JPH0279405A - Manufacture of synchrotron iron core - Google Patents

Manufacture of synchrotron iron core

Info

Publication number
JPH0279405A
JPH0279405A JP23065788A JP23065788A JPH0279405A JP H0279405 A JPH0279405 A JP H0279405A JP 23065788 A JP23065788 A JP 23065788A JP 23065788 A JP23065788 A JP 23065788A JP H0279405 A JPH0279405 A JP H0279405A
Authority
JP
Japan
Prior art keywords
iron core
steel plates
core
silicon steel
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23065788A
Other languages
Japanese (ja)
Inventor
Kenji Endo
研二 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23065788A priority Critical patent/JPH0279405A/en
Publication of JPH0279405A publication Critical patent/JPH0279405A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to simply remove minute chips and burrs which cause partial short-circuit between steel plates by applying permeable resin to the surface of iron core where steel plates are opposed with space between and hardening it, and then cutting the surface of this iron core so as to smooth it, and applying strong acid, and then washing it so as to remove the strong acid. CONSTITUTION:Resin 13 is applied to the surface of iron core 1 which is formed by stacking silicon steel plates 11, and is hardened. And by applying cutting processing, irregularity at every applied resin 13 and silicon steel plate 11 disappears from the surface 15 of the iron core, and the surface 15 of the iron core is becoming high smoothness. When nitric acid is applied to the surface 15 of the iron core after cutting process, minute chips and burrs are melted in the nitric acid and are removed. For this reason, the places which are short- circuited by cutting process between adjacent silicon steel plates 11 are dissolved and it becomes an iron core without short-circuited places. Since resin 13 is charged into the space between silicon steel plates 11, it prevents the nitric acid from permeating into this space, and silicon steel plates 11 at the parts other than the surface 15 of the iron core never begins to melt.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は荷電粒子を加速して高エネルギー粒子を作成
するためのシンクロトロンの鉄心の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention relates to a method for manufacturing a synchrotron core for accelerating charged particles to create high-energy particles.

〔従来の技術〕[Conventional technology]

シンクロトロンは電磁石を円形に配置して粒子を回転さ
せながら加速して行く装置であり、特に高エネルギー粒
子を得るのに適した粒子加速器として高エネルギー粒子
に関する研究に使用されて来た。近年、シンクロトロン
で生成した高エネルギー粒子のシンクロトロン放射によ
って生ずる高エネルギー電磁波を利用することが種々の
分野で進められている。
A synchrotron is a device in which electromagnets are arranged in a circle to rotate and accelerate particles, and has been used in research on high-energy particles as a particle accelerator particularly suitable for obtaining high-energy particles. In recent years, progress has been made in various fields to utilize high-energy electromagnetic waves generated by synchrotron radiation of high-energy particles generated by synchrotrons.

このような実利用のためのシンクロトロンとしては、比
較的小規模のものでよいが、低価格であることが要求さ
れる。
Although a synchrotron for such practical use may be relatively small-scale, it is required to be low-priced.

種々の分野で利用されるシンクロトロンに必要とされる
性能の一つとして、高エネルギー粒子を継続的に得るこ
とのできる装置である必要があることから、荷電粒子を
加速して高エネルギー粒子を得るための加速リングと称
されるシンクロトロンと、この加速リングで生成された
高エネルギー粒子を蓄積し必要に応じて取り出して使用
するための蓄積リングと称されるシンクロトロンとの2
つのシンクロトロンで構成される装置が採用される。
One of the performance requirements for synchrotrons used in various fields is that they must be able to continuously obtain high-energy particles. There are two types of synchrotrons: a synchrotron called an accelerating ring for obtaining high-energy particles, and a synchrotron called a storage ring for storing high-energy particles generated in this accelerating ring and taking them out and using them as needed.
A device consisting of two synchrotrons will be adopted.

