JPH028048B2 - - Google Patents

Info

Publication number
JPH028048B2
JPH028048B2 JP61101059A JP10105986A JPH028048B2 JP H028048 B2 JPH028048 B2 JP H028048B2 JP 61101059 A JP61101059 A JP 61101059A JP 10105986 A JP10105986 A JP 10105986A JP H028048 B2 JPH028048 B2 JP H028048B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
sheath
resin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61101059A
Other languages
Japanese (ja)
Other versions
JPS62263321A (en
Inventor
Kazuaki Toda
Akiro Kamaya
Masayuki Matsubara
Shinji Oota
Shigeki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP61101059A priority Critical patent/JPS62263321A/en
Publication of JPS62263321A publication Critical patent/JPS62263321A/en
Publication of JPH028048B2 publication Critical patent/JPH028048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

≪産業上の利用分野≫ 本発明は、不織布のバインダーとして使用され
る熱融着性に優れたポリオレフイン系樹脂を主体
とする熱融着性繊維に関する。 ≪従来技術とその問題点≫ 近年、マスク、あるいは紙おむつ、経血用ナプ
キンなどの衛材用表皮材として、ポリプロピレン
系繊維を主材繊維として、これに熱融着性繊維を
適宜混繊し、しかる後熱風あるいはエンボスロー
ラによつてこれらの繊維を熱融着した不織布が使
用されている。 この種の不織布の熱融着性繊維としては、化学
的接着剤を使用していないことから皮膚障害など
の危惧がなく衛生的であること、排尿などによつ
て濡れても表面材は吸収しないためサラツとした
感じが保持できる疎水性があること、価格が比較
的低廉で、かつ安定していることなど、機能上お
よび経済上の理由からポリオレフイン系樹脂が採
用され、その使用量も女性の社会進出、生活様式
の変化および社会の高齢化などを背景として使い
捨ておむつの分野で急速に増大している。 従来、この種の不織布は、熱融着性繊維として
は、タクテイシテイの低いポリプロピレン、エチ
レン−プロピレン・コポリマーあるいはポリエス
テルとポリプロピレンを混合して軟化点を降下せ
しめた単一成分系のもの、あるいは高融点側にポ
リプロピレンを主成分とするものを使用し、低融
点側に高密度ポリエチレン、低密度ポリエチレ
ン、直鎖状低密度ポリエチレン、エチレン酢酸ビ
ニル等を使用して、これらを鞘芯型あるいは貼り
合せ型に配した複合系のものが提供されている
が、以下に述べる点で問題があつた。 すなわち、熱融着性繊維の利用に際しては、不
織布製造工程において融着条件の幅の広さ、つま
り余り厳密な温度管理を要せず、かつ、融着強力
の高いものが要請されるが、従来の熱融着性繊維
では1〜2℃という狭い範囲での温度管理や、不
織布の強力を高めるため、主材繊維に対する熱融
着性繊維の混合比率を増加したり、全体の目付け
を向上することを余儀なくされている。このため
外気温の変動などによつて品質が不安定となつた
り、融着強力を満足するために目付けが高くなつ
てコスト的に採算が悪化するなどの点で問題があ
つた。 これらの問題点の解決方法として、複合繊維系
において低融点成分を変性して、融着強力を上げ
る方法も提案されているが、原料調整のための変
性工程が付加されるし、その効果も充分でなかつ
た。 このような従来技術の問題点を解決するため
に、本発明者らは、特別に原料調節のための工程
を付加することなく、不織布製造工程において融
着条件の範囲が広く、かつ高い融着強力の得られ
る熱融着性繊維を鋭意研究して本発明に到達し
た。 ≪問題点を解決するための手段≫ 上記の目的を達成するための本発明の構成は、
ポリオレフイン系樹脂に石油樹脂を1〜20重量%
添加して得られる組成物単独、若しくはその組成
物を並列型、鞘芯型構造の複合繊維の少なくとも
一成分として用いたポリオレフイン系繊維を基本
構成としている。 本発明においてポリオレフイン系樹脂とは、結
晶性ポリプロピレン、エチレン−プロピレン・コ
ポリマー、あるいはポリエチレンとこれらの混合
物などを指称し、これに石油資源を原料とする脂
肪族系、あるいは芳香族系の石油樹脂、例えばイ
ソプレン、シクロペンタジエン、1,3−ペンタ
ジエン、1−ペンテン、2−ペンテン、ジシクロ
ペンタジエン等が主体の重合体若しくは共重合体
であるC5系脂肪族石油樹脂または、インデン、
スチレン、メチルインデン、α−メチルスチレン
等が主体の重合体若しくは共重合体であるC8〜
C10系芳香族、これらに水素添加した脂環族の重
合体または共重合体、芳香族脂肪族共重合体から
選択された石油樹脂から選択して、これを前記ポ
リオレフイン系樹脂に対して1〜20重量%の比率
で添加混合したものを主原料とするもので、さら
にこれらに目的に応じて、各種安定剤、着色剤な
どを添加してもよい。石油樹脂の添加量は1〜20
重量%であつて、1重量%未満では充分な効果が
得られず、また21重量%以上では繊維の紡糸性が
低下して安定した操業ができない。 また、添加する石油樹脂の軟化点は、70〜150
℃の範囲内にある必要がある。軟化点が70℃以下
になると耐熱性が悪くなり、また融着効率も上が
らない。 一方、これが150℃以上にあると、流動活性化
エネルギーが大きくなるため、同様に融着効率が
上がらない。 また、衛材用繊維のように繊維に着色すると好
ましくない場合には、水素添加して脱色した石油
樹脂を用いることが望ましい。 この場合、水素を添加したことで紡糸性、融着
性には何ら影響はない。 本発明の繊維は、上記の原料組成のものを、単
一成分系の繊維あるいは2成分を貼り合せた形態
の並列型の一成分、若しくは芯側に高融点成分、
鞘側に低融点成分を配した鞘芯型の一成分として
紡糸し、これを延伸、熱処理して得られるもので
あつて、複合型の繊維において各々の一成分間の
融点の差が20℃以上あることが望ましい。 ≪実施例≫ 以下、この発明の好適な実施例について説明す
