JPH0279034A - Optical reception system for optical heterodyne detection - Google Patents

Optical reception system for optical heterodyne detection

Info

Publication number
JPH0279034A
JPH0279034A JP63229796A JP22979688A JPH0279034A JP H0279034 A JPH0279034 A JP H0279034A JP 63229796 A JP63229796 A JP 63229796A JP 22979688 A JP22979688 A JP 22979688A JP H0279034 A JPH0279034 A JP H0279034A
Authority
JP
Japan
Prior art keywords
light
optical
signal
polarization
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63229796A
Other languages
Japanese (ja)
Other versions
JPH07109464B2 (en
Inventor
Masayuki Fujise
雅行 藤瀬
Kenji Shimizu
健二 清水
Makoto Nunokawa
布川 眞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP63229796A priority Critical patent/JPH07109464B2/en
Publication of JPH0279034A publication Critical patent/JPH0279034A/en
Publication of JPH07109464B2 publication Critical patent/JPH07109464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To enable good-sensitivity optical reception with simple constitution by switching the plane of polarization of local oscillation light to orthogonal directions at a predetermined period and performing heterodyne detection, and then adding the heterodyne-detected orthogonal components and receiving signal light. CONSTITUTION:An orthogonal polarized wave changeover switch 18 switches the plane of polarization of the local oscillation light L to orthogonal planes Fx and Fy of polarization for the heterodyne detection. Then the base band signal Sd obtained when the plane of polarization of the local oscillation light Lf is in an X-axial direction and the base band signal Sd obtained when the plane of polarization of the local oscillation light Lf is in a Y-axial direction are added at least once by the storage addition part 15a of a signal processor 15. Therefore, back scattered light Le can be received invariably in a state wherein efficiency is 1. Consequently, the circuit constitution is simple and the high-accuracy optical reception is enabled.

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本磯明は信号光と局部発振器から発振される局発光との
ビート信号により検波する光ヘテロダイン検波の光受信
方式に関するものである。
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] Akira Motoiso relates to an optical reception method of optical heterodyne detection in which signal light and local light oscillated from a local oscillator are detected using a beat signal. It is something.

[従来の技術] 光ヘテロダイン検波は信号光と局部発振器から発振され
る局発光とのビート信号により検波するため、微弱な信
号を受信する方式として優れており、種々のn1測器等
に用いられている。
[Prior art] Optical heterodyne detection uses a beat signal of signal light and local light oscillated from a local oscillator to detect the signal, so it is an excellent method for receiving weak signals and is used in various N1 measuring instruments. ing.

第5図は従来のヘテロダイン検波方式による光フアイバ
後方散乱光測定装置の構成を示す。
FIG. 5 shows the configuration of an optical fiber backscattered light measuring device using a conventional heterodyne detection method.

同図において、1はレーザ光源駆動回路、2はレーザ光
源、3は光分岐器、4は音響光学型光スイッチ、5は光
分岐器、6は被測定光ファイバ、7は光合波器、8は音
響光学型光スイッチ4を駆動させる音響光学型光スイッ
チ駆動回路、9は基準信号発生器、10は受光器、11
はビート信号増幅器、12はバンドパスフィルタ、13
は検波器、14はローパスフィルタ、15は蓄積加算部
15aと信号処!!1部15bとを有する信号処理器、
16は表示器、Aは受光器10、ビート信号増幅器11
.バンドパスフィルタ12.検波器13及びローパスフ
ィルタ14から構成される光受信部である。
In the figure, 1 is a laser light source drive circuit, 2 is a laser light source, 3 is an optical splitter, 4 is an acousto-optic optical switch, 5 is an optical splitter, 6 is an optical fiber to be measured, 7 is an optical multiplexer, 8 1 is an acousto-optic optical switch driving circuit that drives the acousto-optic optical switch 4; 9 is a reference signal generator; 10 is a light receiver;
is a beat signal amplifier, 12 is a band pass filter, 13
is a detector, 14 is a low-pass filter, and 15 is an accumulation adder 15a and a signal processor! ! a signal processor having a first part 15b;
16 is a display, A is a light receiver 10, and a beat signal amplifier 11
.. Bandpass filter 12. This is an optical receiving section composed of a detector 13 and a low-pass filter 14.

従来、この種の4測装置ではコヒーレンシーの良い、即
ちスペクトル線幅が狭く安定な発信周波rlfoを有す
る出力光Laを得るようにレーザ光源2をレーザ光源駆
動回路1で制御して連続発振出力させ、レーザ光it!
2の出力光1aを光分岐器3で二つに分け、一方の光を
音響光学型光スイッチ4に導き、パルス波形で強度変調
が施された超音波駆動信号sbを音響光学型光スイッチ
4の音響型光学素子に加え音響光学型光スイッチ4に導
かれた信号光1−bを昌菅光学効果による光の回折と光
周波数偏移とにより、超音波の周波数faだけ周波数が
偏移した光パルス信号1cに変換している。
Conventionally, in this type of four-meter measuring device, a laser light source 2 is controlled by a laser light source driving circuit 1 to output continuous oscillation so as to obtain an output light La having good coherency, that is, a narrow spectral linewidth and a stable oscillation frequency rlfo. , Laser light it!
The output light 1a of 2 is split into two by an optical splitter 3, one of the lights is guided to an acousto-optic optical switch 4, and an ultrasonic drive signal sb intensity-modulated with a pulse waveform is sent to an acousto-optic optical switch 4. The signal light 1-b guided to the acousto-optic optical switch 4 in addition to the acousto-optic element is shifted in frequency by the ultrasonic frequency fa due to light diffraction and optical frequency shift due to the Shosuga optical effect. It is converted into an optical pulse signal 1c.

