wheel
JPS62246474A (en) Manufacture of super abrasive grain grindstone for mirror-like surface finishing
JPS64183B2 (en)
JPS63127877A (en) Sintered metal filament type abrasive
US3286411A (en) Grinding wheels and stones of oxide bonded b13p2 and method of producing same
JP2004009251A (en) Ultrathin super abrasive grain metal bond grind stone and manufacturing method thereof
JPH0283168A (en) Manufacture of metal bond grindstone
CN117300923A (en) Preparation process and application of porous active metal-based diamond abrasive particle tool
CN116214387A (en) Production method of low-temperature bonding agent steel ball grinding wheel
JPH0283169A (en) Manufacture of metal bond grindstone