JPH0280398A - Whisker-shaped carbon fiber - Google Patents

Whisker-shaped carbon fiber

Info

Publication number
JPH0280398A
JPH0280398A JP22806288A JP22806288A JPH0280398A JP H0280398 A JPH0280398 A JP H0280398A JP 22806288 A JP22806288 A JP 22806288A JP 22806288 A JP22806288 A JP 22806288A JP H0280398 A JPH0280398 A JP H0280398A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
carbon
whisker
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22806288A
Other languages
Japanese (ja)
Other versions
JPH052640B2 (en
Inventor
Morinobu Endo
守信 遠藤
Kenji Matsubara
健次 松原
Munehiro Ishioka
宗浩 石岡
Toshihiko Okada
敏彦 岡田
Hidetoshi Morotomi
秀俊 諸富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP22806288A priority Critical patent/JPH0280398A/en
Publication of JPH0280398A publication Critical patent/JPH0280398A/en
Publication of JPH052640B2 publication Critical patent/JPH052640B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the title whisker-shaped carbon fiber having a large diameter and high crystallinity almost without need for oxidation by specifying the aspect ratio, density, spacing of the carbon hexagonal net planes by X-ray analysis, size of the crystallite in the c-axis direction, and R value, and fuzzing the surface. CONSTITUTION:The carbon fiber has 0.1-50mum diameter, 50-10,000 aspect ratio, >=1.9g/cm<3> density, 3.36-3.49Angstrom above mentioned spacing, and >=50Angstrom size of the crystallite in the c-axis direction. In addition, the ratio (R value) I 1360/I 1580 of the peak height of the Raman scattering spectrum at the 1360cm<-1> band to the peak height at the 1580cm<-1> band is controlled to >=0.5 in the carbon fiber. The carbon fiber surface is fuzzed in about 300Angstrom thickness. When a fiber-reinforced composite material is made from the carbon fiber, a sufficient reinforcing effect as the reinforcing fiber is produced, and the surface treatment requiring effort is simplified. Consequently, the time, cost, and labor spent in the surface treatment can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気相成長法で製造されるウィスカー状炭素繊
維に係り、とくに、粗い表面で、高結晶性かつ易黒鉛化
性のウィスカー状炭素繊維に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to whisker-like carbon fibers produced by a vapor phase growth method, and in particular whisker-like carbon fibers with a rough surface, high crystallinity, and easy graphitization. Regarding carbon fiber.

[従来技術] 炭素繊維は、高強度、高弾性率などの優れた性質を有し
、各種の複合材料として注目されている。
[Prior Art] Carbon fiber has excellent properties such as high strength and high modulus of elasticity, and is attracting attention as a variety of composite materials.

従来、炭素繊維は主としてPAN1ピッチ、セルロース
等の有機繊維を炭化処理することにより製造されている
。これらの炭素繊維を使用して繊維強化複合材料を作る
場合、母材との接触面積を大きくし、径を細くし、長さ
を長くして、補強効果を上げることが望まれている。さ
らに母材との接着性を改冴するために、酸化やコーティ
ング等の表面処理がおこなわれている。また結晶性や電
気伝導性等を改良するために、黒鉛化処理がおこなわれ
ている。
Conventionally, carbon fibers have been mainly produced by carbonizing organic fibers such as PAN1 pitch and cellulose. When making fiber-reinforced composite materials using these carbon fibers, it is desired to increase the contact area with the base material, reduce the diameter, and increase the length to increase the reinforcing effect. Furthermore, surface treatments such as oxidation and coating are performed to improve adhesion to the base material. Graphitization treatment is also performed to improve crystallinity, electrical conductivity, etc.

しかし、従来、炭化炭素繊維を有機繊維から作る場合は
、紡糸が難しいため、その糸径が細(でもせいぜい5〜
10μm程度である。このため厳し2い条件下で手間暇
のかかる酸化処理工程が必要となる。また黒鉛化処理を
おこなっても、この炭素Gn H(kは難黒鉛化性であ
り、十分な黒鉛構造を取ることができない。例えば、P
AN系の炭素繊維は、3000℃で黒鉛化した糸のX線
回折法による炭素六角網平面(002)の面間隔d00
2が約3.42人であり、密度は1.8g/cm3前i
(の値である。PAN系あるいはピッチ系炭素繊維に比
べて高い黒鉛化度をもち得るメソフェーズピッチから作
られた炭素繊維を3000℃で黒鉛化した場合において
も、面間隔d002が約3.38人であり、結晶子の大
きさL c (002)が約180人であり、密度は2
−0g/cm3弱である。
However, conventionally, when carbonized carbon fibers are made from organic fibers, spinning is difficult and the diameter of the fibers is small (but at most
It is about 10 μm. Therefore, a time-consuming and time-consuming oxidation treatment step is required under severe conditions. Moreover, even if graphitization treatment is performed, this carbon GnH (k is difficult to graphitize and cannot form a sufficient graphite structure. For example, P
The AN-based carbon fiber has a plane spacing d00 of carbon hexagonal network planes (002) determined by X-ray diffraction of yarn graphitized at 3000°C.
2 is about 3.42 people, and the density is 1.8g/cm3
(The value is . Even when carbon fiber made from mesophase pitch, which has a higher degree of graphitization than PAN-based or pitch-based carbon fibers, is graphitized at 3000°C, the interplanar spacing d002 is approximately 3.38 The crystallite size L c (002) is about 180 people, and the density is 2.
It is a little less than -0 g/cm3.