る。 実施例 1〜4 素練りローラーにて高密度ポリエチレン(MI
=20)70部に、C8〜C10系芳香族系石油樹脂であ
るC9アルキルベンゼンに水素を添加した脂環族
石油樹脂(荒川化学(株)製アルコンp−100、軟化
点100℃、分子量700)30部を添加し均一に練つた
後、ペレターザーにてペレツト化し、石油樹脂の
マスターバツチを作成する。 一軸押出機2台と、ホール径0.6mmの複合繊維
用ノズルからなる鞘芯型複合繊維紡糸設備を使
い、芯成分として結晶性ポリプロピレン(MI=
15)を、鞘成分は高密度ポリエチレン(MI=20)
をベースに、前記マスターバツチを添加して石油
樹脂量が各々1、5、10、20重量%となるように
配合して、紡糸温度250℃、引取速度800m/min
で紡糸し、単糸デニール6.0deの鞘芯型複合繊維
を得た。なお、鞘成分と芯成分の断面積比率は
1:1としたが、いずれも紡糸性が優れ、1時間
の間紡糸切れは1回も発生しなかつた。 このマルチフイラメントを300本集めトータル
デニールを約40万とし、ステープルフアイバー試
作設備にて延伸、オイリング、捲縮加工、カツ
ト、乾燥、熱処理を行ない、単糸デニール2de、
カツト長51mm、捲縮数15個/inchのステープルフ
アイバーを得た。なお熱処理は100℃の熱風にて
10分間行なつた。オイルはアルキルフオスフエー
ト系で0.30%付着させた。このようにして得られ
た単繊維の特性を表1に示す。 このステープルフアイバーを350mm巾のサンプ
ルカード機に2回通し目付20g/m2の均一なウエ
ブを作成した。この時のカード特性も表1に示し
ているが、いずれもカード通過性が良くなつてい
る。このウエブをシール面積8%、シール接圧5
Kg/cm、シール速度3m/minのエンボスロール
にて、表面温度を117.5℃から130℃までで変えて
ポイントシール融着不織布を作つた。なお、表面
温度が135℃以上では溶融過剰となりフイルムラ
イクになると同時に収縮も大きくなつた。 他方、巾350mm巾、速度5m/minの金網ベル
トにウエブを載せ、熱風温度を132.5〜145℃まで
変え、風速2m/秒の熱風を5秒間吹き付けて、
熱風融着不織布も作成した。なお、この場合には
熱風温度が150℃以上では不織布は溶融過剰とな
り、収縮も著しく大きくなつた。 熱風融着にて作成された不織布の裂断長、蒿高
性を調べたところ(表1、図1〜4参照)、いず
れも融着強力が高く、且つ広い温度範囲で優れた
融着強力を持つた不織布が得られた。従つて、従
来のような厳密な温度設定や管理が不要となり、
外気温等が多少変化しても品質の安定したものが
得られ、また生産速度や目付等も幅広く変えら
れ、しかも、蒿高性が優れ、紙おむつの要求性能
の一つである触感の良いものが得られた。この傾
向は表1ないしは第1図〜第4図からも明らかな
ように熱風融着不織布に、より顕著に現われる。 比較例 1〜3 実施例1〜4と同じ方法にて、鞘成分として高
密度ポリエチレン単独及び脂環族石油樹脂(荒川
化学(株)製アルコンp−100)を、それぞれ0、
0.5、25重量%添加した高密度ポリエチレンを使
い、組成原料比率の異なる3種類の鞘芯型複合繊
維を紡糸した。その結果、比較例1、2はいずれ
も紡糸性が良く、1時間の紡糸中で紡糸切れは1
回も発生しなかつたが、比較例3は1時間に5〜
7回紡糸切れが発生し、安定した紡糸が出来なか
つた。 さらに、比較例1、2について、カード特性、
不織布特性を調べたところ、表1、第1図〜第4
図に示すようにいずれも実施例に比しカード通過
性が劣り、熱融着強度、蒿高性も劣つていた。ま
た融着強度の温度依存性が大きく、融着温度によ
り融着強力及び触感が左右される。すなわち、融
着温度が低いと融着強力が弱く、逆に融着温度が
高いと固くなり触感(風合)が劣つてくる。 実施例 5〜7 実施例1〜4と同一方法にて芯成分として結晶
性ポリプロピレン(宇部興産(株)J130G)を鞘成分
は高密度ポリエチレン(旭化成(株)製J310)にC5
系脂肪族石油樹脂として、イソプレン系重合体
(実施例5、日本ゼオン(株)製フイントンA−100、
軟化点100℃)、また、同じ重合体(実施例6、日
本ゼオン(株)製クイントンC−100、軟化点95℃)、
高級炭化水素石油樹脂(実施例7、三井石油化学
(株)製FTR−6100、軟化点97℃)を各々5%重量
添加した鞘芯型複合繊維を作成し、紡糸性、カー
ド特性、不織布特性を調べたところいずれも表2
に示すように優れた結果が得られた。 実施例 8 実施例1〜4と同一方法にて芯成分に結晶性ポ
リプロピレン(宇部興産(株)製、J130G)、鞘成分
には脂環族石油樹脂(荒川化学(株)製アルコンp−
125、分子量820、軟化点125℃)を5重量%添加
した無水マレイン酸変性高密度ポリエチレン(日
本石油化学(株)製、NポリマーS0792)を使い、鞘
芯型複合繊維を紡糸した。その結結果、紡糸性、
カード特性、不織布特性を調べたところ表3に示
すようにいずれも優れた結果が得られた。 実施例 9 一軸押出機とホール径0.5mmの単一系繊維用ノ
ズルからなる紡糸設備を用い、エチレンプロピレ
ンランダム共重合体(宇部興産(株)製エチレン含量
2% MI=30)とポリプロピレンホモポリマー
(宇部興産(株)製MI=30)とを1:1でブレンド
し、これに芳香族脂肪族共重合体(東邦石油樹脂
(株)製トーホー・ハイレジン#90、軟化点95℃)を
3重量%添加した樹脂から単一系熱融着性繊維を
作成した。単一系熱融着性繊維は熱風融着すると
熱収縮のために、均一な不織布が得られないの
で、ポイントシール融着不織布にて不織布特性を
調べた。なお、このときのエンボスロールの表面
温度は137.5℃〜145℃にてポイントシールした。
その結果芳香族脂肪族共重合体石油樹脂の入つて
いない比較例4に比し、カード特性、不織布特性
は表3に示すように優れていた。 実施例 10〜12 実施例2で得られた熱融着性繊維に単糸デニー
ル2de、カツト長51mmのポリプロピレン(レギユ
ラー)繊維、ポリエステル繊維、レーヨン繊維を
各々50%混繊し、350mm巾のサンプルカード機に
3回通し、均一に混合した目付20g/m2のウエブ
を作成した。このウエブについて実施例1〜4と
同一方法にて不織布特性を調べたところ、石油樹
脂無添加の熱融着性繊維に各種繊維を各々50%混
綿した比較例5〜7に比し、表4に示すようにい
ずれも優れていた。 実施例 13 実施例1〜4と同一方法にて鞘成分にて、脂環
族石油樹脂(荒川化学(株)製アルコンp−90、分子
量630、軟化点90℃)を8重量%添加した低密度
ポリエチレン(宇部興産(株)製J2522)を使い、鞘
芯型複合繊維を240℃にて紡糸した。その結果、
紡糸性は全く問題なかつた。また、カード特性、
不織布特性は脂環族石油樹脂の入つていない比較
例8と比べ優れていた。なお、不織布作成時のエ
ンボスロール表面温度は100〜120℃又熱風温度は