この周波数f。+faの光パルス信号しCを光分岐器5
を介し光パルスldとして被測定光ファイバ6に導く。
This frequency f. +fa optical pulse signal and C to optical splitter 5
is guided to the optical fiber 6 to be measured as a light pulse ld.

被測定光ファイバ6内を光パルスldが伝搬していくと
き、被謂定光ファイバ6の長手方向の各部分で生じるレ
ーり散乱光のうち入射端側に戻ってくる後方散乱光1e
を光分岐器5を介して受光器10側へ導く。この光周波
数f。十f、の後方散乱光IIeと、光分岐器3によっ
てもう一方に分けられた光周波数f。の局発光L「を光
合波器7で合波し、受光器10でヘテロダイン検波する
。その結果受光器10の出力には、光周波数f。+f、
の後方散乱光Leと、光周波@foの局発光L「との差
周波数f、のビート信@SCが得られ、この電気信号は
被測定光ファイバ6から戻ってくる後方散乱光1eの強
度分布波形によって強度変調が施されている。そこでこ
のビート信号SCをビート信号増幅器11で僧幅したの
らfaを中心周波数とするバンドパスフィルタ12を通
し、検波器13で二乗検波等を行い、ローパスフィルタ
14を介して被測定光ファイバ6の長手方向に沿った後
方散乱光1eの強度分布波形であるベースバンド信号S
(f @得ることができる。
When the optical pulse ld propagates in the optical fiber 6 to be measured, backscattered light 1e that returns to the input end side of the Ray scattering light generated at each portion in the longitudinal direction of the optical fiber 6 to be measured.
is guided to the light receiver 10 side via the optical splitter 5. This optical frequency f. 10f, the backscattered light IIe, and the optical frequency f divided into the other by the optical splitter 3. The local light L" is multiplexed by the optical multiplexer 7 and heterodyne detected by the optical receiver 10. As a result, the output of the optical receiver 10 has optical frequencies f.+f,
A beat signal @SC with a difference frequency f between the backscattered light Le and the local light L with an optical frequency @fo is obtained, and this electrical signal is the intensity of the backscattered light 1e returning from the optical fiber 6 under test. Intensity modulation is performed using a distributed waveform.Therefore, this beat signal SC is filtered by a beat signal amplifier 11, passed through a bandpass filter 12 with a center frequency of fa, and square-law detection etc. are performed by a detector 13. The baseband signal S is the intensity distribution waveform of the backscattered light 1e along the longitudinal direction of the optical fiber 6 to be measured via the low-pass filter 14.
(f @ can be obtained.

被測定光ファイバ6内で生じるレーり散乱光のうちの後
方散乱光Leは極微弱光であることから、ローパスフィ
ルタ14の出力に得られる後方散乱光1−eの強度分布
波形は雑音を多く含んでいる。そこで信号電力対雑音電
力の比即ちS/Nを改善するために、信号処理器15で
は蓄積加算部15aでA/D変換した後、蓄積加算を行
ないS/Nの改善を行って、次いで信号処理部15bで
信号処理が施された後方散乱光しe波形を表示器16に
出力していた。このとき、光パルスldの被測定光ファ
イバ6への入射のタイミングと、受光された後方散乱光
1eの信号処理のタイミングは同期をとって行なう必要
があり、この場合の同期信@Saは基準信号発生器9に
よって与えられる。
Since the backscattered light Le of the Ley scattered light generated in the optical fiber 6 to be measured is extremely weak light, the intensity distribution waveform of the backscattered light 1-e obtained at the output of the low-pass filter 14 has a lot of noise. Contains. Therefore, in order to improve the ratio of signal power to noise power, that is, the S/N, the signal processor 15 performs A/D conversion in the accumulation and addition section 15a, and then performs accumulation and addition to improve the S/N. The backscattered light, which has been subjected to signal processing in the processing section 15b, is output as an e waveform to the display 16. At this time, the timing of the incidence of the optical pulse ld into the optical fiber 6 to be measured and the timing of signal processing of the received backscattered light 1e must be synchronized, and in this case, the synchronization signal @Sa is the reference It is provided by a signal generator 9.

このような免ヘテロダイン検波方式よれば、直接検波方
式と比較し、ショットノイズ限界の検出感度が得られる
ため受光感度が大幅に向上−し、広ダイナミツクレンジ
の後方散乱光測定装置の実現が期待される。
Compared to the direct detection method, such an isolated heterodyne detection method can achieve detection sensitivity at the shot noise limit, greatly improving light receiving sensitivity, and is expected to lead to the realization of a backscattered light measuring device with a wide dynamic range. be done.

[発明が解決しようとする課題] しかしながら第5図に示す従来の構成では、戻ってくる
後方散乱光1−eの偏波面と局発光しrの偏波面が一致
して受光器10へ入射する時最大感度が得られるが、被
測定光ファイバ6内で発生するレーり散乱光のうちの後
方散乱光Leの偏波面は被測定光ファイバ6の長手方向
に沿って一定ではなくあらゆる角度の偏波面を有してい
る。従って局発光Lfの偏波面と直交する偏波面を有す
る後方散乱光1−eが入射した場合には、受光器10で
ヘテロダイン検波して得られる後方散乱光1eの信号成
分は零となる。
[Problems to be Solved by the Invention] However, in the conventional configuration shown in FIG. 5, the polarization plane of the returning backscattered light 1-e matches the polarization plane of the local light r, which enters the light receiver 10. However, the plane of polarization of the backscattered light Le of the Ley scattered light generated within the optical fiber 6 to be measured is not constant along the longitudinal direction of the optical fiber 6 to be measured, but is polarized at any angle. It has a wave front. Therefore, when the backscattered light 1-e having a polarization plane orthogonal to the polarization plane of the local light Lf is incident, the signal component of the backscattered light 1e obtained by heterodyne detection by the light receiver 10 becomes zero.