一方、炭化水素を熱分解して気相成長法により炭素繊維
を製造することも知られている。この気相成長炭素繊維
は、結晶欠陥が極めて少なく、優れた結晶rの配向性を
有している。このため、9機繊維炭化炭素繊維と比較し
て、より高強度、高弾性率の材料であり、繊維強化複合
材料として多方向の用途が期待されている。しかし、従
来知られている気相成長炭素繊維は、易黒鉛化性である
ものの、炭素繊維生成直後の炭素繊維の密度がせいぜい
1.85g/am3前後の値であり、まだ十分な黒鉛構
造を取るに至っていない。このため、高配向性をHする
ためには黒鉛化処理が必要となる。また、特開昭61−
225325号に炭素繊維か開示されているが、この炭
素質繊維は、ラマン散乱スペクトルの1360cm″l
バンドのピーク高さと1.580 c m−1バンドの
ピーク高さの比11300/ 11580が1.0以下
であり、表面が滑らかである。同様に、特開昭61−7
0014号に開示された炭素繊維は、表面が滑らかであ
る。このためこれら炭素繊維は、化学反応性に乏しく、
複合材料として用いる場合には、表面を十分酸化処理す
ることが必要となる。
On the other hand, it is also known to produce carbon fibers by thermally decomposing hydrocarbons and using a vapor phase growth method. This vapor-grown carbon fiber has extremely few crystal defects and has excellent crystal r orientation. For this reason, it is a material with higher strength and higher modulus of elasticity compared to carbonized carbon fiber, and is expected to be used in many directions as a fiber-reinforced composite material. However, although conventionally known vapor-grown carbon fibers are easily graphitized, the density of carbon fibers immediately after carbon fiber production is around 1.85 g/am3 at most, and they still do not have sufficient graphite structure. I haven't gotten around to taking it yet. Therefore, graphitization treatment is required to achieve high orientation. Also, JP-A-61-
No. 225325 discloses carbon fiber, but this carbon fiber has a Raman scattering spectrum of 1360 cm''l.
The ratio of the peak height of the band to the peak height of the 1.580 cm-1 band, 11300/11580, is 1.0 or less, and the surface is smooth. Similarly, JP-A-61-7
The carbon fiber disclosed in No. 0014 has a smooth surface. For this reason, these carbon fibers have poor chemical reactivity,
When used as a composite material, it is necessary to sufficiently oxidize the surface.

[発明が解決しようとする課題] 本発明は、上記従来技術の課題を解決し、径が太く、か
つ長さの長い形状を有し、高結晶性でかつ酸化処理をお
こなわないか軽度の酸化処理ですむ表面の粗い易黒鉛化
性のウィスカー状炭素繊維を提供することにある。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the prior art. The object of the present invention is to provide whisker-like carbon fibers with a rough surface and easy graphitization properties that can be processed easily.

[課題を解決するための手段〕 本発明の炭素繊維は、繊維の直径が01μm〜50μm
1好ましくは、0.5μm〜5μmである。繊維の長さ
/繊維径(アスペクト比)は50〜10,000、好ま
しくは、100〜10.000である。密度は1.9g
/cm3以上、好ましくは、’) 、  Q g / 
c m 3以上である。
[Means for solving the problem] The carbon fiber of the present invention has a fiber diameter of 01 μm to 50 μm.
1 Preferably, it is 0.5 μm to 5 μm. The fiber length/fiber diameter (aspect ratio) is 50 to 10,000, preferably 100 to 10,000. Density is 1.9g
/cm3 or more, preferably '), Q g /
cm3 or more.

またX線回折法による炭素六角網平面(002)の面間
隔do O2力<3.36Å〜3.49Å、C軸方向の
結晶子の大きさLc (002)が50Å以上、ラマン
散乱スペクトルの1360cm−1バンドのピーク高さ
と1580 c m−’バンドのピーク高さの比(R値
)  I 1360/ I 1580が1.05以上、
好ましくは1.1以上である。そして、鐵錐表面から約
300人程度の表面が毛羽立った様相を呈している易黒
鉛化性のウィスカー状炭素繊維である。
In addition, the interplanar spacing do O2 force of carbon hexagonal network plane (002) by X-ray diffraction method is <3.36 Å to 3.49 Å, the crystallite size Lc (002) in the C-axis direction is 50 Å or more, and the Raman scattering spectrum is 1360 cm. -1 band peak height to 1580 cm-' band peak height ratio (R value) I 1360/I 1580 is 1.05 or more,
Preferably it is 1.1 or more. It is a whisker-like carbon fiber that is easily graphitized and has a fluffy appearance on the surface of about 300 layers from the surface of the iron cone.

本発明で、アスペクト比を上記範囲に限定した理由は、
50未満であると、炭素繊維と樹脂、金属、ち密セメン
ト、セラミック等との複合材を作製した時に複合材料の
強度補強効果が得られないためである。また50未満で
は、抄紙する場合でも、繊維同士の結合が少なく、抄紙
が難しい。
In the present invention, the reason why the aspect ratio is limited to the above range is as follows.
If it is less than 50, the strength reinforcement effect of the composite material cannot be obtained when a composite material of carbon fiber, resin, metal, dense cement, ceramic, etc. is produced. Moreover, if it is less than 50, there will be little bonding between fibers, making it difficult to make paper.