110℃〜130℃で行なつた。 実施例 14、15 実施例1〜4と同一方法にて芯成分に脂環族石
油樹脂(荒川化学(株)製アルコンp−125)を5重
量%添加した結晶性ポリプロピレン(宇部興産(株)
製J1159)、鞘成分には高密度ポリエチレン(旭化
成(株)製サンテツクJ310)単独、又、脂環族石油樹
脂(荒川化学(株)製アルコンp−125)を5重量%
添加した高密度ポリエチレン(旭化成(株)製サンテ
ツクJ310)を使い、鞘芯型複合繊維を250℃にて
紡糸した。その結果、紡糸性は全く問題なかつ
た。不織布強力は脂環族石油樹脂の入つていない
比較例9に比べ、いずれも優れた結果が得られ
た。これは鞘成分と芯成分の接着力が増加した為
と考えられる。 比較例9の引張試験後の不織布の破断部分を電
子顕微鏡にて観察すると、熱融着繊維が融着して
いるところは、繊維内の鞘成分と芯成分の界面で
の剥離が観察される。並列型はさらにこの傾向が
強い。 そこで、鞘成分と芯成分の接着力を測定するた
めに、ホール径0.7mmの並列型複合繊維用ノズル
を用い、250℃にて、単糸デニール約450de(約
φ0.26mm)の太い並列型複合繊維を紡糸し、両成
分の剥離試験を行なつた。剥離引張速度は40mm/
分にて測定し、得られた値を接触幅で除した値を
剥離強力(g/mm)とした。この結果、芯成分に
脂環族石油樹脂を添加したものは、添加しないも
のに比較して剥離強力が大きく、鞘成分と芯成分
の両方に添加したものはさらに大きな値を示す。
従つて鞘成分と芯成分の接着力増加が不織布強力
に寄与しているのものと思われる。 なお、各実施例ないしは比較例中の評価方法は
次の通りである。 *紡糸性;1時間当たりの紡糸切断回数が1回以
下のものを良、2〜12回のものを不良、13回以
上のものを不可とした。 *単繊維特性;JIS L1015化学繊維ステープルの
試験方法に準じ測定をした。 引張破断強伸度及び見掛ヤング率;つかみ間
隙20mm、引張速度20±1mm/minにて引張り、
試料が切断した時の荷重、及び荷重−伸長曲線
の原点近くでの伸長変化に対する荷重変化から
算出する。なお試験回数は30回とした。 捲縮数、捲縮率及び捲縮弾性率;捲縮数は試
料に2mg/デニールの初荷重をかけたときの捲
縮数を数え、25mm間当たりの捲縮数を求める。
試験回数は20回とし、その平均値で表示した。
実施例、比較例では数はいずれも15ケとなるよ
うにした。捲縮率及び捲縮弾性率は、試料に2
mg/デニールの初荷重をかけた時の長さ(a)と、
これに50mg/デニールの初荷重をかけた時の長
さ(b)を測定し、次に全荷重を除き、2分間放置
後、2mg/デニールの初荷重をかけて長さ(c)を
読み、次式により求めた。なお、試験回数は20
回とし、その平均値で表わした。 捲縮率(%)=b−a/b×100 捲縮弾性率(%)=b−c/b−a×100 *カード特性;サンプルカード機にて100g/m2
のウエブを作成し、これをランダムカード機に
通し、出て来たウエブを5分後、10分後にネツ
プ採りし、m2当たりの目付を測定してカード通
過性を求めた。またこの時のネツプの発生状態
及び均一性を観察してカード特性を調べた。 *不織布特性;サンプルカード機を2回通して、
目付20g/m2の均一なウエブを作成し、エンボ
スローラーによるポイントシール融着不織布
と、熱風吹付けによる熱風融着不織布とを作
り、熱融着強力と蒿高性を調べた。 熱融着強力;JIS L−1068の引張試験方法に
準じ、熱融着加工した不織布から、機械方向
200mm×幅方向50mm及び機械方向50mm×幅方向
200mmの試験片をそれぞれ5枚採取し、つかみ
間隙を100mm、引張速度を毎分30±2cmとして、
機械方向(MD)及び機械方向に対し垂直方向
(TD)の引張切断強力を測つた。 裂断長;不織布の目付の因子を加味して次式
により裂断長を求め比較した。すなわち、この
裂断長は不織布を吊り下げた時、自重で切断す
る長さに相当する。 裂断長(m) =熱融着強力(g)/目付(g/m2)×試料幅(0.05
0m) 蒿高性;50mm/50mmの試験片を10放重ね、そ
の上に6.5g(0.26g/m2)の荷重を全面に均
一にかけた状態で、5分後に全体の厚みを測
り、蒿密度から蒿高性を調べた。 *軟化点;JIS2207に準じた環球法により測定し
た。
<<Industrial Application Field>> The present invention relates to a heat-fusible fiber mainly composed of a polyolefin resin having excellent heat-fusibility and used as a binder for nonwoven fabrics. ≪Prior art and its problems≫ In recent years, polypropylene fibers are used as the main fiber, and heat-fusible fibers are appropriately mixed therein, as skin materials for hygiene products such as masks, disposable diapers, and menstrual napkins. A nonwoven fabric is then used in which these fibers are thermally fused using hot air or an embossing roller. This type of nonwoven heat-fusible fiber does not use chemical adhesives, so it is hygienic with no risk of skin damage, and the surface material does not absorb even if it gets wet from urination etc. Polyolefin resins have been adopted for functional and economical reasons, such as their hydrophobicity that allows them to maintain a smooth feel, their relatively low price, and their stability. The field of disposable diapers is rapidly increasing due to social advancement, changes in lifestyle, and aging of society. Conventionally, this kind of nonwoven