このように、従来の計測装置では、ヘテロダイン検波の
利点が十分活かされておらず、被測定光ファイバ6の長
手方向に沿ったレーり散乱光のうちの後方散乱光1eの
分布波形の測定結果が後方散乱光Leの偏波面に大きく
依存しているため長手方向に沿った損失分布や破断点の
検出を精度良く行えない欠点があった。
As described above, with conventional measuring devices, the advantages of heterodyne detection are not fully utilized, and the measurement result of the distribution waveform of the backscattered light 1e of the Leigh scattered light along the longitudinal direction of the optical fiber 6 to be measured is Since it largely depends on the plane of polarization of the backscattered light Le, there is a drawback that the loss distribution along the longitudinal direction and the break point cannot be detected with high precision.

一方、光ファイバを伝搬してきた信号光と局発光との偏
波とを極カ一致させて受光する光フアイバ通信の偏波ダ
イパーシティ−光受信方式%式% 第6図は従来の偏波ダイパーシティ−光受信方式のブロ
ック図である。ここで1oは光フアイバ伝送路FOを伝
搬してきた信号光、21は局発光し1を発振する局発用
レーザ、22は信号光し、0と局発光L1とを合波する
ための光合波器、23は合波された信号光LOと局発光
し1とを直交偏波成分に分離するための偏光分離素子、
24a、24bはそれぞれ直交する信号光1oと局発光
L1とが合波された光のビート成分を電気信号81.S
2にそれぞれ変換して検波するための光受信部、25は
光量(i部24a、24bの出力である受信電気信号8
1.82に対してダイパーシティ−合成及び復調を行い
データ出力信号S3を出力する合成・復調回路、F1〜
F4は光ファイバである。
On the other hand, polarization diversity of optical fiber communication - Optical reception system % formula % Figure 6 shows the conventional polarization diper FIG. 2 is a block diagram of a city-optical reception system. Here, 1o is the signal light propagated through the optical fiber transmission line FO, 21 is the local oscillator laser that emits the local light and oscillates 1, and 22 is the signal light, which is an optical multiplexer for combining 0 and the local light L1. 23 is a polarization separation element for separating the combined signal light LO and local light 1 into orthogonal polarization components;
24a and 24b convert the beat components of the light obtained by combining orthogonal signal light 1o and local light L1 into electrical signals 81. S
2, a light receiving section 25 for converting and detecting the received electrical signal 8 which is the output of the i section 24a, 24b;
A synthesis/demodulation circuit that performs diversity synthesis and demodulation for 1.82 and outputs a data output signal S3, F1~
F4 is an optical fiber.

従ってこのような第6図による偏波ダイパーシティ−光
受光方式は、局発光と受信光との偏波面を一致させて検
波するため、受信光の偏波状態の変動に対しても安定な
受光感度を得ることができ、かつリアルタイムで検波す
ることができる利点を有する。しかし、光受信部24a
及び24bは第5図に示した受光器10.ビート信号増
幅器11.バンドパスフィルタ12゜検波器13及びロ
ーパスフィルタ14から構成される光受信部Aと同一構
成にする必要があり、¥A@が極めて複雑となる欠点が
あった。よって単に第6図で示した偏波ダイパーシティ
−光受信方式を第5図の計測装置に適用しても装置が大
型化し、目測装置が高価になってしまうという欠点があ
った。
Therefore, in the polarization diversity optical reception method shown in Fig. 6, since the polarization planes of the local light and the received light are matched and detected, stable light reception is possible even when the polarization state of the received light changes. It has the advantage of being able to obtain high sensitivity and detecting waves in real time. However, the optical receiver 24a
and 24b are the light receivers 10. and 24b shown in FIG. Beat signal amplifier 11. It is necessary to have the same configuration as the optical receiver A consisting of a bandpass filter 12° detector 13 and a low-pass filter 14, which has the disadvantage that \A@ becomes extremely complicated. Therefore, even if the polarization diversity optical reception method shown in FIG. 6 is simply applied to the measuring device shown in FIG. 5, there is a drawback that the device becomes large and the visual measuring device becomes expensive.

本発明は前記した従来技術の欠点を解決するためになさ
れたもので、装置構成が簡単で、かつ高精度の光受信が
可能な光ヘテロダイン検波の光受信方式を提供せんとす
るものである。
The present invention has been made in order to solve the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide an optical reception system of optical heterodyne detection that has a simple device configuration and is capable of highly accurate optical reception.