蓄積リングでは荷電粒子のエネルギー値を一定に保持し
ていればよいので、蓄積リングを構成する鉄心が生起す
る磁束密度は一定である。加速リングは周期的に高エネ
ルギー粒子を生成して蓄積リングに供給するために、加
速リングを構成する鉄心が生起する磁束密度は高エネル
ギーを生成する周期に比例して周期的に変化するものが
必要である。
In the storage ring, since it is sufficient to keep the energy value of the charged particles constant, the magnetic flux density generated by the iron core forming the storage ring is constant. Since the acceleration ring periodically generates high-energy particles and supplies them to the storage ring, the magnetic flux density generated by the iron core that makes up the acceleration ring changes periodically in proportion to the period of high-energy generation. is necessary.

この周期的に変化する磁束密度の波形は、直線状に上昇
する波頭部とその後の値が一定の平坦部と、更にその後
の減衰部との3つの部分でなる台形状の波形を1サイク
ルとする周期波形であり、周波数は3セ程度である。波
頭部で荷電粒子を加速して高エネルギー粒子を生成し平
坦部で生成された高エネルギー粒子を蓄積リングに注入
する。
This periodically changing magnetic flux density waveform is a trapezoidal waveform consisting of three parts: a linearly rising wave front, a flat part where the value is constant after that, and a damping part after that. It is a periodic waveform with a frequency of about 3 centimeters. Charged particles are accelerated at the wave front to generate high-energy particles, and the high-energy particles generated at the flat portion are injected into the storage ring.

このような操作を周期的に繰り返すことにより継続的に
使用する高エネルギー粒子を生成補給する。
By periodically repeating such operations, high-energy particles for continuous use are generated and replenished.

第3図は加速リングとしてのシンクロトロン鉄心の断面
図で、C字形をした鉄心1には空隙部3が設けられてお
り、この空隙部3内に磁場を発生させてこの中を紙面に
垂直の方向に陽子や電子の荷電粒子を走らせる。空隙部
3を挟んだ両側の鉄心部にコイル21.22が巻装され
ており、これらのコイル21.22に励磁電流を流すこ
とにより鉄心1に磁束を発生させる。鉄心1の実際の形
状は図の左側を中心軸とする扇状をしており、複数個の
鉄心lを円形状に配置することにより荷電粒子が周回す
ることのできる走路が構成される。
Figure 3 is a cross-sectional view of the synchrotron core as an accelerating ring. A C-shaped core 1 is provided with a cavity 3, and a magnetic field is generated within this cavity 3 and is passed perpendicularly to the plane of the paper. Protons and electrons are charged particles that run in the direction of . Coils 21 and 22 are wound around the core on both sides of the gap 3, and magnetic flux is generated in the core 1 by passing excitation current through these coils 21 and 22. The actual shape of the iron core 1 is fan-shaped with the center axis on the left side of the figure, and by arranging a plurality of iron cores 1 in a circular shape, a running path is formed in which charged particles can circulate.

前述のように周期的に変化する磁束を生起させるために
は鉄心内に発生するうず電流を磁束の変化に影響を与え
ない程度に抑制するために、鉄心1は変圧器や回転機に
使用される表面を無機性の絶縁皮膜を形成したけい素綱
板を所定の形状に打ち抜き、積層して所定の厚みに形成
する。前述のように、鉄心lは扇状をしているので、図
の左側の内径側に比べて右側の外径側の方が積層厚を大
きくする必要があるので、外径側程けい素綱板の積層枚
数が大きくなる構成としている。
As mentioned above, in order to generate periodically changing magnetic flux, the iron core 1 is used in transformers and rotating machines in order to suppress the eddy current generated within the iron core to the extent that it does not affect changes in magnetic flux. A silicon steel plate with an inorganic insulating film formed on its surface is punched out into a predetermined shape and laminated to a predetermined thickness. As mentioned above, since the iron core l is fan-shaped, it is necessary to make the lamination thickness larger on the outer diameter side on the right side than on the inner diameter side on the left side of the figure, so the silicon steel plate is thicker on the outer diameter side. The structure is such that the number of layers stacked is large.

鉄心1の大きさは用途によって異なるが、例えば、この
図で鉄心の内径寸法Φは600v++、鉄心の空隙部3
の空隙長は50 au+、空隙3の幅は200mmで、
空隙部3の空隙長の精度として±25μ−が要求される
。これに伴い空隙3を挟む鉄心表面も高度の平滑度が要
求される。空隙長の精度や鉄心表面の平滑度が悪いと空
隙部3の磁束密度の値と分布が設計通りとならないため
に、高エネルギー粒子生成の効率が悪くなり一定の高エ
ネルギー粒子を生成するための装置が大きくかつ高価に
なる。
The size of the iron core 1 varies depending on the application, but for example, in this figure, the inner diameter dimension Φ of the iron core is 600v++, and the cavity 3 of the iron core is
The gap length is 50 au+, the width of gap 3 is 200 mm,
The accuracy of the gap length of the gap 3 is required to be ±25μ. Accordingly, the iron core surface sandwiching the gap 3 is also required to have a high level of smoothness. If the accuracy of the air gap length or the smoothness of the core surface is poor, the value and distribution of the magnetic flux density in the air gap 3 will not be as designed, which will reduce the efficiency of high-energy particle generation and make it difficult to generate a constant amount of high-energy particles. The equipment becomes large and expensive.

前述のように、シンクロトロンを実用に供するためには
シンクロトロンが低価格でなければならないので、空隙
部3を前述のように高精度、高平滑度に製作することが
必要になる。
As mentioned above, in order to put the synchrotron into practical use, the synchrotron must be inexpensive, so it is necessary to manufacture the cavity 3 with high precision and high smoothness as described above.

けい素綱板を積層して形成する鉄心では前述のような1
0μ−レベルの寸法精度や平滑度を得るには単に積層し
ただけでは達成することは不可能で、鉄心表面を切削加
工することが必要になる。
In the iron core formed by laminating silicon steel plates, the above-mentioned 1
In order to obtain dimensional accuracy and smoothness of 0 μ-level, it is impossible to achieve it simply by laminating layers, and it is necessary to cut the surface of the iron core.

(発明が解決しようとする課題) けい素綱板を積層しその表面を切削加工すると、微小な
切削屑が絶縁皮膜を越えて隣接するけい素綱板間を短絡
するという現象が生ずる。また、切削加工によるけい素
綱板端部に生ずる「ばり」と称される微小な突出部もけ
い素綱板間の短絡を生ずる原因になる。
(Problems to be Solved by the Invention) When silicon steel plates are laminated and their surfaces are cut, a phenomenon occurs in which minute cutting debris crosses the insulation coating and causes a short circuit between adjacent silicon steel plates. In addition, minute protrusions called "burrs" that occur at the ends of silicon steel plates due to cutting work also cause short circuits between the silicon steel plates.

このような局部的な短絡は当然多くの箇所で発生するが
、そのために大きな還流経路ができて磁束の変化による
電M1誘導作用でこの還流回路にうず電流が流れて磁束
密度の時間的変化としての波形が崩れることになり、折
角効率の高いシンクロトロンとして製作したつもりがう
ず電流のために却って効率の悪いシンクロトロンになっ
てしまうという問題が生ずる。鉄心表面を切削加工する
ために生ずるこのような問題があるために、時間的に変
化する磁束密度の値が重要な要素である鉄心の場合に、
精度を上げるために切削加工を採用することができない
大きな原因になっていた。
Such local short circuits naturally occur in many places, but as a result, large return current paths are created, and eddy currents flow through this return circuit due to the electric M1 induction effect due to changes in magnetic flux, resulting in temporal changes in magnetic flux density. This causes the waveform of the synchrotron to be distorted, and the problem arises that even though the synchrotron was intended to be manufactured with high efficiency, it actually becomes a synchrotron with low efficiency due to the eddy current. Because of these problems caused by cutting the core surface, in the case of iron cores where the value of magnetic flux density that changes over time is an important factor,
This was a major reason why cutting could not be used to improve accuracy.

この発明は、寸法精度と平滑度を必要とする空隙部の鉄
心表面を切削加工した際に生ずる綱板間の局部的な短絡
を生じさせる微小な切削屑や突出部を簡単に除去するこ
とのできる鉄心の製作方法を提供することを目的とする
This invention makes it possible to easily remove minute cutting debris and protrusions that cause local short circuits between steel plates that occur when cutting the core surface of a void that requires dimensional accuracy and smoothness. The purpose of this study is to provide a method for manufacturing iron cores that can be used.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、一定の
空隙を持つC字状断面をした鉄心であって、表面を絶縁
皮膜でコーティングされた磁性綱板を積層して所定の形
状に成形されたシンクロトロン鉄心において、前記空隙
を挟んで対向する鉄心表面に浸透性樹脂を塗布して硬化
させた上で、この鉄心表面を切削して平滑にし、その後
強酸を塗布し、その後水洗いして強酸を除去するものと
する。
In order to solve the above problems, the present invention provides an iron core having a C-shaped cross section with a certain gap, which is formed into a predetermined shape by laminating magnetic steel plates whose surfaces are coated with an insulating film. In the synchrotron core, a permeable resin is applied to the core surfaces facing each other across the gap and cured, the core surface is cut to make it smooth, then strong acid is applied, and then washed with water. Strong acids shall be removed.

〔作用] この発明の構成において、空隙を挟んで対向する鉄心表
面に浸透性樹脂を塗布して硬化させて隣り合う磁性体綱
板間に生ずる微小な隙間を充填し、その上でこの鉄心表
面を切削加工すると切削屑や局部的な綱板表面の突出部
によって隣り合う磁性体綱板間が金属接触する部分が生
ずるが、この後鉄心表面に強酸を塗布すると前述の切削
屑や突出部が強酸中に溶けて除去されるが、樹脂が充填
されているので強酸が磁性綱板間の隙間に浸透すること
はなく鉄心表面にのみ強酸が塗布された状態にある。こ
の後水洗いして強酸を除去するが、容易に流し去ること
ができ、後に強酸が残ることばない。
[Function] In the configuration of the present invention, a permeable resin is applied to the surfaces of the core facing each other with a gap in between, and is cured to fill the minute gap that occurs between adjacent magnetic wire plates. When machining, metal contact between adjacent magnetic steel plates occurs due to cutting chips and local protrusions on the surface of the steel plates.After this, when strong acid is applied to the surface of the core, the cutting wastes and protrusions mentioned above are removed. It dissolves in strong acid and is removed, but because it is filled with resin, the strong acid does not penetrate into the gaps between the magnetic steel plates, and the strong acid remains coated only on the surface of the iron core. After this, the strong acid is removed by washing with water, but it can be easily washed away and no strong acid remains behind.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図、第
2図はこの発明の詳細な説明するための模式図としての
第3図の空隙部3を挟む鉄心1の表面部の一部を拡大し
た断面図であり、第1図はけい素綱板11を積層して形
成された鉄心Iの表面に樹脂13を塗布して硬化させた
後の状態を示し、第2図は第1図の鉄心表面を切削加工
して平滑な鉄心表面15を形成した後の状態を示す。
The present invention will be explained below based on examples. 1 and 2 are enlarged cross-sectional views of a part of the surface portion of the iron core 1 sandwiching the gap 3 in FIG. 3 as a schematic diagram for explaining the invention in detail, and FIG. The state after coating the resin 13 on the surface of the iron core I formed by laminating silicon steel plates 11 and hardening it is shown in FIG. 2, where the surface of the iron core shown in FIG. The state after the surface 15 is formed is shown.

樹脂13は、エポキシ樹脂と硬化剤とを混合して常温で
硬化する二液性接着剤であり、商品名アラルダイトとし
て市販されている。この種の接着剤は用途に応じて種々
のものがあるが、樹脂13としてはけい素綱板11の隙
間に入り込む程の低粘度であることが必須要件であり、
希釈剤を少量混入することで粘度を低下させる方式が取
られる。
The resin 13 is a two-component adhesive that is a mixture of an epoxy resin and a curing agent and hardens at room temperature, and is commercially available under the trade name Araldite. There are various types of adhesives of this type depending on the application, but the essential requirement for the resin 13 is that it has a low viscosity so that it can penetrate into the gaps between the silicone steel plates 11.
A method is used to lower the viscosity by mixing a small amount of diluent.

これらの図では隣合う綱板11の間の隙間は一定の間隔
として表示しであるが、実際には綱板同志を所定の圧力
で締めつけて極力隙間の生じない構成としているのであ
り、図に示すような一様で大きな隙間が実際に生じてい
るものではない、綱板としては交番磁気特性の優れたけ
い素綱板を使用するが、その厚みは0.35mmで、表
面に形成される絶縁皮膜は10μ−程度である。
In these figures, the gaps between adjacent steel plates 11 are shown as constant intervals, but in reality, the steel plates are tightened together with a predetermined pressure to create a structure with as little gap as possible. The uniform and large gaps shown do not actually occur; silicon steel plates with excellent alternating magnetic properties are used as the steel plates, but the thickness is 0.35 mm, and there are no gaps formed on the surface. The insulation film has a thickness of about 10μ.

第1図は鉄心1の表面を切削加工する前であるので、樹
脂13が綱板間の隙間12に浸透しているとともに鉄心
1の表面に塗布された状態にある。
Since FIG. 1 shows the surface of the iron core 1 before cutting, the resin 13 has permeated into the gap 12 between the steel plates and has been applied to the surface of the iron core 1.

また、それぞれのけい素綱板11の鉄心表面部は凹凸し
ており平滑ではない、凹凸の程度はけい素綱板を積層す
る際の位置決めの精度によって決まるが、100 μm
以下にするのは困難である。
In addition, the core surface of each silicon steel plate 11 is uneven and not smooth, and the degree of unevenness is determined by the accuracy of positioning when stacking the silicon steel plates, but it is 100 μm.
It is difficult to do the following:

第2図は切削加工を施した後の状態を示しており、鉄心
表面15は塗布されていた樹脂13やけい素綱板11ご
との凹凸がなくなり、鉄心表面15は高い平滑度になっ
ている。切削加工後に硝酸を鉄心表面15に塗布すると
、この図では表示していない微小な切削屑や突出部が硝
酸に溶けて除去される。そのため、隣合うけい素綱板1
1間で切削加工のために短絡した箇所が解消されて短絡
箇所のない鉄心lになる。けい素綱板11間の隙間には
樹脂13を充填しであるので硝酸がこの隙間に浸透する
ことを防いでおり、鉄心表面15以外の部分のけい素綱
板が溶は出すことはない。
Figure 2 shows the state after cutting, and the surface 15 of the core has no irregularities caused by the resin 13 and silicon steel plate 11 that were applied, and the surface 15 of the core has a high degree of smoothness. . When nitric acid is applied to the core surface 15 after cutting, minute cutting chips and protrusions not shown in this figure are dissolved in the nitric acid and removed. Therefore, the adjacent silicon steel plate 1
1, the short-circuited parts due to the cutting process are eliminated, resulting in an iron core 1 with no short-circuited parts. The gaps between the silicon steel plates 11 are filled with resin 13 to prevent nitric acid from penetrating into the gaps, and the silicon steel plates in areas other than the core surface 15 will not melt.

この後、鉄心表面11を水洗いして硝酸を洗い流して除
去す−るが、この作業でも硝酸が狭い隙間に浸透してい
す表面に付着しているだけなので容易に洗い流すことが
できるという点も樹脂を充填させたことによる効果であ
る。
After this, the iron core surface 11 is washed with water to wash away the nitric acid, but even in this process, the nitric acid penetrates into narrow gaps and is only attached to the chair surface, so it can be easily washed away. This is an effect due to filling.

鉄心表面15は第3図の空隙3の両側の鉄心表面である
ので、この鉄心表面を切削するためには空隙3の中に切
削刃を挿入する必要のあることから、実際の切削には専
用のフライス刃を使用したフライス盤による。
Since the core surface 15 is the core surface on both sides of the gap 3 in Fig. 3, it is necessary to insert a cutting blade into the gap 3 in order to cut this core surface. By a milling machine using a milling blade.

〔発明の効果] この発明は前述のように、空隙を挟んで対向する鉄心表
面に浸透性樹脂を塗布して磁性綱板間の隙間に浸透させ
て硬化させることにより磁性綱板間に生ずる微小な隙間
を樹脂で充填し、その上でこの鉄心表面を切削加工する
と切削屑や局部的な綱板表面の突出部によって隣接綱板
間を局部的に短絡する部分が生ずるが、この後強酸を塗
布すると前述の切削屑や突出部が強酸中に溶けて除去さ
れるが、樹脂を隣接綱板間に充填しであるので強酸が綱
板間の隙間に浸透することはない、この後水洗いして強
酸を除去するが、樹脂を充填しであることにより容易に
強酸を流し去ることができる。
[Effects of the Invention] As described above, this invention applies a permeable resin to the surfaces of the core facing each other with a gap in between, and allows the resin to penetrate into the gap between the magnetic steel plates and harden. If the gap is filled with resin and then the surface of the core is machined, there will be areas where the adjacent steel plates are locally short-circuited due to cutting debris or local protrusions on the surface of the steel plates. When applied, the aforementioned cutting chips and protrusions are dissolved in the strong acid and removed, but since the resin is filled between the adjacent steel plates, the strong acid does not penetrate into the gaps between the steel plates.After this, it is washed with water. However, by filling with resin, the strong acid can be easily washed away.

このように、樹脂を塗布したり強酸を塗布したりするだ
けで切削加工によって生ずる磁性綱板間の局部的な短絡
を除去することができるので、空隙部の鉄心表面の平滑
度を良くしかつ空隙長の精度を高めるために切削加工を
採用することができることから、高エネルギー粒子を効
率良く生成することのできるシンクロトロンとなので、
所定の高エネルギー粒子の量を得るためのシンクロトロ
ンとしては小型かつ低価格になるという効果が得られる
In this way, by simply applying resin or strong acid, it is possible to remove local short circuits between the magnetic steel plates that occur during cutting, which improves the smoothness of the core surface in the gap and improves the smoothness of the core surface. It is a synchrotron that can efficiently generate high-energy particles because cutting can be used to increase the accuracy of the gap length.
As a synchrotron for obtaining a predetermined amount of high-energy particles, the synchrotron is small and inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこの発明の詳細な説明するための断面
図、第3図はシンクロトロン鉄心の断面図である。
1 and 2 are sectional views for explaining the invention in detail, and FIG. 3 is a sectional view of the synchrotron core.

Claims (1)

【特許請求の範囲】[Claims] 1)一定の空隙を持つC字状断面をした鉄心であって、
表面を絶縁皮膜でコーティングされた磁性綱板を積層し
て所定の形状に成形されたシンクロトロン鉄心において
、前記空隙を挟んで対向する鉄心表面に浸透性樹脂を塗
布して硬化させた上で、この鉄心表面を切削して平滑に
し、その後強酸を塗布し、その後水洗いして強酸を除去
することを特徴とするシンクロトロン鉄心の製造方法。
1) An iron core with a C-shaped cross section with a constant air gap,
In a synchrotron core formed by laminating magnetic steel plates whose surfaces are coated with an insulating film and formed into a predetermined shape, a permeable resin is applied to the core surfaces facing each other across the gap and cured, and then A method for manufacturing a synchrotron core, which is characterized by cutting the core surface to make it smooth, then applying strong acid, and then washing with water to remove the strong acid.
JP23065788A 1988-09-14 1988-09-14 Manufacture of synchrotron iron core Pending JPH0279405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23065788A JPH0279405A (en) 1988-09-14 1988-09-14 Manufacture of synchrotron iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23065788A JPH0279405A (en) 1988-09-14 1988-09-14 Manufacture of synchrotron iron core

Publications (1)

Publication Number Publication Date
JPH0279405A true JPH0279405A (en) 1990-03-20

Family

ID=16911241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23065788A Pending JPH0279405A (en) 1988-09-14 1988-09-14 Manufacture of synchrotron iron core

Country Status (1)

Country Link
JP (1) JPH0279405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500817A (en) * 2005-06-29 2009-01-08 シーメンス アクチエンゲゼルシヤフト Method for forming magnetic pole face in electromagnet, armature, yoke, electromagnet, electromechanical switch
JP7019106B1 (en) * 2021-03-02 2022-02-14 三菱電機株式会社 Manufacturing method of laminated iron core and manufacturing equipment of laminated iron core

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009500817A (en) * 2005-06-29 2009-01-08 シーメンス アクチエンゲゼルシヤフト Method for forming magnetic pole face in electromagnet, armature, yoke, electromagnet, electromechanical switch
JP7019106B1 (en) * 2021-03-02 2022-02-14 三菱電機株式会社 Manufacturing method of laminated iron core and manufacturing equipment of laminated iron core
WO2022185413A1 (en) * 2021-03-02 2022-09-09 三菱電機株式会社 Stacked core, method for manufacturing stacked core, and device for manufacturing stacked core

Similar Documents

Publication Publication Date Title
JP5327257B2 (en) Winding core, electromagnetic component and method for manufacturing the same, and electromagnetic device
KR102605370B1 (en) Laminated core and rotating electrical machines
KR102614581B1 (en) Laminated core and rotating electrical machines
US20210126514A1 (en) Robust material layers
JP2004088970A (en) Stacked iron core and rotating electric machine and transformer using the same
Nakamoto et al. Design of superconducting combined function magnets for the 50 GeV proton beam line for the J-PARC neutrino experiment
KR20210088643A (en) Laminated Core and Rotating Electric Machines
JP3049715B2 (en) Vehicle alternator and method of manufacturing the same
JP2014093803A (en) Rotor for rotating machine and method for manufacturing the same
JPH0279405A (en) Manufacture of synchrotron iron core
Nishanth et al. Characterization of an axial flux machine with an additively manufactured stator
US11751330B2 (en) Magnetic material filled printed circuit boards and printed circuit board stators
WO2023176802A1 (en) Interior permanent magnet motor and rotor thereof
Desai et al. Fabrication and assembly method for synchronous reluctance machines
JP4336446B2 (en) Rare earth sintered permanent magnet sintered body and permanent magnet type synchronous motor
JPS5846857A (en) Manufacture of rotor for synchronous motor
JP3210273B2 (en) Bending magnet and method of manufacturing the same
CN211655867U (en) Disk type motor rotor with pole shoe composite magnetic pole structure
US3670408A (en) Method of maintaining a laminated article under compression during a part of its manufacture
Ding et al. PM Eddy Current Loss Analysis and Suppression in a Spoke-Type Flux-Modulation Machine With Magnetic Flux Barrier Design
JP2946730B2 (en) Iron core
JPS6039333A (en) Rotary electric machine driven by inverter
JP3365534B2 (en) Rotor with permanent magnet of magnet synchronous rotating machine
JP2675214B2 (en) Laminated electromagnet
JP7310111B2 (en) Magnet structure and rotating electric machine