fabric has been made of single-component fibers with low tactility such as polypropylene, ethylene-propylene copolymer, or a mixture of polyester and polypropylene to lower the softening point, or with a high melting point. The main component is polypropylene on the side, and high-density polyethylene, low-density polyethylene, linear low-density polyethylene, ethylene vinyl acetate, etc. are used on the low-melting point side, and these are used in a sheath-core type or bonded type. A composite system is available, but it has the following problems. In other words, when using heat-fusible fibers, a wide range of fusing conditions is required in the nonwoven fabric manufacturing process, that is, one that does not require very strict temperature control and has high fusing strength. With conventional heat-fusible fibers, the temperature can be controlled within a narrow range of 1 to 2 degrees Celsius, and in order to increase the strength of nonwoven fabrics, the mixing ratio of heat-fusible fibers to the main fibers has been increased, and the overall basis weight has been improved. are forced to. For this reason, there were problems in that the quality became unstable due to fluctuations in outside temperature, etc., and that the fabric weight became high to satisfy the strength of the fusion bond, making it unprofitable in terms of cost. As a solution to these problems, a method has been proposed in which the low-melting point components of the composite fiber system are modified to increase the fusion strength, but this requires an additional modification step to adjust the raw material, and its effectiveness is also limited. It wasn't enough. In order to solve the problems of the prior art, the present inventors have developed a technology that allows for a wide range of fusion conditions and high fusion in the nonwoven fabric manufacturing process without adding a special process for adjusting raw materials. The present invention was achieved through extensive research into heat-fusible fibers that can provide strength. <<Means for solving the problems>> The structure of the present invention to achieve the above object is as follows:
1-20% by weight of petroleum resin in polyolefin resin
The basic composition is a polyolefin fiber in which the composition obtained by adding the composition alone or the composition is used as at least one component of a composite fiber having a parallel type or sheath-core type structure. In the present invention, the polyolefin resin refers to crystalline polypropylene, ethylene-propylene copolymer, or polyethylene and a mixture thereof, and in addition to this, aliphatic or aromatic petroleum resins made from petroleum resources, For example, a C5 aliphatic petroleum resin which is a polymer or copolymer mainly composed of isoprene, cyclopentadiene, 1,3-pentadiene, 1-pentene, 2-pentene, dicyclopentadiene, etc., or indene,
C8~ which is a polymer or copolymer mainly composed of styrene, methylindene, α-methylstyrene, etc.