また、密度、炭素六角網平面(002)の面間隔do0
2、C軸方向の結晶子の大きさLc(002)を上記範
囲に限定した理由は、この範囲の炭素繊維を2000℃
以上の温度で黒鉛化処理をおこなうと、容易に黒鉛化繊
維になり、密度が2.1g/cm3以上、cto O2
が3.45Å以下、Lc (002)が150Å以上と
なるためである。なおこれら値の上限は、製造時の経済
性を考慮して設定した。
In addition, the density, the interplanar spacing of the carbon hexagonal network plane (002) do0
2. The reason why the crystallite size Lc (002) in the C-axis direction is limited to the above range is that carbon fibers in this range are heated to 2000°C.
When graphitized at a temperature above, it easily becomes graphitized fiber with a density of 2.1 g/cm3 or more, cto O2
This is because Lc (002) is 3.45 Å or less and Lc (002) is 150 Å or more. Note that the upper limits of these values were set in consideration of economic efficiency during manufacturing.

本発明の炭素繊維は、表面が毛羽立った様相を呈してい
るため、ラマン散乱スペクトルR値が1.05以上とな
っているが、繊維内部では結晶性の高い黒鉛構造を取っ
ているため、繊維の密度は0名くなっている。このよう
な表面構造を持っているため、酸化処理をすることなく
、あるいは軽度の酸化処理を施すことにより、例えば樹
脂との濡れ性が良いため、混合が簡単に可能であり、か
つ十分な補強効果を得ることができる。
The carbon fiber of the present invention has a fluffy surface and has a Raman scattering spectrum R value of 1.05 or more.However, since the carbon fiber has a highly crystalline graphite structure inside the fiber, The density of is 0 people. Because of this surface structure, it is possible to mix easily without oxidation treatment or by applying mild oxidation treatment, for example, due to good wettability with resin, and sufficient reinforcement. effect can be obtained.

以上のように、本発明にかかる炭素繊維は、表面処理を
経ることなく、あるいは軽度の酸化処理を施すだけで母
材との接着性に優れたウィスカー状炭素繊維を得ること
ができる。
As described above, the carbon fiber according to the present invention can be obtained as a whisker-like carbon fiber having excellent adhesiveness to a base material without undergoing any surface treatment or only by being subjected to a mild oxidation treatment.

本発明にかかるウィスカー状炭素繊維は、反応系に炭化
水素(原料炭素源)と有機金属化合物を導入し、炭化水
素の熱分解で得られた炭素を、有機金属化合物の熱分解
で生成された微粒子上に成長させる際に、−酸化炭素と
二酸化炭素と水素とを所定量含むガスをキャリヤガスと
して使用することにより達成することができる。
The whisker-like carbon fiber according to the present invention is produced by introducing a hydrocarbon (raw carbon source) and an organometallic compound into a reaction system, and converting the carbon obtained by thermal decomposition of the hydrocarbon into the carbon produced by the thermal decomposition of the organometallic compound. This can be achieved by using a gas containing predetermined amounts of -carbon oxide, carbon dioxide, and hydrogen as a carrier gas when growing on fine particles.

本発明で使用する炭化水素には、メタン、エタン、プロ
パン、エチレン、プロピレン、ブタジェン等の脂肪族炭
化水素、ベンゼン、トルエン、キシレン、などの単環芳
香族炭化水素をはじめ、ナフタレン、アントラセンなど
の多環芳香族炭化水素、あるいはこれらの混合物を適用
できるが、コークス炉からの副生物である粗軽油類、吸
収油、カルポル浦、アントラセン油、重油、ピッチ、お
よびこれらの混合物は、安価で大量に供給が可能であり
、特に硫黄を含むチオフェン類、チオール類、およびチ
オフェノール類は炭素m維の生成速度が速くなり有用で
ある。
Hydrocarbons used in the present invention include aliphatic hydrocarbons such as methane, ethane, propane, ethylene, propylene, and butadiene, monocyclic aromatic hydrocarbons such as benzene, toluene, and xylene, and naphthalene and anthracene. Polycyclic aromatic hydrocarbons or mixtures thereof can be applied, but crude light oils, absorption oils, Kalpolura oil, anthracene oil, heavy oil, pitch, and mixtures thereof, which are by-products from coke ovens, are cheap and available in large quantities. In particular, sulfur-containing thiophenes, thiols, and thiophenols are useful because they increase the rate of carbon fiber production.

a機金属化合物は、炭素−金属結合を有するものであれ
ば公知のものをいずれも使用=I能であるが、原料炭化
水素に溶解して用いる場合は溶解性のあるもの、ガス状
で用いる場合は昇華性のあるものが望ましい。具体的に
は、チタン、バナジウム、クロム、マンガン、鉄、コバ
ルト、ニッケル、ルビジウム1、ロジウム、タングステ
ン、パラジウム、または白金を含有する有機遷移金属化
合物が好適であり、とくに鉄を含有する有機遷移金属化
合物が最も好適である。とくに、シクロペンタジェニル
基を配位子とするメタロセンは、多くの高原子価金属塩
と複核錯体を形成し、廉価でかつ活性なため有用である
Any known metal compound can be used as long as it has a carbon-metal bond, but when used by dissolving it in the raw material hydrocarbon, it should be soluble or in gaseous form. In this case, it is preferable to use a material with sublimation properties. Specifically, organic transition metal compounds containing titanium, vanadium, chromium, manganese, iron, cobalt, nickel, rubidium 1, rhodium, tungsten, palladium, or platinum are suitable, and organic transition metal compounds containing iron are particularly suitable. The compounds are most preferred. In particular, metallocenes having a cyclopentadienyl group as a ligand are useful because they form dinuclear complexes with many high-valent metal salts and are inexpensive and active.

有機金属化合物の分解触媒である金属化合物は、用いる
有機金属化合物1モルに対し、0.01〜50モル程度
加えれるのがよい。また、金属化合物は、用いる有機金
属化合物に対して同種あるいは異種の金属原子を有する
ものであればいずれにも利用できる。その金属としては
、チタン、バナジウム、クロム、モリブデン、タングス
テン、マンガン、鉄、コバルト、ニッケル、ルテニウム
、ロジウム、オスニウム、イリジウムが好ましく、マン
ガン、鉄、コバルト、ニッケルが特に好ましい。化合物
の形態は、いずれでもよく、例えば硫酸塩、硝酸塩、酢
酸塩、塩化物、硫化物、酸化物、炭化物、窒化物、アセ
チルアセトナート塩など無機化合物およびカルボニル化
合物などの何機遷移金属錯体などが用いられる。
The metal compound that is a decomposition catalyst for the organometallic compound is preferably added in an amount of about 0.01 to 50 mol per 1 mol of the organometallic compound used. Moreover, any metal compound can be used as long as it has the same type of metal atom or a different type of metal atom with respect to the organometallic compound used. The metal is preferably titanium, vanadium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, ruthenium, rhodium, osmium, or iridium, and particularly preferably manganese, iron, cobalt, or nickel. The compound may be in any form, including inorganic compounds such as sulfates, nitrates, acetates, chlorides, sulfides, oxides, carbides, nitrides, acetylacetonate salts, and organic transition metal complexes such as carbonyl compounds. is used.

本発明に係わる炭X!:繊維を得るためのキャリヤガス
は、少なくとも一酸化炭素50〜80%と二酸化炭素5
〜30%を含むガスを雰囲気ガスとして使用し、とくに
−酸化炭素50〜80%、二酸化炭素5〜30%、水素
0,1〜10%、窒素20%以下の組成が好ましい。具
体的には、転炉ガス、高炉ガスの混合ガス、これらのガ
スにコークス炉ガス等の水素含有ガスを混合したガスで
ある。特に転炉ガスは、単独でこの組成を有しているた
め、有効である。
Charcoal X related to the present invention! : The carrier gas for obtaining fibers contains at least 50-80% carbon monoxide and 5% carbon dioxide.
A gas containing ~30% is used as the atmospheric gas, and a composition of -50 to 80% carbon oxide, 5 to 30% carbon dioxide, 0.1 to 10% hydrogen, and 20% or less nitrogen is particularly preferred. Specifically, it is a mixed gas of converter gas, blast furnace gas, or a gas obtained by mixing these gases with a hydrogen-containing gas such as coke oven gas. In particular, converter gas is effective because it alone has this composition.

[発明の効果] しかして、上記方法で得られる本発明の炭素繊維は、繊
維径が太くかつ繊維長さ/繊維径が大きく、高密度で繊
維内部では結晶性の高い黒鉛構造をとっているが、繊維
表面は粗い易黒鉛化性のウィスカー状炭素繊維である。
[Effects of the Invention] Therefore, the carbon fiber of the present invention obtained by the above method has a large fiber diameter, a large fiber length/fiber diameter, a high density, and a highly crystalline graphite structure inside the fiber. However, the fiber surface is a whisker-like carbon fiber that is easily graphitized.

このためこの炭素繊維を使用して繊維強化複合材料を作
製した場合、強化繊維として補強効果を十分果たすだけ
でなく、手間の■)かる表面処理を節単に済ますことが
できる。このため表面処理に掛かる時間、費用、労働力
を少なくすることができる効果を発揮する。
Therefore, when a fiber-reinforced composite material is produced using this carbon fiber, not only does it have a sufficient reinforcing effect as a reinforcing fiber, but also the time-consuming surface treatment described in (1) can be easily completed. Therefore, the time, cost, and labor required for surface treatment can be reduced.

以下に本発明を実施例にて説明する。The present invention will be explained below with reference to Examples.

