JPH028002B2 - - Google Patents

Info

Publication number
JPH028002B2
JPH028002B2 JP57113630A JP11363082A JPH028002B2 JP H028002 B2 JPH028002 B2 JP H028002B2 JP 57113630 A JP57113630 A JP 57113630A JP 11363082 A JP11363082 A JP 11363082A JP H028002 B2 JPH028002 B2 JP H028002B2
Authority
JP
Japan
Prior art keywords
dust
hot metal
content
blast furnace
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57113630A
Other languages
Japanese (ja)
Other versions
JPS591608A (en
Inventor
Takao Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11363082A priority Critical patent/JPS591608A/en
Publication of JPS591608A publication Critical patent/JPS591608A/en
Publication of JPH028002B2 publication Critical patent/JPH028002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、Zn含有ダストから亜鉛分を分離
し、回収する方法に関する。 通常、高炉ダストには2〜4%ほどZnが含ま
れているが、また同時に多量のFe分も含有され
ている。このため、一般には高炉のFe源として
再利用されるが、この際、ダスト中Znの除去が
必要となる。Zn分を含んだままでは、Fe源とし
て利用したとき、いわゆるZnアタツク問題がお
こるからであるが、このZn除去には多大のコス
トを要する不都合がある。すなわち現在、ダスト
中のZn除去方法としては、乾式処理法と湿式処
理法と呼ばれる2つの方法が実用化されている。
乾式処理法とは、例えばダスト還元設備によりダ
スト中のZn化合物を還元してZnを揮発、除去す
るものであるが、この処理は設備コストのみなら
ず、エネルギコストの点でも不利が大きい。他方
湿式法は、ダストに例えばNaOHを接触させて
Zn分をZn(OH)2- 4として溶解分離除去するという
方法で、これも、設備コストもさることながら、
NaOHを使用するためランニングコスト的にみ
て問題があるのみならず、Zn除去後の残渣を高
炉原料として再使用する場合Naの残留が支障と
なる。 本発明は、Zn含有ダストから従来とは全く異
なる方式で合理的かつ有効に亜鉛分を分離、回収
する方法の提供を目的とするもので、本発明の方
法は、密閉容器に収容した溶銑中にランスを用い
てZn含有ダストを吹込み、該ダストが含有して
いる酸化亜鉛を溶銑中のC、Siにより還元して
Zn蒸気として分離させ、これを前記密閉容器に
連設した集塵機により捕集し、濃縮化することを
特徴とする。すなわち、溶銑の脱Si処理は、高炉
原料の焼結工程で発生する焼結ダストを使用して
行なうのが通例であるが、本発明は、この浴銑の
脱Si処理に脱Si剤としてZn含有ダストを添加し、
下記、の反応を進行させるものである。 Si+2ZnO→SiO2+2Zn↑ ……… の反応に基いて、溶銑中Siを酸化させスラグ
として分離すると同時に、ダスト中の酸化亜鉛
(ZnO)を還元し、Zn蒸気として揮発させる。Zn
はFeに較べ沸点が低い(918℃)ため溶銑中から
蒸発するのである。 Si+2FeO→SiO2+2Fe ……… の反応によつて、上記同様溶銑中Siを酸
化、スラグの形で分離するとともに、ダスト中の
酸化鉄(FeO)を還元して、Fe分を溶銑中に直
接回収する。上記、は何れもSiの酸化反応
で、発熱反応であるから、反応時に外部からエネ
ルギを供給してやる必要がなく、エネルギコスト
的に有利であるのみならず、ダスト中のFe分を
直接的に回収するから、回収効率がきわめて高い
というわけである。 上記本発明の方法は、具体的には以下の如くし
て実施することができる。第1図に示す集塵機4
付インジエクシヨン設備において、密閉容器3に
高炉から出銑されたSi含有溶銑1を収容し、この
溶銑1中にランス2を用いてZn含有ダストを吹
込む。この操作によつて溶銑中のSiは、スラグ1
aへ、ダスト中のFe分は溶銑1中へそれぞれ回
収され、同時に蒸発したZn分は、飛散物を伴な
つて集塵機4に至り、ここでZnOを主成分とする
ダストの形で分離されるのである。すなわちこの
ダストは、Feを含まない濃縮Znダストというこ
とになる。 本発明者らの実績によれば、第1表に示す成分
の高炉ダストをSi0.5%含有のトーピード溶銑
(300T)に対し、第1図に示した方法で添加して
脱Si処理を行ない、溶銑Si含有量を0.5%から0.2
%に減じる場合の脱Si効率〔(反応前Si濃度−反
応後Si濃度)×100/反応前溶銑中Si濃度〕を調査
したところ、従来一般の焼結ダストを使用した場
合と同じ80〜90%の高効率を記録した。この場合
の生成Zn濃縮ダスト組成は第2表の如くであつ
たが、これはZn50%以上であるから、Zn原料と
して外販が可能である。
The present invention relates to a method for separating and recovering zinc from Zn-containing dust. Blast furnace dust usually contains about 2 to 4% Zn, but also contains a large amount of Fe. For this reason, it is generally reused as an Fe source for blast furnaces, but in this case it is necessary to remove Zn from the dust. This is because if Zn remains contained, a so-called Zn attack problem will occur when used as an Fe source, but this Zn removal has the disadvantage of requiring a large amount of cost. That is, two methods, called a dry processing method and a wet processing method, are currently in practical use as methods for removing Zn from dust.
The dry processing method is a method in which Zn compounds in dust are reduced using, for example, dust reduction equipment to volatilize and remove Zn, but this processing is disadvantageous not only in terms of equipment costs but also in terms of energy costs. On the other hand, the wet method involves bringing the dust into contact with, for example, NaOH.
This method involves dissolving and separating the Zn content as Zn(OH) 2-4 , which also reduces equipment costs.
The use of NaOH not only poses problems in terms of running costs, but also the residual Na poses a problem when the residue after Zn removal is reused as blast furnace raw material. The purpose of the present invention is to provide a method for rationally and effectively separating and recovering zinc from Zn-containing dust using a method completely different from conventional methods. Zn-containing dust is blown in using a lance, and the zinc oxide contained in the dust is reduced by C and Si in the hot metal.
It is characterized in that it is separated as Zn vapor, collected by a dust collector connected to the sealed container, and concentrated. That is, the desiliconization treatment of hot metal is usually carried out using sintering dust generated in the sintering process of blast furnace raw materials, but the present invention uses Zn as a desiliconizing agent for the desiliconization treatment of hot metal. Adding contained dust,
It allows the following reaction to proceed. Based on the reaction Si + 2ZnO → SiO 2 + 2Zn↑ ...... Si in the hot metal is oxidized and separated as slag, and at the same time zinc oxide (ZnO) in the dust is reduced and volatilized as Zn vapor. Zn
Since Fe has a lower boiling point (918℃) than Fe, it evaporates from the hot metal. Through the reaction of Si + 2FeO → SiO 2 + 2Fe......, as above, Si in the hot metal is oxidized and separated in the form of slag, and iron oxide (FeO) in the dust is reduced, and the Fe content is directly added to the hot metal. to recover. All of the above are Si oxidation reactions and are exothermic reactions, so there is no need to supply energy from outside during the reaction, which is not only advantageous in terms of energy costs, but also allows the Fe content in dust to be recovered directly. Therefore, the collection efficiency is extremely high. Specifically, the method of the present invention described above can be carried out as follows. Dust collector 4 shown in Figure 1
In the injection extraction equipment, Si-containing hot metal 1 tapped from a blast furnace is stored in a closed container 3, and Zn-containing dust is blown into the hot metal 1 using a lance 2. By this operation, Si in the hot metal is reduced to slag 1
To a, the Fe content in the dust is recovered into the hot metal 1, and the Zn content that evaporated at the same time reaches the dust collector 4 along with the scattered particles, where it is separated in the form of dust containing ZnO as the main component. It is. In other words, this dust is concentrated Zn dust that does not contain Fe. According to the results of the present inventors, blast furnace dust having the components shown in Table 1 was added to torpedo hot metal (300T) containing 0.5% Si by the method shown in Fig. 1 to perform the Si removal treatment. , hot metal Si content from 0.5% to 0.2
% [(Si concentration before reaction - Si concentration after reaction) x 100/Si concentration in hot metal before reaction] was investigated and found that it was 80 to 90, the same as when using conventional sintered dust. % high efficiency was recorded. The composition of the Zn concentrated dust produced in this case was as shown in Table 2, and since it contains 50% or more of Zn, it can be sold externally as a Zn raw material.

【表】【table】

【表】 以上の説明から明らかなように本発明の方法
は、 Zn含有高炉ダスト中のZn分を濃縮Znダスト
として分離回収できるとともに、 同上ダスト中のFe分を溶銑中に直接的に、
したがつて高歩留りで回収可能である。 同時に溶銑中のSiをスラグの形で高効率で除
去できる。 しかもSiの酸化発熱反応を利用するものであ
るから、従来知られる高炉ダスト中のZn除去
法(湿式法、乾式法)に較べエネルギコスト面
で格段に有利で、経済的である。 また実施に当つては、従来既存の溶銑脱Si処
理設備をそのまま流用できるという、実際面で
のメリツトも大きい。したがつて本発明は、高
炉ダストのきわめて有利な活用法を提供するも
のと云える。
[Table] As is clear from the above explanation, the method of the present invention can separate and recover the Zn content in Zn-containing blast furnace dust as concentrated Zn dust, and also directly transfer the Fe content in the above dust into hot metal.
Therefore, it can be recovered at a high yield. At the same time, Si in hot metal can be removed in the form of slag with high efficiency. Moreover, since it utilizes the exothermic oxidation reaction of Si, it is much more advantageous and economical in terms of energy costs than conventionally known methods for removing Zn from blast furnace dust (wet method, dry method). In addition, there is a great practical advantage in that the existing hot metal desilicon treatment equipment can be used as is. Therefore, it can be said that the present invention provides an extremely advantageous method of utilizing blast furnace dust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法の具体的な一例を説明
する工程模式図である。 図中、1:溶銑、1a:スラグ、2:ランス、
3:密閉容器、4:集塵器。
FIG. 1 is a schematic process diagram illustrating a specific example of the method of the present invention. In the figure, 1: hot metal, 1a: slag, 2: lance,
3: Airtight container, 4: Dust collector.

Claims (1)

【特許請求の範囲】[Claims] 1 密閉容器に収容した溶銑中にランスを用いて
Zn含有ダストを吹込み、該ダストが含有してい
る酸化亜鉛を溶銑中のC、Siにより還元してZn
蒸気として分離させ、これを前記密閉容器に連設
した集塵機により補集し、濃縮化することを特徴
とするZn含有ダストの亜鉛分の分離回収方法。
1 Using a lance in hot metal stored in a closed container
Zn-containing dust is injected, and the zinc oxide contained in the dust is reduced by C and Si in the hot metal.
A method for separating and recovering the zinc content of Zn-containing dust, which comprises separating the zinc content as vapor, collecting it using a dust collector connected to the airtight container, and concentrating it.
JP11363082A 1982-06-29 1982-06-29 Utilizing method of dust containing zn Granted JPS591608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11363082A JPS591608A (en) 1982-06-29 1982-06-29 Utilizing method of dust containing zn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11363082A JPS591608A (en) 1982-06-29 1982-06-29 Utilizing method of dust containing zn

Publications (2)

Publication Number Publication Date
JPS591608A JPS591608A (en) 1984-01-07
JPH028002B2 true JPH028002B2 (en) 1990-02-22

Family

ID=14617094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11363082A Granted JPS591608A (en) 1982-06-29 1982-06-29 Utilizing method of dust containing zn

Country Status (1)

Country Link
JP (1) JPS591608A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158808A (en) * 1980-05-09 1981-12-07 Nippon Steel Corp Desiliconization method of molten iron and its trough material
JPS5864307A (en) * 1981-10-09 1983-04-16 Nippon Steel Corp Desiliconization method for molten iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158808A (en) * 1980-05-09 1981-12-07 Nippon Steel Corp Desiliconization method of molten iron and its trough material
JPS5864307A (en) * 1981-10-09 1983-04-16 Nippon Steel Corp Desiliconization method for molten iron

Also Published As

Publication number Publication date
JPS591608A (en) 1984-01-07

Similar Documents

Publication Publication Date Title
EP0453151B1 (en) Process for recovering valuable metals from a dust containing zinc
US5922261A (en) Process for recovering iron from iron-rich material
JPS63262428A (en) Treatment of dust
ATE81678T1 (en) PROCESS AND APPARATUS FOR RECOVERING METAL RECYCLINGS FROM ELECTRIC ARC FURNACE FLUE DUSTS AND SLUDGES AND TRANSFORMING THE SOLID RESIDUES INTO RECYCLABLE OR NON-HAZARDOUS PRODUCTS.
US5589118A (en) Process for recovering iron from iron-containing material
CN108130422A (en) A kind of method that valuable metal is extracted in steel plant's flue dust
KR100791513B1 (en) Recovery method of zinc(zn) from dust generated by electric arc furnace steelmaking
CA1086073A (en) Electric smelting of lead sulphate residues
JPH028002B2 (en)
CN111440953B (en) Method for synergistically recycling tungsten slag and multi-element iron-rich slag
CA1177257A (en) Method for processing sulphidic zinc ores
JPH01228586A (en) Treatment of ni-cd battery waste
GB1600022A (en) Recovery of heavy metals from flue dusts
Wang et al. Recovering Zn, Pb, Cd and Fe from electric furnace dust
KR910001010B1 (en) Method for recovering zinc from substances containing a zinc conpound
KR920009864B1 (en) Making process for zinc chloride from the dust of electric furnace
JPS60228623A (en) Treatment for residue containing nickel and vanadium
JPH1150165A (en) Recovery of zinc from iron-making dust
JPH10219331A (en) Method for removing zinc in iron-making dust
JP2003342648A (en) Process for operating rotary kiln used for reduction roasting of iron and steel dust
JPS60162736A (en) Treatment of electric furnace dust
US3905805A (en) Recycling of ferromanganese precipitator dusts
JPS60187632A (en) Treatment of dust and sludge of steel making
JPH0222425A (en) Method for reclaiming alloy containing rare earth element
Gupta et al. Direct Smelting of Zinc