Petroleum resins selected from C10 aromatics, hydrogenated alicyclic polymers or copolymers, and aromatic aliphatic copolymers are added to The main raw materials are those added and mixed at a ratio of 20% by weight, and various stabilizers, colorants, etc. may be added to these depending on the purpose. The amount of petroleum resin added is 1 to 20
If the amount is less than 1% by weight, a sufficient effect cannot be obtained, and if it is more than 21% by weight, the spinnability of the fiber decreases, making stable operation impossible. In addition, the softening point of the petroleum resin to be added is 70 to 150.
Must be within the range of ℃. If the softening point is below 70°C, the heat resistance will deteriorate and the fusion efficiency will not increase. On the other hand, if the temperature is 150°C or higher, the flow activation energy becomes large, and therefore the fusion efficiency does not increase as well. Furthermore, in cases where it is undesirable to color the fibers, such as fibers for hygiene products, it is desirable to use petroleum resins that have been decolored by hydrogenation. In this case, the addition of hydrogen has no effect on spinnability or fusion properties. The fiber of the present invention has the above-mentioned raw material composition, and can be a single-component fiber, a parallel-type single-component fiber in which two components are bonded together, or a high-melting-point component on the core side.
It is obtained by spinning a sheath-core type component with a low melting point component on the sheath side, stretching and heat treating it, and the difference in melting point between each component in the composite type fiber is 20℃. It is desirable that there be at least one. <<Example>> Hereinafter, preferred embodiments of the present invention will be described. Examples 1 to 4 High-density polyethylene (MI
= 20) 70 parts of alicyclic petroleum resin (Alcon p-100 manufactured by Arakawa Chemical Co., Ltd., softening point 100°C, molecular weight 700), which is obtained by adding hydrogen to C9 alkylbenzene, which is a C8-C10 aromatic petroleum resin. After adding 30 parts and kneading it uniformly, it is pelletized using a pelletizer to create a petroleum resin masterbatch. Using sheath-core type composite fiber spinning equipment consisting of two single-screw extruders and a composite fiber nozzle with a hole diameter of 0.6 mm, crystalline polypropylene (MI =
15), the sheath component is high-density polyethylene (MI=20)
Based on the above, the masterbatch was added so that the amount of petroleum resin was 1, 5, 10, and 20% by weight, respectively, and the spinning temperature was 250℃ and the take-up speed was 800m/min.
A sheath-core type composite fiber with a single yarn denier of 6.0 de was obtained. Although the cross-sectional area ratio of the sheath component to the core component was 1:1, both had excellent spinnability, and no breakage occurred even once during one hour. 300 of these multifilaments were collected to a total denier of approximately 400,000 yen, and then drawn, oiled, crimped, cut, dried, and heat treated using staple fiber prototype equipment, resulting in a single filament with a denier of 2de.
A staple fiber with a cut length of 51 mm and a number of crimps of 15/inch was obtained. The heat treatment is done with hot air at 100℃.
I did it for 10 minutes. The oil was alkyl phosphate and was deposited at 0.30%. Table 1 shows the properties of the single fiber thus obtained. This staple fiber was passed twice through a sample card machine with a width of 350 mm to produce a uniform web with a basis weight of 20 g/m 2 . The card characteristics at this time are also shown in Table 1, and in all cases the card passageability is improved. This web has a seal area of 8% and a seal contact pressure of 5
Point-sealed nonwoven fabrics were made using an embossing roll with a sealing speed of 3 m/min and a sealing speed of 3 m/min, with the surface temperature varied from 117.5°C to 130°C. In addition, when the surface temperature was 135°C or higher, excessive melting occurred, resulting in a film-like appearance and at the same time, shrinkage increased. On the other hand, the web was placed on a wire mesh belt with a width of 350 mm and a speed of 5 m/min, the hot air temperature was varied from 132.5 to 145°C, and hot air was blown at a speed of 2 m/s for 5 seconds.
A hot air fused nonwoven fabric was also created. In this case, when the hot air temperature was 150° C. or higher, the nonwoven fabric became excessively melted and the shrinkage increased significantly. When we examined the tearing length and fly height of the nonwoven fabric created by hot air fusion (see Table 1 and Figures 1 to 4), we found that both had high fusion strength and excellent fusion strength over a wide temperature range. A nonwoven fabric was obtained with Therefore, there is no need for strict temperature setting and management as in the past.
Products with stable quality can be obtained even if there are slight changes in outside temperature, etc., and production speed and basis weight can be varied over a wide range.Moreover, they have excellent spreading properties and have a good feel to the touch, which is one of the required performances for disposable diapers. was gotten. As is clear from Table 1 and FIGS. 1 to 4, this tendency appears more prominently in hot-air fused nonwoven fabrics. Comparative Examples 1-3 Using the same method as Examples 1-4, high-density polyethylene alone and alicyclic petroleum resin (Alcon p-100 manufactured by Arakawa Chemical Co., Ltd.) were used as sheath components at 0 and 0, respectively.
Using high-density polyethylene containing 0.5% and 25% by weight, three types of sheath-core composite fibers with different raw material ratios were spun. As a result, both Comparative Examples 1 and 2 had good spinnability, with only 1 yarn breakage during 1 hour of spinning.
However, in Comparative Example 3, 5 to 5 times per hour occurred.
Spinning breakage occurred seven times, and stable spinning was not possible. Furthermore, regarding Comparative Examples 1 and 2, card characteristics,
When we investigated the properties of the nonwoven fabric, we found Table 1 and Figures 1 to 4.
As shown in the figure, in all cases, the card passing properties were inferior to those of the examples, and the heat-sealing strength and flowability were also inferior. Furthermore, the fusion strength has a large temperature dependence, and the fusion temperature affects the fusion strength and the feel. That is, if the fusion temperature is low, the fusion strength will be weak, and conversely, if the fusion temperature is high, it will become hard and the texture will be poor. Examples 5 to 7 Using the same method as Examples 1 to 4, the core component was crystalline polypropylene (J130G, manufactured by Ube Industries, Ltd.), and the sheath component was made of high-density polyethylene (J310, manufactured by Asahi Kasei Corporation).
As the aliphatic petroleum resin, isoprene polymer (Example 5, Finton A-100 manufactured by Nippon Zeon Co., Ltd.,
Also, the same polymer (Example 6, Quinton C-100 manufactured by Nippon Zeon Co., Ltd., softening point 95°C),
Higher hydrocarbon petroleum resin (Example 7, Mitsui Petrochemical
Co., Ltd.'s FTR-6100 (softening point: 97°C) was added to make a sheath-core composite fiber of 5% by weight, and the spinnability, carding properties, and nonwoven fabric properties were investigated.
Excellent results were obtained as shown in . Example 8 Using the same method as in Examples 1 to 4, crystalline polypropylene (manufactured by Ube Industries, Ltd., J130G) was used as the core component, and alicyclic petroleum resin (Alcon P-, manufactured by Arakawa Chemical Co., Ltd.) was used as the sheath component.
A sheath-core composite fiber was spun using maleic anhydride-modified high-density polyethylene (manufactured by Nippon Petrochemical Co., Ltd., N Polymer S0792) containing 5% by weight of 125, molecular weight 820, softening point 125°C). As a result, spinnability,
When the card properties and nonwoven fabric properties were investigated, excellent results were obtained in both cases as shown in Table 3. Example 9 Ethylene propylene random copolymer (manufactured by Ube Industries, Ltd., ethylene content 2% MI = 30) and polypropylene homopolymer were prepared using spinning equipment consisting of a single-screw extruder and a nozzle for single fibers with a hole diameter of 0.5 mm. (manufactured by Ube Industries, Ltd., MI=30) in a 1:1 ratio, and this is mixed with aromatic aliphatic copolymer (Toho Oil Resin).
A single heat-fusible fiber was prepared from a resin to which 3% by weight of Toho Hi-Resin #90 (softening point: 95°C) was added. When a single heat-fusible fiber is fused with hot air, a uniform nonwoven fabric cannot be obtained due to heat shrinkage, so the nonwoven fabric properties were investigated using a point seal fused nonwoven fabric. Note that point sealing was performed at a surface temperature of the embossing roll at this time of 137.5°C to 145°C.
As a result, the card properties and nonwoven fabric properties were superior as shown in Table 3, compared to Comparative Example 4 which did not contain the aromatic aliphatic copolymer petroleum resin. Examples 10 to 12 The heat-fusible fiber obtained in Example 2 was mixed with 50% each of polypropylene (regular) fiber, polyester fiber, and rayon fiber with a single yarn denier of 2de and a cut length of 51 mm, and a sample with a width of 350 mm was prepared. The mixture was passed through a card machine three times to create a uniformly mixed web with a basis weight of 20 g/m 2 . The nonwoven fabric properties of this web were investigated using the same method as in Examples 1 to 4. Table 4 As shown, all were excellent. Example 13 Using the same method as in Examples 1 to 4, a low-temperature resin was prepared by adding 8% by weight of alicyclic petroleum resin (Alcon P-90 manufactured by Arakawa Chemical Co., Ltd., molecular weight 630, softening point 90°C) as a sheath component. A sheath-core composite fiber was spun at 240°C using density polyethylene (J2522 manufactured by Ube Industries, Ltd.). the result,
There was no problem with spinnability. In addition, card characteristics,
The properties of the nonwoven fabric were superior compared to Comparative Example 8, which did not contain an alicyclic petroleum resin. In addition, the embossing roll surface temperature during nonwoven fabric creation is 100 to 120℃, and the hot air temperature is
It was carried out at 110°C to 130°C. Examples 14 and 15 Crystalline polypropylene (Ube Industries, Ltd.) to which 5% by weight of alicyclic petroleum resin (Alcon p-125, manufactured by Arakawa Chemical Co., Ltd.) was added to the core component in the same manner as in Examples 1 to 4
J1159), the sheath component is high-density polyethylene (Santec J310, manufactured by Asahi Kasei Corporation) alone, and 5% by weight of alicyclic petroleum resin (Alcon P-125, manufactured by Arakawa Chemical Co., Ltd.).
A sheath-core composite fiber was spun at 250°C using the added high-density polyethylene (Santetsu J310 manufactured by Asahi Kasei Corporation). As a result, there was no problem with spinnability. In terms of the strength of the nonwoven fabric, superior results were obtained in all cases compared to Comparative Example 9, which did not contain an alicyclic petroleum resin. This is considered to be due to an increase in the adhesive strength between the sheath component and the core component. When the fractured part of the nonwoven fabric after the tensile test of Comparative Example 9 is observed with an electron microscope, it is observed that where the heat-fused fibers are fused, separation is observed at the interface between the sheath component and core component within the fiber. . This tendency is even stronger for parallel types. Therefore, in order to measure the adhesive strength between the sheath component and the core component, we used a nozzle for parallel type composite fibers with a hole diameter of 0.7 mm to Composite fibers were spun and peel tests were conducted on both components. Peeling tensile speed is 40mm/
The peel strength (g/mm) was obtained by dividing the obtained value by the contact width. As a result, those in which the alicyclic petroleum resin is added to the core component have a higher peel strength than those without the addition, and those in which the alicyclic petroleum resin is added to both the sheath component and the core component show an even greater value.
Therefore, it seems that the increased adhesive strength between the sheath component and the core component contributes to the strength of the nonwoven fabric. The evaluation method in each example or comparative example is as follows. *Spinning properties: Those with 1 or less spinning breaks per hour were considered good, those with 2 to 12 times were judged as poor, and those with 13 or more breaks were judged as unacceptable. *Single fiber properties: Measured according to JIS L1015 chemical fiber staple test method. Tensile strength at break, elongation, and apparent Young's modulus: Tensile at a gripping gap of 20 mm and a tensile speed of 20 ± 1 mm/min.
Calculated from the load when the sample is cut and the load change with respect to the elongation change near the origin of the load-elongation curve. The number of tests was 30. Number of crimp, crimp ratio, and crimp elasticity modulus: For the number of crimp, count the number of crimp when applying an initial load of 2 mg/denier to the sample, and calculate the number of crimp per 25 mm.
The number of tests was 20, and the average value was displayed.
In both Examples and Comparative Examples, the number was set to 15. The crimp rate and crimp modulus are 2
Length (a) when initial load of mg/denier is applied,
Measure the length (b) when applying an initial load of 50 mg/denier, then remove the full load, leave it for 2 minutes, apply an initial load of 2 mg/denier, and read the length (c). , was calculated using the following formula. The number of tests is 20.
times and expressed as the average value. Crimp ratio (%) = b-a/b x 100 Crimp modulus (%) = b-c/b-a x 100 *Card characteristics: 100g/m 2 with sample card machine
A web was prepared, passed through a random card machine, and the web that came out was harvested after 5 and 10 minutes, and the basis weight per m 2 was measured to determine card passing properties. At this time, the state and uniformity of the neps were observed, and the card characteristics were investigated. *Non-woven fabric properties: Pass through the sample card machine twice,
A uniform web with a basis weight of 20 g/m 2 was prepared, and a point seal fused nonwoven fabric using an embossing roller and a hot air fused nonwoven fabric formed by blowing hot air were made, and the strength of thermal fusion bonding and high flyability were investigated. Strong thermal bonding; Machine direction from nonwoven fabric processed by thermal bonding according to JIS L-1068 tensile test method.
200mm x 50mm in width direction and 50mm in machine direction x width direction
Five specimens of 200 mm each were taken, the grip gap was 100 mm, and the tensile speed was 30 ± 2 cm per minute.
The tensile cutting strength in the machine direction (MD) and in the direction perpendicular to the machine direction (TD) was measured. Rupture length: The rip length was determined and compared using the following formula, taking into account the factor of the basis weight of the nonwoven fabric. In other words, this tearing length corresponds to the length at which the nonwoven fabric is cut under its own weight when suspended. Rupture length (m) = Thermal bonding strength (g) / Fabric weight (g/m 2 ) x Sample width (0.05
0m) Thickness: 10 50mm/50mm test pieces were piled up, a load of 6.5g (0.26g/m 2 ) was applied uniformly over the entire surface, and the total thickness was measured after 5 minutes. Tallness was investigated from the density. *Softening point: Measured by the ring and ball method according to JIS2207.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 ≪作用効果≫ 以上、各種の実施例で説明したように、本発明
の繊維を使用することによつて、不織布の強力が
向上できるのは、C5系脂肪族石油樹脂あるいは
C8〜C10系芳香族石油樹脂脂環族系石油樹脂、芳
香族脂肪族共重合体から選択された樹脂を添加す
ることによつて、不織布加工のため加熱されてい
る段階では、これらの成分のために、繊維表面が
粘着性を有した状態となつて接触している繊維相
互間が、この粘着力による接合も付加された状態
で溶融接着しているので、従来、熱により一時的
に融着していても走行あるいは降温時には剥離し
ていたと思われる現象が抑制できるるためと考え
られる。 本発明のポリオレフイン系繊維は以上詳細に説
明したように高い融着強力を有する不織布に適し
ているので、需要の増大が期待されている使い捨
ておむつの表皮材や、各種衛生材用不織布などと
して好適である。
[Table] ≪Effects≫ As explained above in the various examples, the strength of the nonwoven fabric can be improved by using the fibers of the present invention.
By adding a resin selected from C8 to C10 aromatic petroleum resins, alicyclic petroleum resins, and aromatic aliphatic copolymers, these components are Because of this, the fiber surfaces become sticky and the fibers that are in contact with each other are melted and bonded together with the adhesion of this adhesive force. This is thought to be due to the fact that it is possible to suppress the phenomenon of peeling off during driving or when the temperature drops even if the tires are attached. As explained in detail above, the polyolefin fibers of the present invention are suitable for nonwoven fabrics with high fusion strength, and are therefore suitable for use as skin materials for disposable diapers, for which demand is expected to increase, as well as nonwoven fabrics for various sanitary materials. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図は表1に示した本発明の実施
例の裂断長を図示したグラフである。
1 to 4 are graphs illustrating the breaking lengths of the embodiments of the present invention shown in Table 1.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶性ポリプロピレン、エチレン−プロピレ
ン・コポリマーあるいはポリエチレンとこれらの
混合物からなるポリオレフイン系樹脂に、脂肪族
系、芳香族系、脂環族系または芳香族脂肪族共重
合体から選択された軟化点が70〜150℃の石油樹
脂を全重量に対して1〜20重量%添加混合した原
料樹脂単独からなる、若しくは前記原料樹脂を並
列型、鞘芯型構造の複合繊維の少なくとも一成分
としてなることを特徴とするポリオレフイン系熱
融着性繊維。
1 A polyolefin resin consisting of crystalline polypropylene, ethylene-propylene copolymer or polyethylene and a mixture thereof has a softening point selected from aliphatic, aromatic, alicyclic or aromatic aliphatic copolymers. Consisting of a raw material resin alone with 1 to 20% by weight of petroleum resin at 70 to 150°C added to the total weight, or the raw resin as at least one component of a composite fiber with a parallel type, sheath-core type structure. Characteristic polyolefin heat-fusible fiber.
JP61101059A 1986-05-02 1986-05-02 Polyolefin based heat fusible fiber Granted JPS62263321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101059A JPS62263321A (en) 1986-05-02 1986-05-02 Polyolefin based heat fusible fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101059A JPS62263321A (en) 1986-05-02 1986-05-02 Polyolefin based heat fusible fiber

Publications (2)

Publication Number Publication Date
JPS62263321A JPS62263321A (en) 1987-11-16
JPH028048B2 true JPH028048B2 (en) 1990-02-22

Family

ID=14290540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101059A Granted JPS62263321A (en) 1986-05-02 1986-05-02 Polyolefin based heat fusible fiber

Country Status (1)

Country Link
JP (1) JPS62263321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044067A (en) * 2011-08-24 2013-03-04 Japan Polypropylene Corp Propylene-based resin composition to be used in melt-spinning type electrospinning and melt-spinning method of ultrafine fiber using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2588592B2 (en) * 1988-08-11 1997-03-05 株式会社クラレ Hot melt adhesive fiber
CN1143908C (en) * 1998-03-11 2004-03-31 陶氏化学公司 Fibers made from alpha-olefin/vinyl or vinylidene aromatic and/or hindered cycloaliphatic or aliphatic vinyl or vinylidene interpolymers
TW202319608A (en) * 2021-07-15 2023-05-16 日商興和股份有限公司 Nonwoven fabric and mask

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147816A (en) * 1977-05-24 1978-12-22 Chisso Corp Hot-melt fiber of polypropylene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147816A (en) * 1977-05-24 1978-12-22 Chisso Corp Hot-melt fiber of polypropylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044067A (en) * 2011-08-24 2013-03-04 Japan Polypropylene Corp Propylene-based resin composition to be used in melt-spinning type electrospinning and melt-spinning method of ultrafine fiber using the same

Also Published As

Publication number Publication date
JPS62263321A (en) 1987-11-16

Similar Documents

Publication Publication Date Title
US4323626A (en) Heat-adhesive composite fibers
CA2071084A1 (en) Composite elastic material including an anisotropic elastic fibrous web and process to make the same
US6090730A (en) Filament non-woven fabric and an absorbent article using the same
JPS58191215A (en) Polyethylene hot-melt fiber
JPH0874128A (en) Heat-fusible conjugated fiber and nonwoven fabric using the same
JPH0949122A (en) Thermally fusible conjugated fiber and nonwoven fabric using the same fiber
JP2001502388A (en) Thermal adhesive composite fiber and nonwoven fabric using the same
MXPA05007223A (en) Improved elastomeric materials.
KR20010031893A (en) Polyethylene nonwoven fabric and nonwoven fabric laminate containing the same
JPH05230750A (en) Heat bonding fiber sheet
JPH02127553A (en) Stretchable non-woven fabric and production thereof
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
JP4599760B2 (en) Heat-fusible composite fiber and fiber molded body using the same
JPWO2019146726A1 (en) Composite long fiber non-woven fabric using eccentric sheath core type composite fiber on at least one side
JP3852644B2 (en) Split type composite fiber, nonwoven fabric and absorbent article using the same
JPH028048B2 (en)
JP2008007930A (en) Stretchable nonwoven fabric
JPH04316608A (en) Thermo-splittable conjugated fiber
JP3790460B2 (en) Thermal adhesive composite fiber, method for producing the same, and nonwoven fabric using the same
JP3790459B2 (en) Thermal adhesive composite fiber and method for producing the same, and nonwoven fabric and synthetic paper using the same
JPH0814069B2 (en) Heat-bondable non-woven sheet
CA2505192C (en) Hollow fiber nonwoven sheet for fabric softener substrate
JP4665364B2 (en) Heat-fusible composite fiber, and fiber molded body and fiber product using the same
JPH0849166A (en) Polypropylene fiber
JP2001040564A (en) Flexible nonwoven fabric and its nonwoven fabric laminate