(2)発明の構成 [課題を解決するための手段] 本発明の光ヘテロダイン検波の光受信方式は、信号光と
局部発振器から発振される局発光とのビート信号により
検波する光ヘテロダイン検波の光受信方式において、前
記信号光を発振する信号光用発振器と前記局部発振器と
を1つの発振器で構成したレーザ光源と、該レー晋f光
源から発した入射光を進行方向が変化する回折光と進行
方向が変化しない非回折光とに光学的に切り替える音響
型光学素子と、該音響型光学素子を予め定めた周期で切
り替え制御する制御手段とを有し、前記音響型光学素子
のオン時の該回折光とオフ時の該非回折光をそれぞれ信
号光及び局発光に用いるように切り替え制御自在に構成
する。他方前記局発光の光路中に配置された偏波面切替
えスイッチにより、予め定められた周期で前記局発光の
偏波面を直交方向に交Hに切り替えてヘテロダイン検波
を行ったのち、該光ヘテロダイン検波されたそれぞれの
直交成分を少なくとも1回蓄積加算して前記信号光を受
信せんとするものである。
(2) Structure of the Invention [Means for Solving the Problems] The optical reception method of optical heterodyne detection of the present invention is an optical reception method of optical heterodyne detection in which the optical heterodyne detection is detected by a beat signal of signal light and local light oscillated from a local oscillator. In the reception method, a laser light source is configured in which a signal light oscillator that oscillates the signal light and the local oscillator are configured in one oscillator, and an incident light emitted from the laser light source is transmitted as diffracted light whose traveling direction changes. It has an acousto-optical element that optically switches to non-diffracted light whose direction does not change, and a control means that controls switching of the acousto-optical element at a predetermined cycle, and the control means controls the switching of the acousto-optical element at a predetermined period. The diffracted light and the non-diffracted light when off are configured to be switchable and controllable, respectively, to be used as signal light and local light. On the other hand, a polarization plane changeover switch disposed in the optical path of the local light beam switches the polarization plane of the local light beam to an orthogonal direction at a predetermined period to perform heterodyne detection, and then the optical heterodyne detection is performed. The signal light is received by accumulating and adding the respective orthogonal components at least once.

要するに本発明の第1の特徴は、予め定められた周期で
該局発光の偏波面を直交方向に交Hに切り替えてヘテロ
ダイン検波を行ったのち、該ヘテロダイン検波されたそ
れぞれの直交成分を少なくとも1回蓄積加算して前記信
号光を受信することにある。
In short, the first feature of the present invention is that after heterodyne detection is performed by switching the polarization plane of the local light to cross H in the orthogonal direction at a predetermined period, each of the heterodyne detected orthogonal components is The purpose is to receive the signal light by accumulating and adding the signal light.

本発明による第2の特徴は、名響光学型光スイッヂ4の
オン時とオフ時の再出力光を利用して従来装置で用いた
光分岐器3を省略し、光分岐器3の挿入損を防ぐと共に
装置構成を簡略化したものである。
The second feature of the present invention is that the optical splitter 3 used in the conventional device is omitted by using the re-output light when the Meikyo optical switch 4 turns on and off, and the insertion loss of the optical splitter 3 is reduced. This prevents this problem and simplifies the device configuration.

[実 施 例1] 図面を用いて本発明の第1実施例を詳細に説明する。[Implementation Example 1] A first embodiment of the present invention will be described in detail using the drawings.

第1図は本発明による光ヘテロダイン検波の光受信方式
を用いた光フアイバ後方散乱光測定装置の構成図であり
、17は光フアイバ遅延線、1Bは直交偏波切替スイッ
チ、19は直交偏波切台スイッチ駆動回路であり、その
他の構成要素は従来の第5図の構成要素と同じである。
FIG. 1 is a configuration diagram of an optical fiber backscattered light measuring device using an optical reception method of optical heterodyne detection according to the present invention, in which 17 is an optical fiber delay line, 1B is an orthogonal polarization switch, and 19 is an orthogonal polarization switch. This is a base switch drive circuit, and the other components are the same as the conventional components shown in FIG.

但し従来の構成においては、音響光学型光スイッチ4は
、オン時の光信号しか用いていないが本発明では、オン
時とオフ時の再出力光を利用して光分岐器3を省略した
構成となっている。
However, in the conventional configuration, the acousto-optic optical switch 4 uses only the optical signal when it is on, but in the present invention, the optical splitter 3 is omitted by using the re-output light when it is on and off. It becomes.

[作   用1] まず、本発明の第1実施例について説明する。[Creation 1] First, a first embodiment of the present invention will be described.

前記のごとくヘテロダイン検波を行うには、被検出光信
号である後方散乱光Leの偏波面と局発光しfの偏波面
とが一致している時最大の検出感度が得られ、これらの
偏波面が互いに直交しているとヘテロダイン検波を行う
ことはできない。今検出すべき後方散乱光1eの電界強
度ESが一定でかつ偏波面(以下[偏波面Fs Jと称
す)が破線の円周上の任意の点にあり、直線偏波の局発
光Lfの電界強度Eが一定でかつ偏波面が第2図(a)
及び(b)に示すようにy軸またはy軸で・ある峙、光
受信部Aの検波器13の出力にて得られるベースバンド
信号sdの強度は第3図(a)及び(b)に示すように
なる。まず、−第2図(a)の場合、受光器1oでヘテ
ロダイン検波して得られるビート信@scの大きさは、
ES −EX −CO3θに比例する。但し、ESは後
方散乱光Leの電界強度、EXはX軸方向の偏波面(以
下「偏波面Fx Jと称す)を有する局発光1−fの電
界強度、θは後方散乱光Leの偏波面FSと局発光の偏
波面Fxとのなす角度である。この場合、2乗検波等を
施す検波器13の出力に得られるベースバンド信MSd
の強度はcos 2θに比例し、θと規格化されたベー
スバンド信号Sd強度の関係は第3図(a)のようにな
る。同様に、第2図(b)の場合、ヘテロダイン検波し
て得られるビート信号SCの大きさは、ES −EV−
sinθに比例する。但し、EyはY軸方向の偏波面(
以下、「偏波面Fy Jと称す)を有する局発光1−f
の電界強度であり、θは後方散乱光Leの偏波面Fsと
y軸のなす角である。従って、ベースバンド信号Sdの
強度はsin 2θに比例し、θとベースバンド信号S
dの強度の関係は第3図(b)の様になる。このように
偏波補償がなされていない従来の光受信方式では角度θ
に応じてヘテロダイン検波の効率が0と1の間をとる。
To perform heterodyne detection as described above, the maximum detection sensitivity is obtained when the polarization plane of the backscattered light Le, which is the optical signal to be detected, and the polarization plane of the local light emitted f match, and these polarization planes If they are orthogonal to each other, heterodyne detection cannot be performed. The electric field strength ES of the backscattered light 1e to be detected now is constant, the polarization plane (hereinafter referred to as the polarization plane Fs J) is at an arbitrary point on the circumference of the broken line, and the electric field of the linearly polarized local light Lf The intensity E is constant and the plane of polarization is as shown in Figure 2 (a).
And as shown in (b), the intensity of the baseband signal sd obtained at the output of the detector 13 of the optical receiver A at a certain angle on the y-axis or y-axis is shown in FIGS. 3(a) and (b). It comes to show. First, in the case of Fig. 2 (a), the magnitude of the beat signal @sc obtained by heterodyne detection with the optical receiver 1o is:
Proportional to ES -EX -CO3θ. However, ES is the electric field strength of the backscattered light Le, EX is the electric field strength of the local light 1-f having a polarization plane in the X-axis direction (hereinafter referred to as "polarization plane Fx J"), and θ is the polarization plane of the backscattered light Le. It is the angle between FS and the polarization plane Fx of the local light. In this case, the baseband signal MSd obtained at the output of the detector 13 that performs square-law detection etc.
The strength of is proportional to cos 2θ, and the relationship between θ and the standardized baseband signal Sd strength is as shown in FIG. 3(a). Similarly, in the case of FIG. 2(b), the magnitude of the beat signal SC obtained by heterodyne detection is ES −EV−
It is proportional to sin θ. However, Ey is the plane of polarization in the Y-axis direction (
Hereinafter, the local light 1-f having the "polarization plane Fy J"
is the electric field strength, and θ is the angle between the polarization plane Fs of the backscattered light Le and the y-axis. Therefore, the strength of the baseband signal Sd is proportional to sin 2θ, and θ and baseband signal S
The relationship between the intensity of d is as shown in FIG. 3(b). In this way, in conventional optical receiving systems that do not have polarization compensation, the angle θ
The efficiency of heterodyne detection ranges between 0 and 1 depending on .

従って一定方向に偏波面が固定している直線偏波の局発
光しrで受けた場合、被測定光ファイバ6の艮手力向に
沿った各部分から散乱されて戻ってくる後方散乱光1e
の偏波面Fsは、各部分に応じてあらゆる角度を有して
いるため常に高効率で受信できるとは限らない。
Therefore, when the linearly polarized local light whose plane of polarization is fixed in a certain direction is received by r, the backscattered light 1e is scattered and returned from each part of the optical fiber 6 to be measured along the direction of the force.
Since the polarization plane Fs has various angles depending on each part, it is not always possible to receive it with high efficiency.

第2図(C)及び第3図(C)は、第1図に示す本発明
による光受信方式を用いた場合の局発光しfの偏波面F
 x、 F yと後方散乱光しeの偏波面Fsのなす角
度の関係及びθとベースバンド信@Sd強度の関係図で
ある。本発明の光受信方式で、第1図に示すごとく直交
偏波切替スイッチ18で局発光し「の偏波面を直交する
ように偏波面Fxと偏波面Fyとに順次切り替える。
FIGS. 2(C) and 3(C) show the polarization plane F of the local light beam f when using the optical receiving system according to the present invention shown in FIG.
It is a diagram showing the relationship between x, F y and the angle formed by the polarization plane Fs of backscattered light e, and the relationship between θ and baseband signal @Sd intensity. In the optical reception system of the present invention, as shown in FIG. 1, local light is emitted using an orthogonal polarization changeover switch 18, and the plane of polarization is sequentially switched between Fx and Fy so that the planes of polarization are orthogonal.

切替えのタイミングは光パルスL、 dを被測定光ファ
イバ6に入射させて戻ってくる後方散乱光1−eの一波
形を得るたびに毎回切替えても良いしぐ光パルスldを
被測定光ファイバ6に入射させて戻って来る後り散乱光
1−eの強度分布波形をある一定回数得る間X軸方向の
偏波面1”xに保持し、引き続いて同一回数の後方散乱
光Leの強度分布波形を得る間Y軸方向の偏波面Fyに
保持させ、この動作を繰り返してもよい。
The switching timing may be changed every time the optical pulses L and d are input into the optical fiber 6 to be measured and a waveform of the backscattered light 1-e is obtained. The intensity distribution waveform of the backscattered light 1-e that is incident on the backscattered light 1-e that is incident on the backscattered light 1-e is maintained at the polarization plane 1"x in the X-axis direction for a certain number of times, and then the intensity distribution of the backscattered light Le that is made the same number of times is This operation may be repeated while maintaining the polarization plane Fy in the Y-axis direction while obtaining the waveform.

このスイッチの切替え信号は基準信号発生器9の出力同
期信号Saをもとにして直交偏波切替スイッチ駆動回路
19にて(qる。被測定光ファイバ6の長手方向に沿っ
たある部分から戻ってくる後方散乱光1 eの検波後の
ベースバンド信号Sdは、局発光し「の偏波面がX軸り
向かあるいはy軸方向かによって異なるが、局発光Lf
の偏波面がX軸方向の時に得られるベースバンド信号3
dと局発光Lfの偏波面がY軸方向の時に得られるベー
スバンド信号Sdを信号処理器15の蓄積加算部15a
で少なくとも1回以上加算することにより、第3図(C
)に示す様に、θの値によらず、常に効率1の状態で後
方散乱光1−eを受信できる。また直交偏波切替スイッ
チ18は、例えばカー効果を有するニオブ酸すチュウム
(LiNb03)等の光学素子を用いれば容易に実現出
来る。このように本発明によれば、被測定光ファイバ6
の長手方向に沿って散乱されて戻ってくる極微弱な後方
散乱光1eをその偏波面Fsの方向に無関係に常に効率
よくヘテロダイン検波でき、高性能の後方散乱光測定H
置を実現できる。
The switching signal of this switch is generated by the orthogonal polarization changeover switch drive circuit 19 (q) based on the output synchronization signal Sa of the reference signal generator 9. The baseband signal Sd after detection of the incoming backscattered light 1e is the local light Lf, although it differs depending on whether the plane of polarization is along the X-axis or the Y-axis.
Baseband signal 3 obtained when the plane of polarization is in the X-axis direction
d and the baseband signal Sd obtained when the polarization plane of the local light Lf is in the Y-axis direction.
By adding at least once in Figure 3 (C
), the backscattered light 1-e can always be received with an efficiency of 1 regardless of the value of θ. Further, the orthogonal polarization changeover switch 18 can be easily realized by using an optical element such as niobium oxide (LiNb03) having the Kerr effect. As described above, according to the present invention, the optical fiber to be measured 6
The extremely weak backscattered light 1e that is scattered along the longitudinal direction and returns can be always efficiently heterodyne detected regardless of the direction of its polarization plane Fs, making it possible to perform high-performance backscattered light measurement H.
It is possible to realize the

なお、ここで用いたヘテロダイン検波の際の局発光しr
の直交偏波切替による偏波補償法は、光ファイバ侵方散
乱光澗定に限らず、例えばりモートセンシングの分野に
おける分光装置や、大気分子の観測等に用いるレーザレ
ーダ装置等のようにベースバンド信号Sdの蓄積加算処
理を行う装置に広く適用することができる。
It should be noted that the local light emitted during the heterodyne detection used here
The polarization compensation method using orthogonal polarization switching is not limited to optical fiber transgressively scattered light acquisition, but is also used in applications such as spectrometers in the field of remote sensing, laser radar devices used for observing atmospheric molecules, etc. The present invention can be widely applied to devices that perform accumulation and addition processing on band signals Sd.

[実 施 例2] 次に本発明の第2実施例である音響光学型光スイッチ4
を用いた場合について説明する。
[Example 2] Next, an acousto-optic optical switch 4 which is a second example of the present invention
We will explain the case using .

第4図は本発明方式に用いる音響光学型光スイッチ4の
動作説明図である。同図において、4a−は音響型光学
素子、laはレーデ光源2からの出力光、LCは回折信
号光、Lfは非回折局発光、sbは超音波駆動信号であ
る。
FIG. 4 is an explanatory diagram of the operation of the acousto-optic optical switch 4 used in the method of the present invention. In the figure, 4a- is an acoustic optical element, la is the output light from the Rade light source 2, LC is the diffracted signal light, Lf is the non-diffracted local light, and sb is the ultrasonic driving signal.

[作   用2] 本発明方式において二酸化テルル(TeO2)のような
音響光学効果の効率の高い8響型光学素子4aに、キャ
リア周波数f8の超音波駆動信号4bを加えると光学素
子内に光弾性効果により屈折率の粗密が生じ光周波数f
。の出力光しaの入射は回折信号光LCとして出力され
る。
[Function 2] In the method of the present invention, when an ultrasonic driving signal 4b with a carrier frequency f8 is applied to an 8-tone optical element 4a having a high acousto-optic effect such as tellurium dioxide (TeO2), photoelasticity is generated within the optical element. The effect causes density and density of the refractive index, and the optical frequency f
. The incident output light a is output as a diffracted signal light LC.

この時の光周波数はドツプラーシフトを受は超音波周波
数f が加わり、fo+f8となる。
At this time, the optical frequency undergoes a Doppler shift and the ultrasonic frequency f is added to it, resulting in fo+f8.

一方、超音波を加えない時、即ちオフ時には、出力光し
aの入射はそのまま非回折局発光1rとして光学素子を
通過する。この時の光の周波数は入射光f。と同じであ
る。従って第4図に示すような音響光学型光スイッチ4
の特性を利用すれば、従来では問題であった光分岐器3
により生ずる光パワーの分岐損がなく、しかもへテロゲ
イン検波に必要な一定周波数を有する信号光LCと局発
光1−fを得ることができ、構成のl!!木化と同時に
後方散乱光Leの検出効果が高められる。
On the other hand, when the ultrasonic wave is not applied, that is, when it is off, the incident output light a passes through the optical element as it is as the non-diffracted local light 1r. The frequency of the light at this time is the incident light f. is the same as Therefore, an acousto-optic optical switch 4 as shown in FIG.
By utilizing the characteristics of the optical splitter 3, which was a problem in the past,
It is possible to obtain the signal light LC and the local light 1-f that have a constant frequency necessary for hetero gain detection without the branching loss of optical power caused by the l! of the configuration. ! At the same time as lignification, the detection effect of the backscattered light Le is enhanced.

第1図において、音響光学型光スイッチ4がオンの間は
局発光Lfが存在しないので、スイッチ4がオフの状態
になって局発光しfが発生し光合波7に到達するまで、
被測定光ファイバ6で発生した後方散乱光1.eが戻っ
て来ないように光パルス幅即ちスイッチ4がオンの時間
に相当する伝搬時間を与える光フアイバ遅延線17を音
響光学型光スイッチ4と光分岐器5の間に配置している
In FIG. 1, since the local light Lf does not exist while the acousto-optic optical switch 4 is on, the switch 4 turns off and the local light Lf is generated until it reaches the optical multiplexer 7.
Backscattered light generated in the optical fiber 6 to be measured 1. An optical fiber delay line 17 is placed between the acousto-optic optical switch 4 and the optical splitter 5 to provide an optical pulse width, that is, a propagation time corresponding to the time during which the switch 4 is on, so that the signal e does not return.

(3)発明の効果 かくして、本発明は予め定められた周期で局発光の偏波
面を直交方向に交豆に切り替えてヘテロダイン検波を行
った後、ヘテロダイン検波された直交成分をそれぞれ蓄
積加算して前記信号光を受信することにより、光受信部
Aの構成を1系統用いるだけの簡単な構成で、かつ受信
感度の良い光受信方式が実現できる。
(3) Effects of the invention Thus, the present invention performs heterodyne detection by switching the polarization plane of local light to orthogonal directions at a predetermined period, and then accumulates and adds the heterodyne-detected orthogonal components. By receiving the signal light, it is possible to realize an optical reception system with a simple configuration using only one system of the optical receiver A and with good reception sensitivity.

ま、たg青光学型光スイッチ4のオン時とオフ時の再出
力光を・利用することにより、光分岐器3を省略し、光
分岐器3の挿入損を防ぐと共に装置構成を簡略化するこ
とが可能となる。
In addition, by using the re-output light when the blue optical switch 4 turns on and off, the optical splitter 3 is omitted, preventing insertion loss of the optical splitter 3 and simplifying the device configuration. It becomes possible to do so.

従って、本発明はベースバンド信号の蓄積加算処理がで
きる計測装置及び光通信等の光受信方式に適用でき、そ
の効果が大である。
Therefore, the present invention can be applied to a measuring device capable of accumulating and adding baseband signals and an optical receiving system such as optical communication, and has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光フアイバ後方散乱光測定方式の
構成図、第2図乃至第3図(a’1(b)(C)はレー
り散乱光のうち後方散乱光の偏波面と局発光のなす角度
とベースバンド信号強度の関係を示(図、第4図は本発
明に用いる音響光学型光スイッチの動作図、第5図は従
来のヘテロダイン検波による光フアイバ後方散乱光測定
方式の構成図、第6図は従来の偏波ダイパーシティ光受
信方式の構成図である。 1・・・レーザ光源駆動回路 2・・・レーザ光源    3・・・光分岐器4・・・
音響光学型光スイッチ 4a・・・音響光学素子  5・・・光分岐器6・・・
被測定光ファイバ 7・・・光合波器8・・・音響光学
型光スイッチ駆動回路9・・・基準信号発生器  10
・・・受光器11・・・ビート信号増幅器 12・・・バンドパスフィルタ 13・・・検波器 14・・・ローパスフィルタ 15・・・信号処理器   15a・・・蓄積加算部1
5b・・・信号処理部  16・・・表示器17・・・
光フアイバ遅延線 18・・・直交偏波切替スイッチ 19・・・直交偏波切替スイッチ駆動回路21・・・局
発用レーザ  22・・・光合波器23・・・偏光分離
素子 24a、24b・・・光受信部 25・・・合成・復調回路 la・・・出力光     Lb・・・信号光しC・・
・光パルス信号  1d・・・光パルスle・・・後方
散乱光   1−f・・・局発光Sa・・・同期信号 
   sb・・・超音波駆動信号Sc−・・ビート信号 Sd・・・ベースバンド信号 第2図        第3図
FIG. 1 is a block diagram of the optical fiber backscattered light measurement method according to the present invention, and FIGS. The relationship between the angle formed by light emission and the baseband signal intensity is shown in Figure 4. Figure 4 is an operational diagram of the acousto-optic optical switch used in the present invention, and Figure 5 is a diagram of the optical fiber backscattered light measurement method using conventional heterodyne detection. 6 is a block diagram of a conventional polarization diversity optical reception system. 1... Laser light source drive circuit 2... Laser light source 3... Optical splitter 4...
Acousto-optic optical switch 4a... Acousto-optic element 5... Optical splitter 6...
Optical fiber to be measured 7... Optical multiplexer 8... Acousto-optic optical switch drive circuit 9... Reference signal generator 10
... Photoreceiver 11 ... Beat signal amplifier 12 ... Band pass filter 13 ... Detector 14 ... Low pass filter 15 ... Signal processor 15a ... Accumulation adder 1
5b...Signal processing unit 16...Display unit 17...
Optical fiber delay line 18... Orthogonal polarization changeover switch 19... Orthogonal polarization changeover switch drive circuit 21... Local oscillator laser 22... Optical multiplexer 23... Polarization separation elements 24a, 24b.・・Optical receiving section 25 ・・Synthesizing/demodulating circuit la ・・Output light Lb ・・Signal light C ・・
・Light pulse signal 1d...Light pulse le...Backscattered light 1-f...Local light Sa...Synchronization signal
sb...Ultrasonic drive signal Sc-...Beat signal Sd...Baseband signal Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】 1、信号光と局部発振器から発振される局発光とのビー
ト信号により検波する光ヘテロダイン検波の光受信方式
において、 前記局発光の光路中に配置された偏波面切替スイッチに
より、予め定められた周期で前記局発光の偏波面を直交
方向に交互に切り替えてヘテロダイン検波を行ったのち
、該光ヘテロダイン検波されたそれぞれ直交成分を少な
くとも1回累積加算して前記信号光を受信することを特
徴とする光ヘテロダイン検波の光受信方式 2、信号光と局部発振器から発振される局発光とのビー
ト信号より検波する光ヘテロダイン検波の光受信方式に
おいて、 前記信号光を発振する信号光用発振器と前記局部発振器
とを1つの発振器で構成したレーザ光源と、 該レーザ光源からの出力光を進行方向が変化する回折光
と進行方向が変化しない非回折光とに光学的に切り替え
る音響型光学素子と、 該音響型光学素子を予め定めた周期で切り替え制御する
制御手段とを有し、 前記音響型光学素子のオン時の該回折光1とオフ時の該
非回折光とをそれぞれ信号光及び局発光に用いるように
切り替え制御するように構成したことを特徴とする光ヘ
テロダイン検波の光受信方式
[Claims] 1. In an optical reception method of optical heterodyne detection in which signal light and local light emitted from a local oscillator are detected by a beat signal, the polarization plane switching switch arranged in the optical path of the local light , after performing heterodyne detection by alternately switching the polarization plane of the local light in orthogonal directions at a predetermined period, cumulatively adding the orthogonal components detected by the optical heterodyne at least once, and receiving the signal light. Optical heterodyne detection optical reception method 2 is characterized in that the optical heterodyne detection optical reception method detects from a beat signal of a signal light and local light oscillated from a local oscillator, wherein the signal light oscillates the signal light. a laser light source configured with a single oscillator and the local oscillator, and an acoustic type that optically switches the output light from the laser light source into diffracted light whose traveling direction changes and non-diffracted light whose traveling direction does not change. an optical element; and a control means for switching and controlling the acoustic optical element at a predetermined period, and converts the diffracted light 1 when the acoustic optical element is on and the non-diffracted light when the acoustic optical element is off into signal lights, respectively. and an optical reception system for optical heterodyne detection, characterized in that it is configured to perform switching control so as to be used for local light.
JP63229796A 1988-09-16 1988-09-16 Optical receiving method of optical heterodyne detection Expired - Fee Related JPH07109464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229796A JPH07109464B2 (en) 1988-09-16 1988-09-16 Optical receiving method of optical heterodyne detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229796A JPH07109464B2 (en) 1988-09-16 1988-09-16 Optical receiving method of optical heterodyne detection

Publications (2)

Publication Number Publication Date
JPH0279034A true JPH0279034A (en) 1990-03-19
JPH07109464B2 JPH07109464B2 (en) 1995-11-22

Family

ID=16897811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229796A Expired - Fee Related JPH07109464B2 (en) 1988-09-16 1988-09-16 Optical receiving method of optical heterodyne detection

Country Status (1)

Country Link
JP (1) JPH07109464B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071741A (en) * 2008-09-17 2010-04-02 Toshiba Corp Piping thickness measurement method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071741A (en) * 2008-09-17 2010-04-02 Toshiba Corp Piping thickness measurement method and device

Also Published As

Publication number Publication date
JPH07109464B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
US10935398B2 (en) Distributed acoustic sensing
US3891321A (en) Optical method and apparatus for measuring the relative displacement of a diffraction grid
US6819432B2 (en) Coherent detecting receiver using a time delay interferometer and adaptive beam combiner
US3482436A (en) Vibration responsive apparatus
EP0245026B1 (en) Optical heterodyne mixers providing image-frequency rejection
CA1308440C (en) Optical receiving method utilizing polarization diversity and apparatus for carrying out the same
CN208367213U (en) Using the Twin-beam laser Doppler velocity system of phase-modulator
JPS59122140A (en) Optical heterodyne detector
CN110749371A (en) Polarization laser Doppler vibration measurement system
US3503682A (en) Optical mixing devices
CA1308938C (en) Heterodyne michelson interferometer for polarization measurements
JPH0279034A (en) Optical reception system for optical heterodyne detection
JPS60242435A (en) Polarization diversity optical receiver
JP3443810B2 (en) Polarization control circuit
JPH02311722A (en) Optical-sampling-waveform measuring apparatus
CN210953094U (en) Polarization laser Doppler vibration measurement system
CN112305550A (en) Coherent detection device and method
JPH08278202A (en) Optical device for polarization analysis and polarization analyzer using the device
JPH11325815A (en) Interference length measuring apparatus
CN114964329B (en) Double-sideband optical frequency domain reflectometer
JPS63224427A (en) Method and device for polarization diversity optical reception
SU1099284A1 (en) Laser doppler speed meter
JP2507790B2 (en) Semiconductor laser FM modulation characteristic measuring device
US4790656A (en) Dual homodyne detection system to measure asymmetric spectrum by using angle mirrors
SU1221502A1 (en) Laser vibration meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees