JPH0278780A - Cylinder suspension control mechanism of multi-cylinder rotating compressor - Google Patents

Cylinder suspension control mechanism of multi-cylinder rotating compressor

Info

Publication number
JPH0278780A
JPH0278780A JP23028988A JP23028988A JPH0278780A JP H0278780 A JPH0278780 A JP H0278780A JP 23028988 A JP23028988 A JP 23028988A JP 23028988 A JP23028988 A JP 23028988A JP H0278780 A JPH0278780 A JP H0278780A
Authority
JP
Japan
Prior art keywords
cylinder
compression element
refrigerant
slider
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23028988A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kawasaki
川崎 勝行
Taiichi Kobayakawa
泰一 小早川
Yoshinori Shirafuji
好範 白藤
Satoshi Suzuki
聡 鈴木
Katsuyoshi Wada
和田 克良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23028988A priority Critical patent/JPH0278780A/en
Publication of JPH0278780A publication Critical patent/JPH0278780A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the temperature increase of a compression element with a simple structure by providing such a constitution as providing a blocking means for blocking an inlet pipe by the pressure of a high pressure refrigerant solution for external refrigeration and air conditioning cycle at the time of cylinder suspension and introducing the high pressure refrigerant solution into the compression element. CONSTITUTION:A crank shaft 2 is rotated by an electric element 1 to rotate rolling pistons 5a, 5b in determined directions through eccentric parts 4a, 4b having the phases shifted at 180 deg. to each other. When a refrigerant gas to be compressed is taken in from inlet pipes 16a, 16b and compressed, the resulting compressed refrigerant gas pushes open an exhaust valve 15, through which the gas is exhausted outside of a cylinder, namely into a sealed vessel 10. In this case, a liquid refrigerant feed pipe 28 for leading the liquid refrigerant to the slider 18 lower space of a suspended cylinder control mechanism 21 at the time of cylinder suspension control and also communicating between the slider 18 lower space and the inlet chamber side of the suspended cylinder side compression element is provided. Hence, the liquid refrigerant is fed to the suspended cylinder side compression element in the cylinder suspension operation, and then evaporated with taking the heat of evaporation within the compression element, whereby the compression element is cooled.

Description

【発明の詳細な説明】 〔卒業上の利用分野〕 この発明は冷凍・空調システムに搭載される多気筒回転
式圧縮機に関し、特に休筒による能力制御が可能な多気
筒回転式圧縮機に関するものである。
[Detailed Description of the Invention] [Graduation Field of Application] This invention relates to a multi-cylinder rotary compressor installed in a refrigeration/air conditioning system, and particularly relates to a multi-cylinder rotary compressor whose capacity can be controlled by cylinder deactivation. It is.

〔従来の技術〕[Conventional technology]

第5図は特願昭81−232604号(昭和61年9月
30日出願)によって出願人が先に提案し几従来の休筒
による能力制御可能な多気筒回転式圧縮機を示す縦断面
図である。第5図において、(1)は電動要素、(2)
はこの電動要素(1)の回転出力を圧縮要素(3)に伝
えるクランク軸、(4・)、(4b)はこのクランク軸
+2)に互いに180度位相をずらして設けられ九個芯
部、  (5a)、(5b)は偏芯部(4a) 、 (
4b)  に回転自在に嵌合支持され九ローリングピス
トンである。そしてローリングピストン(5a) 、 
(5b)はそれぞれ仕切板(6)を介して上下に並設さ
れ九2個のシリンダ(7a) 、 (7b)の内部で回
転するよう忙なっている。まt、クランク軸(2)は、
各シリンF (7a) 、 (7’b)を閉塞する上軸
受(8a)および下軸受(8b)によってラジアル方向
が支えられている。ま几、軸方向に関しては、下軸受(
8b)のスラスト面(9)によって支えられている。
FIG. 5 is a vertical cross-sectional view showing a multi-cylinder rotary compressor which was previously proposed by the applicant in Japanese Patent Application No. 81-232604 (filed on September 30, 1986) and whose capacity can be controlled by conventional cylinder deactivation. It is. In Fig. 5, (1) is an electric element, (2)
is a crankshaft that transmits the rotational output of this electric element (1) to the compression element (3), (4.), (4b) are nine core parts provided on this crankshaft +2) with a phase shift of 180 degrees from each other, (5a), (5b) are eccentric parts (4a), (
4b) is a nine-rolling piston that is rotatably fitted and supported by the piston. And rolling piston (5a),
(5b) are arranged vertically in parallel with each other via a partition plate (6), and are busy rotating inside 92 cylinders (7a) and (7b). Also, the crankshaft (2) is
The radial direction is supported by an upper bearing (8a) and a lower bearing (8b) that close each cylinder F (7a), (7'b). Regarding the axial direction, the lower bearing (
8b) is supported by the thrust surface (9).

このように構成され几電動要素(1)および圧縮要素(
3)は、密閉容器a1の内部に収容され、その底部には
潤滑油@が貯溜されている。また、シリンダ(7a) 
、 (7b)  の内部は、第6図にその横断面を示す
ように、ローリングピストン(5a) 、 (sb) 
 に当接してベーン溝α4の内部を往復摺動するベーン
αυによって、ガスの吸入室α2と圧縮室(I:Iとに
分割されている。なお、  (lla)はベーンスプリ
ング、α9は圧縮ガスの吐出弁である。上記吸入室α2
は、外部冷媒回路からの被圧縮ガスのアキュームレータ
aηと、吸入管(15a) 、 (+6b)  によっ
て連通されている。そして、休筒制御機構12Dは、下
側の吸入管(16a )の途中に、スライダ馳とスプリ
ングα9を内挿しにハウジング翰と、スライFa瞳下部
空間と高圧部を開閉弁(23a)を介して連通させ九休
筒制御用配管B、P24と、ガスの吸入室fla側と、
スライダ相下部空間とを、開閉弁(25t+)と毛細管
橢とを介して連通させたガス抜き用配管(ハ)とを備え
ている。
It is constructed in this way and includes the electrically powered element (1) and the compression element (
3) is housed inside a closed container a1, and lubricating oil @ is stored at the bottom of the container a1. Also, cylinder (7a)
, (7b) have rolling pistons (5a), (sb) as shown in the cross section in FIG.
It is divided into a gas suction chamber α2 and a compression chamber (I:I) by a vane αυ that comes into contact with the vane αυ and slides back and forth inside the vane groove α4. Here, (lla) is a vane spring, and α9 is a compressed gas This is a discharge valve for the suction chamber α2.
are communicated with an accumulator aη of compressed gas from an external refrigerant circuit through suction pipes (15a) and (+6b). The cylinder deactivation control mechanism 12D has a slider frame and a spring α9 inserted in the middle of the lower suction pipe (16a), a housing frame, a slide Fa pupil lower space, and a high pressure part opening/closing valve (23a). to communicate with the Kukyu cylinder control piping B, P24 and the gas suction chamber fla side,
A degassing pipe (c) is provided which communicates with the lower space of the slider phase via an on-off valve (25t+) and a capillary tube.

なお、休筒制御機構21+のスライダα樽とハウジング
圀の間にはスライダasが上下方向に摺動するように微
小の隙間(20a)が形成されている。
Note that a small gap (20a) is formed between the slider α barrel of the cylinder deactivation control mechanism 21+ and the housing wall so that the slider as can slide in the vertical direction.

次に動作について説明する。Next, the operation will be explained.

電動要素(1)によってクランク軸(2)が回転駆動さ
れると、互いに180度位相がずれた偏芯部(4a) 
When the crankshaft (2) is rotationally driven by the electric element (1), the eccentric portions (4a) are 180 degrees out of phase with each other.
.

(4b)を介して、ローリングピストン(5a) 、 
(5b)が各シリンダ(7a) 、 (7b) の内部
において所定方向に回転する。ここで、開閉弁(23a
)を閉じてスライダr1s下部空間への高圧ガスの流入
を止め、開閉弁(23b)を開いて、スライダ(I・下
方のハウジング(至)内の空間を吸入室Q2と連通させ
て低圧にすることによシ、スライダ舖は、被圧縮ガスの
アキュムレータ(Iηからの流れにも付勢されて、スプ
リング員力に打ち祷って下降し、アキュムレータ(Iη
と下側のシリンダ(7b)の吸入室α2とを連通させる
(4b), rolling piston (5a),
(5b) rotates in a predetermined direction inside each cylinder (7a) and (7b). Here, the on-off valve (23a
) to stop the flow of high-pressure gas into the space below the slider r1s, and open the on-off valve (23b) to communicate the space inside the slider (I/lower housing (to) with the suction chamber Q2 to create a low pressure Particularly, the slider is also biased by the flow from the compressed gas accumulator (Iη), and descends under the force of the spring, causing the accumulator (Iη
and the suction chamber α2 of the lower cylinder (7b).

よって、第6図において、ローリングピストン(5b)
がシリンダ(7b)の内部を矢印で示す反時計方向に回
転することにより、吸入管(ldb)から被圧縮冷媒ガ
スが吸入室σ2に吸入される。一方。
Therefore, in FIG. 6, the rolling piston (5b)
rotates inside the cylinder (7b) in the counterclockwise direction indicated by the arrow, thereby sucking the compressed refrigerant gas into the suction chamber σ2 from the suction pipe (ldb). on the other hand.

圧縮室a3では、前のサイクルで既に吸入され九冷媒ガ
スがその容積縮小に伴って圧縮され、この圧縮され几冷
媒ガスが吐出弁(IIを押し開いてシリンダ外、即ち密
閉容器fII内に吐出される。この動作を上、下のシリ
ンダ(7a) 、 (7b)の内部で、クランク軸(2
)の回転角に180度の位相差を有し々から同時に繰り
返すことにより、圧縮された冷媒ガスを冷凍サイクルシ
ステム忙供給して、冷凍サイクルを作動させる。
In the compression chamber a3, the refrigerant gas already taken in in the previous cycle is compressed as its volume is reduced, and this compressed refrigerant gas is pushed open the discharge valve (II) and discharged outside the cylinder, that is, into the closed container fII. This operation is performed inside the upper and lower cylinders (7a) and (7b), and the crankshaft (2
) is repeated simultaneously with a phase difference of 180 degrees, thereby supplying compressed refrigerant gas to the refrigeration cycle system and operating the refrigeration cycle.

次に、休筒をする場合忙は、開閉弁(25b)を閉じて
ガス抜き用配管(至)を塞ぎ、休筒制御機構QDの開閉
弁(23a)を開いて、スライダα蹄の下方空間に高圧
ガスを送り、スライダasを上昇させ、スライダ+11
上端面および側面で吸入管(16b)を閉塞することに
より、下側のシリンダ(7′b) を休筒させて圧縮機
能力を制御する。
Next, when shutting down the cylinder, close the on-off valve (25b) to block the gas venting pipe (to), open the on-off valve (23a) of the cylinder shutoff control mechanism QD, and open the space below the slider α hoof. Send high pressure gas to raise the slider as, slider +11
By closing the suction pipe (16b) at the upper end and side surfaces, the lower cylinder (7'b) is deactivated and the compression force is controlled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の休筒制御機構を備えた多気筒回転式圧縮機は以上
のように構成されているので、吸入管(+6b)を閉塞
して休筒制御を行う場合、ベーンは、同じく往復摺動を
行うので、閉塞された吸入室(I3は真空に近い状態と
なシ既に一度密閉容器内に吐出され九高温、高圧の冷媒
ガスが摺動クリアランスを通り侵入し再度圧縮される几
め、圧縮機の温度がさらに上昇し、圧縮機の使用条件範
囲が狭くなる他、潤滑油の劣化を促進し圧縮機の寿命を
短くするなど信頼性面でも課題があつ几。
A multi-cylinder rotary compressor equipped with a conventional cylinder deactivation control mechanism is configured as described above, so when cylinder deactivation control is performed by closing the suction pipe (+6b), the vanes similarly do not perform reciprocating sliding. Since the closed suction chamber (I3) is in a near-vacuum state, the high-temperature, high-pressure refrigerant gas that has already been discharged into the sealed container enters through the sliding clearance and is compressed again. The temperature of the compressor will further rise, narrowing the range of conditions under which the compressor can be used, and also causing problems in terms of reliability, such as accelerating the deterioration of lubricating oil and shortening the life of the compressor.

この発明は上記のような課題を雫消するtめになされt
もので、休筒制御時、圧縮機の温度を低下させ、使用条
件範囲の広い、高信頼性の休筒制御機構を備え比多気筒
回転式圧縮機を得ることを目的としている。
This invention was made to eliminate the above-mentioned problems.
The objective is to obtain a multi-cylinder rotary compressor equipped with a highly reliable cylinder deactivation control mechanism that lowers the temperature of the compressor during cylinder deactivation control and can be used over a wide range of operating conditions.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る多気筒圧縮機の休筒制御機構は。 A cylinder deactivation control mechanism for a multi-cylinder compressor according to the present invention is as follows.

複数のシリンダを有する圧縮要素を密閉容器に収納し外
部冷凍φ空調サイクルから冷媒を前記シリンダに導くそ
れぞれの吸入管を有し休筒時との吸入管を閉塞して休筒
を行なう多気筒圧縮機において、前記休筒時前記外部冷
凍龜空調サイクルの高圧冷媒液の圧力によシ前記吸入管
を閉塞する閉塞手段、前記高圧冷媒液をこの閉塞手段に
導く休筒制御用配管、前記高圧冷媒液を前記シリンダに
導く液冷媒供給手段を備えtものである。
A multi-cylinder compression system in which a compression element having a plurality of cylinders is housed in a sealed container, each having a suction pipe for guiding refrigerant from an external refrigeration φ air conditioning cycle to the cylinders, and the cylinders are shut down by closing the suction pipes when the cylinders are shut down. In the machine, a closing means for closing the suction pipe by the pressure of the high-pressure refrigerant liquid of the external refrigeration air conditioning cycle when the cylinder is shut down, a pipe for controlling cylinder shutoff that guides the high-pressure refrigerant liquid to the closing means, and the high-pressure refrigerant It is equipped with a liquid refrigerant supply means for guiding liquid to the cylinder.

〔作用〕[Effect]

この発明における休筒制御機構を備え比多気筒回転式圧
縮嗜は、休筒制iX1時、休筒制御機構の閉塞手段に液
冷媒を導くとともに休筒される圧縮要素に液冷媒を噴出
させることにより、液冷媒が気化し気化熱をまわりから
奪うため上記休筒中の圧縮要素の温度が低下する。
The multi-cylinder rotary compression mechanism equipped with a cylinder deactivation control mechanism according to the present invention is capable of guiding liquid refrigerant to the closing means of the cylinder deactivation control mechanism and jetting the liquid refrigerant to the compression element that is deactivated at the time of cylinder deactivation control iX1. As a result, the liquid refrigerant vaporizes and takes away the heat of vaporization from the surroundings, so the temperature of the compression element during the cylinder break period decreases.

〔実施例〕〔Example〕

以下この発明の一実施例を第1図、第2図によって説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

図において〔1)〜@は上記従来例と全く同一のもので
あり弼は液冷媒供給管でスライダ0樽下部空間と吸入室
allUとを連通している。ま之、休筒制御用yp W
 +241は冷凍・空調システムの高圧液冷媒回路部へ
連通している。
In the figure, [1) to @ are completely the same as those in the above-mentioned conventional example. Mano, yp W for cylinder deactivation control
+241 is connected to the high pressure liquid refrigerant circuit of the refrigeration and air conditioning system.

上記のように4成された休筒制御機構を備えた多気筒回
転式圧縮機においては休筒制御時、休筒制御8機構ca
nのスライダ+II下部空間に液冷媒を導くとともにス
ライダ悄下部空間と休筒側圧縮要素の吸入室α2側を連
通ずる液冷媒供給管(至)を設けた九め、休筒運転時自
動的に液冷媒が休筒側圧縮要素へ供給されその際液冷媒
は圧縮要素内で周囲から気化熱を奪いながら気化する之
め圧縮要素の温度が低下する。
In a multi-cylinder rotary compressor equipped with four cylinder deactivation control mechanisms as described above, during cylinder deactivation control, the eight cylinder deactivation control mechanisms ca
A liquid refrigerant supply pipe (toward) is provided to guide the liquid refrigerant to the lower space of the slider + II of n, and to communicate the lower space of the slider with the suction chamber α2 side of the compression element on the cylinder-inactive side. The liquid refrigerant is supplied to the cylinder-inactive compression element, and at this time, the liquid refrigerant vaporizes within the compression element while taking vaporization heat from the surroundings, thereby decreasing the temperature of the compression element.

第3図はこの発明の他の実施例を示しtものでスライダ
Osの側面にスライダ(!腸下部空間と圧縮要素吸入室
σ2側へ連通する小穴(至)を設けtものである。
FIG. 3 shows another embodiment of the present invention, in which a small hole communicating with the lower intestine space and the compression element suction chamber σ2 side is provided on the side surface of the slider Os.

ま次第4図はこの発明のさらに他の実施例を示しtもの
で、ハウジング■とスライダL1梯との隙間(20a 
)を太き(形成したものである。
Figure 4 shows still another embodiment of the present invention, in which the gap (20a) between the housing (2) and the slider L1 ladder is
) is thick (formed).

上記第3図、第4図の実施例においても休筒時液冷媒は
小穴翰、隙間(20a)を通り圧縮要素(3)内へ供給
され第1図の実施例と同様の効果を奏する。
In the embodiments shown in FIGS. 3 and 4, the liquid refrigerant is also supplied into the compression element (3) through the small hole and the gap (20a) when the cylinder is out of operation, producing the same effect as in the embodiment shown in FIG. 1.

〔発明の効果〕〔Effect of the invention〕

この発明による多気筒回転式圧縮機の休筒制御機構は複
数のシリンダを有する圧縮要素を密閉容器釦収納し外部
冷凍・空調サイクルから冷媒を前記シリンダ釦導くそれ
ぞれの吸入管を有し休筒時この吸入管を閉塞して休筒を
行なう多気筒圧縮機において、前記休筒時前記外部冷凍
・空調サイクルの高圧冷媒液の圧力により前記吸入管を
閉塞する閉塞手段、前記高圧冷媒液をこの閉塞手段に導
く休筒制御用配管、前記高圧冷媒液を前記シリンダに導
く液冷媒供給手段を備え比構成にし九ので簡単な構造で
休筒時休筒爛圧縮要素へ液冷媒が供給でき、その定め圧
縮要素の温度上昇を抑えることができ使用条件範囲が広
く、信頼性の高い休筒制御機構付多気筒回転式圧縮機が
得られる。
A cylinder deactivation control mechanism for a multi-cylinder rotary compressor according to the present invention stores a compression element having a plurality of cylinders in a sealed container button, and has suction pipes for guiding refrigerant from an external refrigeration/air conditioning cycle to the cylinder buttons, when the cylinders are deactivated. In a multi-cylinder compressor that performs cylinder shutdown by blocking this suction pipe, a blocking means for blocking the suction pipe by the pressure of high-pressure refrigerant liquid in the external refrigeration/air conditioning cycle when the cylinders are shut down; The cylinder deactivation control piping leading to the cylinder deactivation control means and the liquid refrigerant supply means guiding the high-pressure refrigerant liquid to the cylinder are arranged in a ratio structure of 9. Therefore, liquid refrigerant can be supplied to the compression element when the cylinder deactivates when the cylinder is deactivated, and the liquid refrigerant can be supplied to the compression element when the cylinder is deactivated. A multi-cylinder rotary compressor with a cylinder deactivation control mechanism that can suppress the temperature rise of the compression element, can be used over a wide range of conditions, and is highly reliable can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による多気筒回転式圧縮機
を示す縦断面図、第2図は第1図の要部拡大断面図、第
3図、第4図はこの発明の他の実施例を示す要部拡大断
面図、第5図は従来の多気筒回転式圧縮機を示す縦断面
図、第6図は第5図の横断面図である。 図において(1)は密閉容器、(3)は圧縮要素、  
(7a)(7b)はシIJ 7り、  (+68) 、
 (+6b)は吸入管、 aSはスライダ、  (20
a)は隙間、 c!nは休筒制御機構。 ■、P24は休筒制御用配管、@は液冷媒供給管、@は
小穴である。 なお2図中同一群号は同一、又は相当部分を示す。
FIG. 1 is a longitudinal sectional view showing a multi-cylinder rotary compressor according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the main part of FIG. 1, and FIGS. FIG. 5 is a longitudinal sectional view showing a conventional multi-cylinder rotary compressor, and FIG. 6 is a cross-sectional view of FIG. 5. In the figure, (1) is a closed container, (3) is a compression element,
(7a) (7b) is shi IJ 7ri, (+68),
(+6b) is the suction pipe, aS is the slider, (20
a) is a gap, c! n is cylinder deactivation control mechanism. ①, P24 is a pipe for cylinder deactivation control, @ is a liquid refrigerant supply pipe, and @ is a small hole. Note that the same group numbers in the two figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  複数のシリンダを有する圧縮要素を密閉容器に収納し
外部冷凍・空調サイクルから冷媒を前記シリンダに導く
それぞれの吸入管を有し休筒時この吸入管を閉塞して休
筒を行なう多気筒圧縮機において、前記休筒時前記外部
冷凍・空調サイクルの高圧冷媒液の圧力により前記吸入
管を閉塞する閉塞手段、前記高圧冷媒液をこの閉塞手段
に導く休筒制御用配管、前記高圧冷媒液を前記シリンダ
に導く液冷媒供給手段を備えた多気筒圧縮機の休筒制御
機構。
A multi-cylinder compressor in which a compression element having a plurality of cylinders is housed in a sealed container, each having a suction pipe for guiding refrigerant from an external refrigeration/air conditioning cycle to the cylinders, and the cylinders are shut down by closing the suction pipes when the cylinders are shut down. , a closing means for closing the suction pipe by the pressure of the high-pressure refrigerant liquid of the external refrigeration/air conditioning cycle when the cylinder is shut down; a pipe for controlling cylinder shutoff that guides the high-pressure refrigerant liquid to the closing means; A cylinder deactivation control mechanism for a multi-cylinder compressor equipped with liquid refrigerant supply means leading to the cylinders.
JP23028988A 1988-09-14 1988-09-14 Cylinder suspension control mechanism of multi-cylinder rotating compressor Pending JPH0278780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23028988A JPH0278780A (en) 1988-09-14 1988-09-14 Cylinder suspension control mechanism of multi-cylinder rotating compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23028988A JPH0278780A (en) 1988-09-14 1988-09-14 Cylinder suspension control mechanism of multi-cylinder rotating compressor

Publications (1)

Publication Number Publication Date
JPH0278780A true JPH0278780A (en) 1990-03-19

Family

ID=16905484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23028988A Pending JPH0278780A (en) 1988-09-14 1988-09-14 Cylinder suspension control mechanism of multi-cylinder rotating compressor

Country Status (1)

Country Link
JP (1) JPH0278780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620040B1 (en) * 2005-02-23 2006-09-11 엘지전자 주식회사 Modulation apparatus for rotary compressor and airconditioner with this
CN111306061A (en) * 2018-12-11 2020-06-19 广东美芝精密制造有限公司 Compressor and refrigerating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620040B1 (en) * 2005-02-23 2006-09-11 엘지전자 주식회사 Modulation apparatus for rotary compressor and airconditioner with this
CN111306061A (en) * 2018-12-11 2020-06-19 广东美芝精密制造有限公司 Compressor and refrigerating device
CN111306061B (en) * 2018-12-11 2022-07-08 广东美芝精密制造有限公司 Compressor and refrigerating device

Similar Documents

Publication Publication Date Title
KR100917873B1 (en) Scroll machine with vapor injection
KR100944147B1 (en) Scroll compressor with vapor injection
KR950002056B1 (en) Refrigeration plant and rotary positive displacement machine
US5469716A (en) Scroll compressor with liquid injection
JPS62674A (en) Capacity controller for variable angle swing swash type variable capacity compressor
KR20030077930A (en) Scroll machine with liquid injection
CN101091062A (en) Capacity varying type rotary compressor and refrigeration system having the same
EP2050966B1 (en) Compressor
EP0668444A1 (en) Rotary compressor with liquid injection
US5823755A (en) Rotary compressor with discharge chamber pressure relief groove
US4702088A (en) Compressor for reversible refrigeration cycle
JP2001323881A (en) Compressor
KR20040002533A (en) Expressor capacity control
JPH0278780A (en) Cylinder suspension control mechanism of multi-cylinder rotating compressor
JPH01244192A (en) Multicylinder rotary compressor
JPS60204990A (en) Scroll type compressor
JPH11107948A (en) Scroll compressor
JPS63253192A (en) Multi cylinder rotary type compressor
CN110552886A (en) Compressor with a compressor housing having a plurality of compressor blades
JPH0768948B2 (en) Scroll compressor
WO2023170901A1 (en) Scroll compressor and refrigeration cycle device
JP2502756B2 (en) Air conditioner
JPS63246487A (en) Multicylinder rotary compressor
JP2008002430A (en) Scroll compressor
GB2099081A (en) Sliding-vane rotary compressor