実施例1 第1図に示す装置を使用して、炭素繊維を製造した。図
中、参照符号11は、アルゴンガスを充填したガスボン
ベである。12は、転炉ガスを充填したガスボンベで、
この転炉ガスは一酸化炭素ガスフ0容工%、二酸化炭素
ガス15容量%、水素ガス1.18琶%、窒素ガス15
容量%の組成のガスであり、これを反応系に雰囲気ガス
として導入する。各ボンベ11.12には、流量計13
゜14かそれぞれ接続され、これによりガス流量を制御
しているe、15は原料タンクで、ここには原料面とし
て、ベンゼンを入れた。このベンゼンには、フェロセン
とチオフェンとフェロセンの分解触媒であるMn (I
 I)アセチルアセトナート塩が溶解され、その重量組
成比は、ベンゼン100重量部にλ・すして、フェロセ
ン、チオフェン、Mn(]l)アセチルアセトナート塩
が、それぞれ0.4.0.2.0,1の割合である。こ
れらボンベ11.12は、ステンレス製のパイプ16を
介して反応管20と接続され、また原料タンク15は、
ステンレス製のパイプ17を介して反応管20と接続さ
れている。反応管20は、内径90 m m s長さ1
000mmのアルミナ管であり、その長さ800 m 
mに亙って外周に電気炉23が設置されている。この電
気炉23の温度は、熱電対24で検知し、温度制御器2
5で一定温度に制御している。この実施例では、電気炉
23の運転中の温度は、1150℃に設定した。
Example 1 Carbon fibers were manufactured using the apparatus shown in FIG. In the figure, reference numeral 11 is a gas cylinder filled with argon gas. 12 is a gas cylinder filled with converter gas,
This converter gas contains carbon monoxide gas 0% by volume, carbon dioxide gas 15% by volume, hydrogen gas 1.18%, and nitrogen gas 15% by volume.
This gas has a composition of % by volume, and is introduced into the reaction system as an atmospheric gas. Each cylinder 11.12 has a flow meter 13
E and 15 are raw material tanks, in which benzene was charged as a raw material. This benzene contains ferrocene, thiophene, and Mn (I
I) Acetylacetonate salt is dissolved, and its weight composition ratio is 0.4.0.2. The ratio is 0.1. These cylinders 11 and 12 are connected to the reaction tube 20 via a stainless steel pipe 16, and the raw material tank 15 is
It is connected to a reaction tube 20 via a stainless steel pipe 17. The reaction tube 20 has an inner diameter of 90 mm and a length of 1
000mm alumina tube, its length is 800m
An electric furnace 23 is installed on the outer periphery over m. The temperature of this electric furnace 23 is detected by a thermocouple 24, and the temperature controller 2
5 to control the temperature to a constant temperature. In this example, the temperature during operation of the electric furnace 23 was set to 1150°C.

運転に際し、まずボンベ11からアルゴンガスを反応管
内に供給して、反応管内をアルゴンガスで置換する。続
いてボンベ12に収容した転炉ガスを300m1/分で
反応管20内に流した。更に、上記組成の原料面をケミ
カルポンプ22を使って20+1/分の割合で反応管2
0内に供給した。
During operation, argon gas is first supplied from the cylinder 11 into the reaction tube to replace the inside of the reaction tube with argon gas. Subsequently, the converter gas contained in the cylinder 12 was flowed into the reaction tube 20 at a rate of 300 m1/min. Furthermore, the raw material surface with the above composition is pumped into the reaction tube 2 at a rate of 20+1/min using the chemical pump 22.
Supplied within 0.

その結果、反応管内において、原料面の熱分解および触
媒反応が生じ、これによって連続的にウィスカー状炭素
繊維が生成され、これを捕果器21て捕集した。
As a result, thermal decomposition and catalytic reaction occurred on the surface of the raw material in the reaction tube, thereby continuously producing whisker-like carbon fibers, which were collected by the fruit collector 21.

1すられた炭素識Gllは、平均径が1μm、平均長さ
か2000 l1mであり、収率はベンゼンにχ、J 
して6896であった。また密度は2.05g/cm3
 炭素六角網平面(002)の面間隔d 11゜2が3
.48Å、結晶子の大きさLc([J O2)が70人
であった。またラマン散乱スペクトルのR値は1.10
である。炭素′a錐裏表面透過′電子顕微鏡により観察
した結果、繊維表面がm < 、約300人の深さで毛
羽立つ様相を呈していた。この顕微鏡写真を第2図に示
す。
1. The average diameter of the polished carbon Gll is 1 μm, the average length is 2000 l1m, and the yield is χ, J to benzene.
It was 6896. Also, the density is 2.05g/cm3
Surface spacing d of carbon hexagonal network plane (002) 11°2 is 3
.. 48 Å, and the crystallite size Lc ([J O2) was 70. Also, the R value of the Raman scattering spectrum is 1.10
It is. As a result of observation using a carbon ``a-pyramid back surface'' transmission electron microscope, the fiber surface exhibited a fluffy appearance at a depth of m < 300 mm. This micrograph is shown in FIG.

さらにこの繊維を酸化処理を施すことなく5及び20容
量%の割合でエポキシ樹脂(商品名:エピコート828
、硬化剤B F 3 M E A )と、また30容量
%の割合でPPと混ぜ合せ、FRPを作製した(試料番
号;それぞれ5,6.2)。また0、5時間、濃硝酸で
沸騰処理した繊維を20容二%の割合でエポキシ樹脂に
、30容量%の割合てPPと混ぜ合せFRPを作製した
(試料番号:それぞれ?、3.)。このFRPから幅1
0mm。
Furthermore, this fiber was mixed with epoxy resin (trade name: Epicoat 828) at a ratio of 5 and 20% by volume without oxidation treatment.
, curing agent B F 3 M EA ) and PP at a ratio of 30% by volume to produce FRP (sample numbers: 5 and 6.2, respectively). In addition, FRP was prepared by mixing fibers boiled in concentrated nitric acid for 0.5 hours with epoxy resin at a ratio of 20% by volume and PP at a ratio of 30% by volume (sample numbers: ?, 3.). Width 1 from this FRP
0mm.

厚み4mm、支点間距離64mmの試験片を使って3点
曲げ試験をおこなった。その結果をエポキシ樹脂母相単
独(試料番号=1)、ポリプロピレン1す祠単独(試料
番号:4)の曲げ強度とともに表1に>J<す。いずれ
の場合にも本発明の炭素繊維は、母+イ強度の1.3〜
2.1倍の補強硬化が認められた。また樹脂との濡れ性
においても、表面を硝酸酸化したピッチ系炭素繊維より
も良好であっt二。
A three-point bending test was conducted using a test piece with a thickness of 4 mm and a distance between fulcrums of 64 mm. The results are shown in Table 1 along with the bending strengths of the epoxy resin matrix alone (sample number: 1) and the polypropylene matrix alone (sample number: 4). In any case, the carbon fiber of the present invention has a strength of 1.3 to 1.
Reinforcement hardening of 2.1 times was observed. Also, in terms of wettability with resin, it is better than pitch-based carbon fiber whose surface has been oxidized with nitric acid.

実施例2 実施例1で製造したウィスカー状炭素繊維を2 (10
0°Cで黒鉛化処理をほどこした。この黒鉛化糸の密度
は、2.15g/cm3、炭素六角網平面(002)の
面間隔do O2が3.43Å、結晶子の大きさL c
 (002)が200人であった。またこのウィスカー
状炭素繊維を2800℃で黒鉛化処理を施したところ、
この黒鉛化糸の密度は2.21g/cm3、炭素六角網
平面(002)の面間隔d002が3.37Å、結晶子
の大きさL c (002)が660人であった。
Example 2 2 (10
Graphitization treatment was performed at 0°C. The density of this graphitized thread is 2.15 g/cm3, the interplanar spacing do O2 of the carbon hexagonal network plane (002) is 3.43 Å, and the crystallite size L c
(002) was 200 people. Furthermore, when this whisker-like carbon fiber was graphitized at 2800°C,
The density of this graphitized thread was 2.21 g/cm3, the interplanar spacing d002 of carbon hexagonal network planes (002) was 3.37 Å, and the crystallite size L c (002) was 660.

このようにこのウィスカー状炭素繊維は、易黒鉛化性で
あることがわかる。
Thus, it can be seen that this whisker-like carbon fiber is easily graphitized.

比較例1 実施例1で使用した装置で、キャリヤガスとして水素を
使用し、他の条件は実施例1と同じ条件でウィスカー状
炭素繊維を製造した。得られた炭素繊維は、平均径が0
.5μm1平均長さが2000μmであり、密度は、1
.80g/cm′(炭素六角網平面(002)の面間隔
d Ll t+ 2が3.53Å、結晶子の大きさLc
(IJ O2)が35人であった。またラマン散乱スペ
クトルのR値は、0.89であり、透過顕微鏡で観察し
た結果、炭素繊維表面は、滑らかであった。その炭素繊
維の表面の透過顕微鏡写真を第′3図に示す。またこの
ウィスカー状炭素繊維を2000℃で黒鉛化したところ
、密度は1.90g/cm3にしか上がらなかった。
Comparative Example 1 Whisker-like carbon fibers were produced using the apparatus used in Example 1, using hydrogen as a carrier gas, and under the same conditions as in Example 1 except for the same conditions. The obtained carbon fiber has an average diameter of 0
.. 5 μm 1 average length is 2000 μm, density is 1
.. 80 g/cm' (planar spacing d Ll t+ 2 of carbon hexagonal network plane (002) is 3.53 Å, crystallite size Lc
(IJ O2) was 35 people. Further, the R value of the Raman scattering spectrum was 0.89, and as a result of observation with a transmission microscope, the carbon fiber surface was smooth. A transmission micrograph of the surface of the carbon fiber is shown in Figure '3. Furthermore, when this whisker-like carbon fiber was graphitized at 2000° C., the density increased only to 1.90 g/cm 3 .

この繊維を使って実施例1で示したのと同じようにFR
Pを作製し、曲げ強度試験をおこなった。
Using this fiber, FR
P was prepared and subjected to a bending strength test.

その結果を表2に示す。表2から、比較例の炭素繊維は
、本発明のものに比べて曲げ強度が劣っていることがわ
かる。
The results are shown in Table 2. From Table 2, it can be seen that the carbon fibers of the comparative example have inferior bending strength compared to those of the present invention.

実施例3 実施例1て用いた装置を横型にし、市販の鉄超微粉末(
真空冶金製)を分散させた磁性板を炉内に設置し、炉内
をアルゴンで置換した。電気炉をW iRし、600℃
に達したところで転炉ガス300 s e cmを反応
管内に30分流した。その後、′1“電気炉を1150
°Cに保ち、ベンゼンを0.1ml/分の流量で供給し
た。−時間の運転により得られた炭素繊維は、・1こ均
径が30μm1・1・均長さか60mmであった。都度
は2.03g/Cl113、炭素六角網平面(002)
の面間隔do 02が3.49Å、結晶子の大きさL 
c (002)か55人であった。またラマン散乱スペ
クトルのR値は、1.05であり、透過電子顕微鏡で観
察したところ、繊維表面が約500人に亙って毛羽立っ
た様相を足していた。
Example 3 The apparatus used in Example 1 was changed to a horizontal type, and commercially available ultrafine iron powder (
A magnetic plate with dispersed powder (manufactured by Vacuum Metallurgy) was placed in the furnace, and the inside of the furnace was replaced with argon. Wire the electric furnace to 600℃
When the temperature reached 300 sec cm, converter gas was flowed into the reaction tube for 30 minutes. After that, we installed a '1' electric furnace at 1,150 yen.
The temperature was maintained at °C, and benzene was supplied at a flow rate of 0.1 ml/min. The carbon fibers obtained by the operation for -1 hour had an average diameter of 30 μm and an average length of 60 mm. Each time 2.03g/Cl113, carbon hexagonal mesh plane (002)
The interplanar spacing do02 is 3.49 Å, and the crystallite size L
c (002) or 55 people. Further, the R value of the Raman scattering spectrum was 1.05, and when observed with a transmission electron microscope, the fiber surface had a fluffy appearance over about 500 layers.

表1 FRPの曲げ強度 曲げ強度(kg/mm2) 3.82 7.65 8.1O No、FRP I    PP 2   PP+30vo1%CP 3   PP+3(IVOI% 表面処理CF* POX I IEPOXl+5vo1%CF EPOXl+ 20vo1%CP IEPOXI+ 20vo1% 表面処理CP本 *0.5時間濃硝酸で沸騰処理したちの10.78 15.10 1g、72 20.45 表2  FRPの曲げ強度(比較例) No、FRP      曲げ強度(kg/mm2)I
    PP+30vo1%CP       3.8
22  PP+30vo1%     7.13表面処
理cp** 3  PP0XI+ 20vo1%CF   8.37
4 1EPOXI+ 20vo1%CI’  18.2
0表面処理CF** 零*2時間濃硝酸で沸騰処理したもの
Table 1 Bending strength of FRP Bending strength (kg/mm2) 3.82 7.65 8.1O No, FRP I PP 2 PP+30vo1%CP 3 PP+3 (IVOI% Surface treatment CF* POX I IEPOXl+5vo1%CF EPOXl+ 20vo1%CP IEPOX I+ 20vo1% Surface treatment CP book * Boiling treated with concentrated nitric acid for 0.5 hours 10.78 15.10 1g, 72 20.45 Table 2 FRP bending strength (comparative example) No. FRP bending strength (kg/mm2 )I
PP+30vo1%CP 3.8
22 PP+30vo1% 7.13 Surface treatment cp** 3 PP0XI+ 20vo1%CF 8.37
4 1EPOXI+ 20vo1%CI' 18.2
0 Surface treatment CF** Zero *Boiling treated with concentrated nitric acid for 2 hours

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施するための装置の概略を示
す説明図、第2図は本発明方法で得られた炭素繊維の表
面形状を示す顕微鏡写真、第3図は比較方法で得られた
炭素繊維の表面形状を示す顕微鏡写真である。 11・・・アルゴンガスボンベ、12・・・キャリヤー
ガスボンベ、13.14・・・流量計、15・・・原料
タンク、16.17・・・ステンレス製パイプ、20・
・・反応管、21・・・捕集器、22・・・ケミカルポ
ンプ、23・・・電気炉、24・・・熱電対、25・・
・温度制御器。
Fig. 1 is an explanatory diagram showing the outline of an apparatus for implementing the method of the present invention, Fig. 2 is a micrograph showing the surface shape of carbon fibers obtained by the method of the present invention, and Fig. 3 is a photomicrograph showing the surface shape of carbon fibers obtained by the method of the present invention. 1 is a micrograph showing the surface shape of carbon fibers obtained by 11... Argon gas cylinder, 12... Carrier gas cylinder, 13.14... Flow meter, 15... Raw material tank, 16.17... Stainless steel pipe, 20...
...Reaction tube, 21...Collector, 22...Chemical pump, 23...Electric furnace, 24...Thermocouple, 25...
・Temperature controller.

Claims (2)

【特許請求の範囲】[Claims] (1)繊維の直径が0.1μm〜50μm、繊維の長さ
/繊維径が50〜10,000、密度が1.9g/cm
^3以上、X線回折法による炭素六角網平面(002)
の面間隔d_0_0_2が3.36Å〜3.49Å、結
晶子の大きさLc(002)が50Å以上、ラマン散乱
スペクトルの1360cm^−^1バンドのピーク高さ
と1580cm^−^1バンドのピーク高さの比I13
60/I1580が1.05以上で、繊維径1に対して
0.001〜0.1程度の繊維表面深さの毛羽立った様
相を呈している易黒鉛化性のウィスカー状炭素繊維。
(1) Fiber diameter is 0.1 μm to 50 μm, fiber length/fiber diameter is 50 to 10,000, and density is 1.9 g/cm
^3 or more, carbon hexagonal network plane (002) by X-ray diffraction method
The interplanar spacing d_0_0_2 is 3.36 Å to 3.49 Å, the crystallite size Lc(002) is 50 Å or more, and the peak height of the 1360 cm^-^1 band and the peak height of the 1580 cm^-^1 band in the Raman scattering spectrum. The ratio of I13
60/I1580 is 1.05 or more, and an easily graphitized whisker-like carbon fiber exhibiting a fluffy appearance with a fiber surface depth of about 0.001 to 0.1 per fiber diameter 1.
(2)繊維の直径が0.5μm〜5μm、繊維の長さ/
繊維径が100〜10,000、密度が2.0g/cm
^3以上、X線回折法による炭素六角網平面(002)
の面間隔d_0_0_2が3.36Å〜3.49Å、結
晶子の大きさLc(002)が50Å以上、ラマン散乱
スペクトルの1360cm^−^1バンドのピーク高さ
と1580cm^−^1バンドのピーク高さの比I13
60/I1580が1.1以上で、繊維表面が約300
Å程度の深さで毛羽立った様相を呈している易黒鉛化性
のウィスカー状炭素繊維。
(2) Fiber diameter is 0.5 μm to 5 μm, fiber length/
Fiber diameter is 100-10,000, density is 2.0g/cm
^3 or more, carbon hexagonal network plane (002) by X-ray diffraction method
The interplanar spacing d_0_0_2 is 3.36 Å to 3.49 Å, the crystallite size Lc(002) is 50 Å or more, and the peak height of the 1360 cm^-^1 band and the peak height of the 1580 cm^-^1 band in the Raman scattering spectrum. The ratio of I13
60/I1580 is 1.1 or more, and the fiber surface is about 300
A whisker-like carbon fiber that is easily graphitized and has a fluffy appearance at a depth of about 100 Å.
JP22806288A 1988-09-12 1988-09-12 Whisker-shaped carbon fiber Granted JPH0280398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22806288A JPH0280398A (en) 1988-09-12 1988-09-12 Whisker-shaped carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22806288A JPH0280398A (en) 1988-09-12 1988-09-12 Whisker-shaped carbon fiber

Publications (2)

Publication Number Publication Date
JPH0280398A true JPH0280398A (en) 1990-03-20
JPH052640B2 JPH052640B2 (en) 1993-01-12

Family

ID=16870597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22806288A Granted JPH0280398A (en) 1988-09-12 1988-09-12 Whisker-shaped carbon fiber

Country Status (1)

Country Link
JP (1) JPH0280398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190169A (en) * 2010-02-18 2011-09-29 Hitachi Chem Co Ltd Carbon fiber composite material, and break member, structural member for semiconductors, heat-resistant panel and heat sink using the carbon fiber composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054998A (en) * 1983-09-06 1985-03-29 Nikkiso Co Ltd Production of carbon fiber grown in vapor phase
JPS6170014A (en) * 1984-09-14 1986-04-10 Nikkiso Co Ltd Created extra fine carbon fiber by gaseous-phase method
JPS61225325A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Carbonaceous fiber
JPS6249363A (en) * 1985-08-28 1987-03-04 Ricoh Co Ltd Liquid developer for electrostatic photography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054998A (en) * 1983-09-06 1985-03-29 Nikkiso Co Ltd Production of carbon fiber grown in vapor phase
JPS6170014A (en) * 1984-09-14 1986-04-10 Nikkiso Co Ltd Created extra fine carbon fiber by gaseous-phase method
JPS61225325A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Carbonaceous fiber
JPS6249363A (en) * 1985-08-28 1987-03-04 Ricoh Co Ltd Liquid developer for electrostatic photography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190169A (en) * 2010-02-18 2011-09-29 Hitachi Chem Co Ltd Carbon fiber composite material, and break member, structural member for semiconductors, heat-resistant panel and heat sink using the carbon fiber composite material

Also Published As

Publication number Publication date
JPH052640B2 (en) 1993-01-12

Similar Documents

Publication Publication Date Title
AU642401B2 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
JP2641712B2 (en) Composite materials containing novel carbon fibrils
US20010036549A1 (en) Fibrils
Weisenberger et al. The effect of graphitization temperature on the structure of helical-ribbon carbon nanofibers
CN1169621C (en) Preparation method of transition metal carbide catalyst and its catalytic performance
JPH01131251A (en) Novel carbon fibril, its production and composition containing said fibril
JPS6249363B2 (en)
US7550130B2 (en) Method for producing vapor-grown carbon fibers having 3-D linkage structure
JP3817703B2 (en) Method and apparatus for producing coiled carbon fiber
KR20180090462A (en) Method for preparing carbon nano tube fiber and carbon nano tube prepared by the same
CN112760974A (en) Carbon nanotube-copper composite fiber and preparation method thereof
JPH0280398A (en) Whisker-shaped carbon fiber
JPS61225325A (en) Carbonaceous fiber
KR20170032566A (en) Carbon nanotubes having improved crystallinity
JPS61132630A (en) Carbonaceous fiber
JP2890548B2 (en) Carbonaceous fiber and method for producing the same
JPS58156512A (en) Fibrous carbon material having thickly grown fine carbon cilium
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof
JPH05330915A (en) Production of carbon/carbon composite material
JP2003183939A (en) Fine carbon fiber and composition containing the same
KR101580928B1 (en) synthetic method of Si-CNFs based on Co-Cu catalysts
EP0424922B1 (en) Carbonaceous fibers and production process therefor
EP0068752B1 (en) Calcium intercalated boronated carbon fibre
JPS61225320A (en) Metal-containing carbonaceous fiber and production thereof
JPH0280619A (en) Production of carbon fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees