JPH0278636A - Production of c2 hydrocarbon and device therefor - Google Patents

Production of c2 hydrocarbon and device therefor

Info

Publication number
JPH0278636A
JPH0278636A JP63227495A JP22749588A JPH0278636A JP H0278636 A JPH0278636 A JP H0278636A JP 63227495 A JP63227495 A JP 63227495A JP 22749588 A JP22749588 A JP 22749588A JP H0278636 A JPH0278636 A JP H0278636A
Authority
JP
Japan
Prior art keywords
methane
oxygen
catalyst
coated
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63227495A
Other languages
Japanese (ja)
Other versions
JPH07103048B2 (en
Inventor
Kaoru Fujimoto
薫 藤元
Hiroo Tominaga
冨永 博夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP63227495A priority Critical patent/JPH07103048B2/en
Publication of JPH0278636A publication Critical patent/JPH0278636A/en
Publication of JPH07103048B2 publication Critical patent/JPH07103048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the title compound in high selectivity by circulating methane to one of divided zones separated by a porous material coated with magnesia carrying lead oxide and an oxygen gas to the other and carrying out oxidation coupling reaction. CONSTITUTION:A porous material (e.g., alumina or silica) having 5-5,000nm, preferably 10-1,000nm average pore diameter is coated with a saturated aqueous solution of magnesium nitrate in a concentration hardly to leak a reaction gas, calcined with air at 600 deg.C to form a coating film 11 of magnesium oxide, an aqueous solution of lead nitrate is applied to the coating film and the coated material is similarly sintered to form a lead oxide coating 12 to give a substrate 1 coated with the catalyst. The substrate 1 is inserted into a quartz tube 2, methane is circulated from a methane inlet 4 to a methane feed zone 8, an oxygen gas is sent from an oxygen inlet 5 to an inner side 9 of the substrate 1 and oxidation coupling reaction of methane is carried out at 600-900 deg.C with oxygen anion of lead oxide lattice permeated from the oxygen side through the catalyst to the methane side to give C2 hydrocarbon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタンの酸化カップリング反応によるCz炭化
水素の製造方法およびその装置に関する4〔従来の技術
〕 従来、メタンの酸化カップリング反応により、メタンよ
り直接C2化合物すなわぢエタン、エチレンなどを製造
する方法が種々提案されている。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method and apparatus for producing Cz hydrocarbons by an oxidative coupling reaction of methane.4 [Prior Art] Conventionally, by an oxidative coupling reaction of methane, Various methods have been proposed for directly producing C2 compounds, such as ethane and ethylene, from methane.

特開昭61−30688号公報には、固体電解質に印加
電圧をかけ酸素を透過させてその酸素とメタンなどの低
級炭化水素からその炭素数以上の炭素数を有する炭化水
素例えばエタン、エチレンなどを製造する方法が開示さ
れているが、メタンからの02炭化水素への選択率は9
0%以下に過ぎない。しかもメタン側に酸素ガスが存在
している。
JP-A-61-30688 discloses that by applying a voltage to a solid electrolyte and allowing oxygen to permeate, the oxygen and lower hydrocarbons such as methane are converted into hydrocarbons having a carbon number greater than that number, such as ethane and ethylene. A method for producing 02 hydrocarbons from methane is disclosed, but the selectivity to 02 hydrocarbons from methane is 9
It is only less than 0%. Furthermore, oxygen gas is present on the methane side.

特開昭62−61933号公報には、塩基性担体、例え
ば酸化マグネシウムに担持した酸化鉛触媒の存在下、メ
タンの分子状酸素による酸化的カップリング反応によっ
て炭素数2以上の炭化水素を合成する方法が開示されて
いる。しかしながら、C2炭化水素の選択率は約85%
以下に過ぎないものである。
JP-A No. 62-61933 discloses that hydrocarbons having two or more carbon atoms are synthesized by an oxidative coupling reaction of methane with molecular oxygen in the presence of a lead oxide catalyst supported on a basic carrier such as magnesium oxide. A method is disclosed. However, the selectivity for C2 hydrocarbons is about 85%
It is nothing more than the following.

Chem、LeLt、、   3 1 9 〜3 2 
2  頁 (1985年)には、安定化ジルコニアを応
用したメタンの酸化カップリング反応について報告され
ているが、C2炭化水素への選択率は実質上50%程度
以下に過ぎないものである。
Chem, LeLt, 3 1 9 ~ 3 2
2 (1985) reports on the oxidative coupling reaction of methane using stabilized zirconia, but the selectivity to C2 hydrocarbons is substantially only about 50% or less.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、メタンより直接エタン、エチレンなどの02炭化
水素を製造する方法が数多く試みられているが、従来の
方法ではC2炭化水素の選択率が低くまだ満足すべき状
態にないのが現状である。
In the past, many attempts have been made to produce 02 hydrocarbons such as ethane and ethylene directly from methane, but the selectivity of C2 hydrocarbons in the conventional methods is low and is not yet satisfactory.

しかも酸化剤として高価な純酸素を用いる必要がある。Moreover, it is necessary to use expensive pure oxygen as an oxidizing agent.

安価な酸化剤である空気を用いると生成ガス中に多量の
窒素が混入し、未反応原料のメタンあるいは生成炭化水
素との分離に多大のコストを必要とする。
When air, which is an inexpensive oxidizing agent, is used, a large amount of nitrogen is mixed into the produced gas, and a large amount of cost is required to separate it from the unreacted raw material methane or produced hydrocarbons.

本発明は、空気などの安価な酸化剤を使用しながらメタ
ンより02炭化水素を、直接、かつ、実質上100%の
極めて高い選択率でしかも窒素ガスおよび酸素ガスを混
入させることなく製造する方法およびその装置を提供す
ることを目的とするものである。
The present invention is a method for producing 02 hydrocarbons directly from methane with an extremely high selectivity of virtually 100%, using an inexpensive oxidizing agent such as air, and without mixing nitrogen gas or oxygen gas. The object of the present invention is to provide a device for the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第1に多孔質体よりなる支持体を介して一方
にメタンまたはメタン含有ガスを流通させ、他方に酸素
ガスまたは酸素含有ガスを流通させるに際して、該多孔
質体を介して両ガスが相互に透過しなくなるまで該多孔
質体を、マグネシア担持酸化鉛触媒で被覆した状態で、
該両ガスをそれぞれ流通させつつ、酸素側から該触媒を
透過してメタン側へ供給される酸化鉛格子酸素アニオン
によってメタンの酸化カンプリング反応を行なわせるこ
とを特徴とするC2炭化水素の製造方法を提供するもの
である。
Firstly, when methane or a methane-containing gas is passed through one side of the support made of a porous body and oxygen gas or an oxygen-containing gas is passed through the other side, both gases are passed through the porous body. While the porous body is coated with a magnesia-supported lead oxide catalyst until no longer mutually permeable,
A method for producing C2 hydrocarbons, which is characterized by carrying out an oxidative camping reaction of methane by means of lead oxide lattice oxygen anions supplied to the methane side through the catalyst from the oxygen side while respectively circulating the two gases. It provides:

本発明は、第2にメタンの酸化カップリング反応により
C2炭化水素を製造するための装置であって、酸素また
は酸素含有ガス供給域、メタンまたはメタン含有ガス供
給域、多孔質体よりなる支持体、およびマグネシア担持
酸化鉛触媒よりなり、両ガスが相互に透過しなくなるま
で該多孔質体が該触媒で被覆されており、該両ガス供給
域が該触媒被覆多孔質体を介して分離されていることを
特徴とする上記C2炭化水素の製造装置を提供するもの
である。
Second, the present invention provides an apparatus for producing C2 hydrocarbons by an oxidative coupling reaction of methane, which comprises an oxygen or oxygen-containing gas supply region, a methane or methane-containing gas supply region, and a support made of a porous material. , and a magnesia-supported lead oxide catalyst, the porous body is coated with the catalyst until both gases no longer permeate each other, and the both gas supply regions are separated via the catalyst-coated porous body. The present invention provides an apparatus for producing C2 hydrocarbons as described above.

本発明に用いられる支持体を構成する多孔質体は、例え
ばアルミナ、シリカ、マグネシアなどの多孔質体であっ
て平均細孔径5〜5000nm、好ましくはlO〜11
000nであり、5nm未満では酸素ガスの触媒膜への
到達が不十分で好ましくなく、5000nmを超えると
触媒膜の安定支持が困難となりで好ましくない。
The porous material constituting the support used in the present invention is, for example, a porous material such as alumina, silica, magnesia, etc., and has an average pore diameter of 5 to 5000 nm, preferably 10 to 11
If the thickness is less than 5 nm, oxygen gas will not reach the catalyst membrane sufficiently, which is undesirable, and if it exceeds 5,000 nm, it will be difficult to stably support the catalyst membrane, which is undesirable.

該多孔質体の膜厚はO,1〜50龍、好ましくは1〜I
onであり、0.1 tm未満では該多孔質体の強度が
不十分で好ましくなく、50mmを超えると酸素含有ガ
スの通過速度が遅く、好ましくない。
The film thickness of the porous body is O, 1 to 50, preferably 1 to I.
On, if it is less than 0.1 tm, the strength of the porous body is insufficient, which is not preferable, and if it exceeds 50 mm, the passage speed of oxygen-containing gas is slow, which is not preferable.

本発明に用いられる支持体は、例えば上記多孔質体の管
であって、例えばその内側に酸素または酸素含有ガス供
給域を設け、その外側にメタンまたはメタン含をガスの
供給域を設けることができるがその逆でもよい。
The support used in the present invention is, for example, a tube made of the porous material described above, and, for example, an oxygen or oxygen-containing gas supply area may be provided on the inside thereof, and a methane or methane-containing gas supply area may be provided on the outside thereof. You can do it, but it can also be the other way around.

本発明に用いられる支持体を構成する多孔質体は、使用
されるガスが相互に透過しなくなるまでマグネシア担持
酸化鉛触媒で被覆され、両ガス供給域は該触媒被覆多孔
質体を介して相互に分離されている。
The porous body constituting the support used in the present invention is coated with a magnesia-supported lead oxide catalyst until the gas used no longer permeates through each other, and both gas supply regions are mutually connected via the catalyst-coated porous body. separated into

本発明におけるメタンの酸化カップリング反応は、メタ
ンと酸素との通常の供給モル比は100/1〜1/2の
範囲にあるが、メタン含有ガスと酸素含有ガスは分離さ
れた反応ゾーンへ供給されるため、その供給モル比に制
限はない。メタン供給域と酸素供給域との差圧が0〜5
気圧好ましくは0〜1気圧の範囲の条件下600〜90
0℃、好ましくは700〜800℃でおこなわれる。
In the oxidative coupling reaction of methane in the present invention, the molar ratio of methane and oxygen usually supplied is in the range of 100/1 to 1/2, but the methane-containing gas and the oxygen-containing gas are supplied to separate reaction zones. Therefore, there is no limit to the molar ratio of supply. Differential pressure between methane supply area and oxygen supply area is 0 to 5
Atmospheric pressure preferably in the range of 0 to 1 atm 600 to 90
It is carried out at 0°C, preferably 700-800°C.

該モル比が100/1未満ではメタン転化率が低くなる
ため好ましくなく、1/2を超えると酸素の利用効率が
低く、好ましくない。該差圧が5気圧を超えると触媒膜
の破壊の恐れがあり好ましくない。該反応温度が600
℃未満では反応速度が低くて好ましくなく、900℃を
超えるとメタンの熱的分解が進行し、C2炭化水素生成
量活性および選択率が低下するので好ましくない。
If the molar ratio is less than 100/1, the methane conversion rate will be low, which is not preferable, and if it exceeds 1/2, the oxygen utilization efficiency will be low, which is not preferable. If the pressure difference exceeds 5 atmospheres, the catalyst membrane may be destroyed, which is not preferable. The reaction temperature is 600
If it is less than 900°C, the reaction rate will be low, which is undesirable, and if it exceeds 900°C, thermal decomposition of methane will proceed, resulting in a decrease in C2 hydrocarbon production activity and selectivity, which is not preferred.

本発明のメタンの酸化カップリング反応においては、供
給される酸素ガス、すなわち分子状酸素は、前記触媒被
覆多孔質体を介してメタンまたはメタン含有ガスと分離
されているため直接反応して炭酸ガスなどを生ずること
なく、触媒被覆体を格子酸素の形で透過して、透過酸素
の形でメタンと接触して反応が行なわれる。
In the methane oxidative coupling reaction of the present invention, the supplied oxygen gas, that is, molecular oxygen, is separated from methane or methane-containing gas through the catalyst-coated porous body, so it directly reacts with carbon dioxide gas. It permeates through the catalyst coating in the form of lattice oxygen without causing any oxidation, and the reaction takes place in the form of permeated oxygen in contact with methane.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、メタンより直接C2炭化水素を、実質
上100%の選択率で製造することができる方法および
その装置が提供される。
According to the present invention, a method and apparatus for producing C2 hydrocarbons directly from methane with a selectivity of substantially 100% are provided.

本発明によれば、酸素含有ガスとして空気を用いた場合
でも生成系から窒素および酸素を分離する過程を必要と
することなく、メタンより直接C2炭化水素を実質上1
00%の選択率で製造することができる方法およびその
装置が提供される。
According to the present invention, even when air is used as the oxygen-containing gas, C2 hydrocarbons can be directly extracted from methane to substantially 1% without requiring a process to separate nitrogen and oxygen from the production system.
A method and an apparatus thereof are provided that allow production with a selectivity of 0.00%.

〔実施例〕〔Example〕

実施例1 本発明の方法および装置の1例について、第1a〜IC
図により以下説明する。第1a図は、本発明を説明する
ための本発明の固定床常圧流通式装置の概略断面図であ
り、第1b図は第1a図の部分7の拡大図であり、第1
C図は第1b図の部分IOの想像拡大図である。
Example 1 For one example of the method and apparatus of the present invention,
This will be explained below using figures. FIG. 1a is a schematic sectional view of a fixed bed normal pressure flow type apparatus of the present invention for explaining the present invention, and FIG. 1b is an enlarged view of part 7 in FIG.
Figure C is an enlarged imaginary view of portion IO of Figure 1b.

支持体lとして、長さ約30cm、外径4龍、内径1.
5N、平均細孔径500nmのアルミナ多孔質体CTD
K製のダイナセラム(DYNACERAM) )の管を
用いた。該支持体1のうち反応温度のかかる部分(5c
m程度)以外を高温用シール材(東亜合成化学製アロン
セラミック)でコーティングした後、反応ガスのもれに
くい濃度として硝酸マグネシウムの飽和水溶液を塗布し
、600℃で空気焼成した。ここで漏れ込みおよび触媒
担体の重量のチエツクを行ない、漏れがなければ次に、
あればもう−度繰り返すという操作を行ない、酸化マグ
ネシウム被覆11を形成した。その後、酸化鉛として均
一な膜を生成しやすい20%程度の硝酸鉛水溶液をその
上に塗布し、同様に焼成、チエツクおよび操り返しの操
作を行なって酸化鉛被覆12を形成し、触媒を塗布した
支持体1を得た。この触媒を塗布した支持体Iを外径8
龍、内径61mの石英管2の内部に挿入して本発明の装
置とした。この装置において例えばメタン人口4より支
持体1の外側、すなわちメタン供給域8にメタンを流通
させ、一方散素人口5より支持体1の内側、すなわち酸
素供給域9に酸素ガスを流通させ、加熱炉3で反応温度
に加熱下に反応を行ない、生成ガス出口6よりの生成ガ
スを分析に供した。第1c図において13は支持体1を
構成する多孔質体の細孔を示す。
The support l has a length of about 30 cm, an outer diameter of 4 mm, and an inner diameter of 1 mm.
5N, alumina porous material CTD with an average pore diameter of 500 nm
A tube of DYNACERAM (manufactured by K. K.) was used. The part of the support 1 where the reaction temperature is applied (5c
After coating the parts other than the parts (approximately 1.5 m) with a high-temperature sealing material (Aron Ceramic manufactured by Toagosei Chemical Co., Ltd.), a saturated aqueous solution of magnesium nitrate was applied at a concentration that would prevent the reaction gas from leaking, and air baking was performed at 600°C. Check the leakage and the weight of the catalyst carrier, and if there is no leakage, then
If necessary, the operation was repeated one more time to form the magnesium oxide coating 11. After that, an aqueous solution of about 20% lead nitrate, which easily forms a uniform film as lead oxide, is applied thereon, and the same firing, checking and repeating operations are performed to form the lead oxide coating 12, and the catalyst is applied. Support 1 was obtained. The support I coated with this catalyst has an outer diameter of 8
The device of the present invention was prepared by inserting the dragon into the inside of a quartz tube 2 having an inner diameter of 61 m. In this device, for example, methane is passed from the methane population 4 to the outside of the support 1, that is, the methane supply zone 8, while oxygen gas is passed from the methane population 5 to the inside of the support 1, that is, the oxygen supply zone 9, and heated. The reaction was carried out while heating to the reaction temperature in the furnace 3, and the produced gas from the produced gas outlet 6 was subjected to analysis. In FIG. 1c, numeral 13 indicates the pores of the porous body constituting the support 1. In FIG.

分析はメタン側で行ない、酸素含有ガス側の分析は、物
質収支および漏れ込みをモニターするにとどめた。支持
体1の内側と外側の圧力差は、反応域の後方に水柱差圧
計を設けて測定し、最高20重量H,o以内に抑えてい
る。
Analysis was performed on the methane side, and analysis on the oxygen-containing gas side was limited to monitoring mass balance and leakage. The pressure difference between the inside and outside of the support 1 is measured by installing a water column differential pressure gauge at the rear of the reaction zone, and is kept within a maximum of 20 weight H,o.

反応ガスの多孔質体通過、すなわち漏れ込みは、支持体
1の内側に酸素含有ガス、外側に不活性ガス(窒素、ヘ
リウムなど)を流し、外側で窒素および酸素をモニター
することにより3周べた。
The passage of the reaction gas through the porous body, that is, the leakage, was carried out three times by flowing an oxygen-containing gas inside the support 1 and an inert gas (nitrogen, helium, etc.) outside, and monitoring the nitrogen and oxygen outside. .

実施例2 本発明におけるメタンの酸化カップリング反応が格子酸
素によるものであることを実証するために以下の実験を
行なった。
Example 2 The following experiment was conducted to demonstrate that the oxidative coupling reaction of methane in the present invention is due to lattice oxygen.

実施例1の装置を用い、反応温度750℃、メタン側流
ff1100cc/分(メタン含量99%以上)、酸素
側2+を量30 cc 7分(M素ガス約20%、残り
窒素)の条件下、支持体1の外側にメタンを流しながら
支持体1の内側の酸素含有ガスを窒素と切り替える、パ
ルス導入操作を行なった。その結果を第2図に示す。第
2図に示されるように、酸素のオン・オフに応答するC
2炭化水素の生成が認められ、オフ後20分程度で02
炭化水素は全く生成しなくなった。したがって、反応に
使用されている酸素は酸素含有ガスから供給され、酸化
鉛中の酸素イオンによる反応で使用されていることが実
証された。
Using the apparatus of Example 1, the reaction temperature was 750°C, the methane side flow was 1100 cc/min (methane content 99% or more), and the oxygen side 2+ was heated at 30 cc for 7 minutes (M basic gas about 20%, remaining nitrogen). A pulse introduction operation was performed in which the oxygen-containing gas inside the support 1 was replaced with nitrogen while flowing methane outside the support 1. The results are shown in FIG. As shown in Figure 2, C in response to oxygen on/off
The generation of 2 hydrocarbons was observed, and 02
No hydrocarbons were produced. Therefore, it was demonstrated that the oxygen used in the reaction was supplied from an oxygen-containing gas and was used in the reaction with oxygen ions in lead oxide.

実施例3 実施例1の装置を用い、反応温度を変えてメタンの酸化
カップリング反応を行なった。得られた結果を第1表に
示す。第1表に示されるように生成物はC2炭化水素の
みで炭酸ガスなどは生成せず、メタンより直接C2炭化
水素が実質上100%の選択率で得られることを示して
いる。メタン転化率が低いのはメタンの接触時間が約0
.2秒と短いためおよび反応における律速過程が酸素の
触媒内拡数であるためと考えられ、その結果としてメタ
ン側の触媒表面は還元された金属鉛になっていた。高温
はどメタン転化率およびC2炭化水素生成量が増大する
傾向が認められる。
Example 3 Using the apparatus of Example 1, an oxidative coupling reaction of methane was carried out by changing the reaction temperature. The results obtained are shown in Table 1. As shown in Table 1, the product is only C2 hydrocarbons and no carbon dioxide gas is produced, indicating that C2 hydrocarbons can be obtained directly from methane with a selectivity of substantially 100%. The methane conversion rate is low because the methane contact time is approximately 0.
.. This is thought to be because the reaction time was as short as 2 seconds and because the rate-determining process in the reaction was the expansion of oxygen into the catalyst, and as a result, the catalyst surface on the methane side was reduced to metallic lead. It is observed that the methane conversion rate and the amount of C2 hydrocarbon production tend to increase at higher temperatures.

第  1  表 触媒量:0.15g(反応部分)、流量:100cc/
min本モル基準 実施例4 実施例1の装置を用い、メタン側の流量を変動させて実
験を行なった。得られた結果を第2表に示す。
Table 1 Catalyst amount: 0.15g (reaction part), flow rate: 100cc/
Example 4 based on min moles Using the apparatus of Example 1, an experiment was conducted by varying the flow rate on the methane side. The results obtained are shown in Table 2.

実施例5 実施例1の装置を用い、反応温度を変えて実験を行なっ
た。得られた結果を第3表に示す。
Example 5 Using the apparatus of Example 1, an experiment was conducted by changing the reaction temperature. The results obtained are shown in Table 3.

実施例6 実施例1の装置を用い、酸素側の酸素濃度を変動させて
実験を行なった。得られた結果を第3図に示す。
Example 6 Using the apparatus of Example 1, an experiment was conducted while varying the oxygen concentration on the oxygen side. The results obtained are shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は本発明を説明するための装置の概略断面図で
あり、第1b図は第1a図の部分7の拡大図であり、第
1C図は第1b図の部分10の想像拡大図である。第2
図は酸素ガスの供給をオン・オフした場合の反応時間と
02炭化水素の収率(%)との関係を示すグラフである
。第3図は酸素濃度と02炭化水素の収率との関係を示
すグラフである。
FIG. 1a is a schematic cross-sectional view of the device for explaining the present invention, FIG. 1b is an enlarged view of section 7 in FIG. 1a, and FIG. 1C is an imaginary enlarged view of section 10 in FIG. 1b. be. Second
The figure is a graph showing the relationship between the reaction time and the yield (%) of 02 hydrocarbons when the supply of oxygen gas is turned on and off. FIG. 3 is a graph showing the relationship between oxygen concentration and yield of 02 hydrocarbons.

Claims (1)

【特許請求の範囲】 1、多孔質体よりなる支持体を介して一方にメタンまた
はメタン含有ガスを流通させ、他方に酸素ガスまたは酸
素含有ガスを流通させるに際して、該多孔質体を介して
、両ガスが相互に透過しなくなるまで該多孔質体をマグ
ネシア担持酸化鉛触媒で被覆した状態で、該両ガスをそ
れぞれ流通させつつ、酸素側から該触媒を透過してメタ
ン側に供給される酸化鉛格子酸素アニオンによって、メ
タンの酸化カップリング反応を行なわせることを特徴と
するC_2炭化水素の製造方法。 2、該多孔質体が平均細孔径5〜5000nmおよび膜
厚0.1〜10mmを有する請求項1記載のC_2炭化
水素の製造方法。 3、該支持体が多孔質管であって、該管の内側および外
側の何れかに該両ガスのいずれか一方をそれぞれ流通さ
せる請求項1記載のC_2炭化水素の製造方法。 4、該メタンの酸化カップリング反応が600〜900
℃の温度で行なわれる請求項1記載のC_2炭化水素の
製造方法。 5、メタンの酸化カップリング反応によりC_2炭化水
素を製造するための装置であって、酸素または酸素含有
ガス供給域、メタンまたはメタン含有ガス供給域、多孔
質体よりなる支持体、およびマグネシア担持酸化鉛触媒
よりなり、両ガスが相互に透過しなくなるまで該多孔質
体が該触媒で被覆されており、該両ガス供給域が該触媒
被覆多孔質体を介して分離されていることを特徴とする
上記C_2炭化水素の製造装置。 6、該多孔質体が平均細孔径5〜5000nmおよび膜
厚0.1〜10mmを有する請求項5記載のC_2炭化
水素の製造装置。 7、該支持体が多孔質管であって、該管の内側および外
側の何れかに両ガスのいずれか一方をそれぞれ流通させ
る請求項5記載のC_2炭化水素の製造装置。
[Claims] 1. When methane or a methane-containing gas is passed through a support made of a porous material to one side and oxygen gas or an oxygen-containing gas is made to flow to the other side, through the porous material, The porous body is coated with a magnesia-supported lead oxide catalyst until both gases no longer permeate each other, and while both gases are allowed to flow, oxidation is supplied from the oxygen side through the catalyst to the methane side. A method for producing C_2 hydrocarbons, characterized by carrying out an oxidative coupling reaction of methane with lead lattice oxygen anions. 2. The method for producing C_2 hydrocarbons according to claim 1, wherein the porous body has an average pore diameter of 5 to 5000 nm and a film thickness of 0.1 to 10 mm. 3. The method for producing C_2 hydrocarbons according to claim 1, wherein the support is a porous tube, and either one of the two gases is allowed to flow through either the inside or the outside of the tube. 4. The oxidative coupling reaction of methane is 600-900
The method for producing C_2 hydrocarbons according to claim 1, which is carried out at a temperature of °C. 5. An apparatus for producing C_2 hydrocarbons by oxidative coupling reaction of methane, comprising an oxygen or oxygen-containing gas supply region, a methane or methane-containing gas supply region, a support made of a porous material, and magnesia supported oxidation. The porous body is made of a lead catalyst, and the porous body is coated with the catalyst until both gases no longer permeate each other, and the gas supply areas are separated via the catalyst-coated porous body. An apparatus for producing the above C_2 hydrocarbon. 6. The C_2 hydrocarbon production apparatus according to claim 5, wherein the porous body has an average pore diameter of 5 to 5000 nm and a film thickness of 0.1 to 10 mm. 7. The C_2 hydrocarbon production apparatus according to claim 5, wherein the support is a porous tube, and either one of the two gases is allowed to flow through either the inside or the outside of the tube.
JP63227495A 1988-09-13 1988-09-13 c Bottom 2 Hydrocarbon production method and apparatus Expired - Lifetime JPH07103048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227495A JPH07103048B2 (en) 1988-09-13 1988-09-13 c Bottom 2 Hydrocarbon production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227495A JPH07103048B2 (en) 1988-09-13 1988-09-13 c Bottom 2 Hydrocarbon production method and apparatus

Publications (2)

Publication Number Publication Date
JPH0278636A true JPH0278636A (en) 1990-03-19
JPH07103048B2 JPH07103048B2 (en) 1995-11-08

Family

ID=16861783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227495A Expired - Lifetime JPH07103048B2 (en) 1988-09-13 1988-09-13 c Bottom 2 Hydrocarbon production method and apparatus

Country Status (1)

Country Link
JP (1) JPH07103048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087801B2 (en) 1999-09-02 2006-08-08 Haldor Topsoe A/S Process for catalytic selective oxidation of a hydrocarbon substrate
JP2012515785A (en) * 2009-01-26 2012-07-12 ルムス テクノロジー インコーポレイテッド Adiabatic reactor for olefin production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087801B2 (en) 1999-09-02 2006-08-08 Haldor Topsoe A/S Process for catalytic selective oxidation of a hydrocarbon substrate
JP2012515785A (en) * 2009-01-26 2012-07-12 ルムス テクノロジー インコーポレイテッド Adiabatic reactor for olefin production

Also Published As

Publication number Publication date
JPH07103048B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
Coronas et al. Use of a ceramic membrane reactor for the oxidative dehydrogenation of ethane to ethylene and higher hydrocarbons
US5451386A (en) Hydrogen-selective membrane
EP2106385B1 (en) Method for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
Kajiwara et al. Stability and hydrogen permeation behavior of supported platinum membranes in presence of hydrogen sulfide
Coronas et al. Development of ceramic membrane reactors with a non-uniform permeation pattern. Application to methane oxidative coupling
CN1655865A (en) Membrane systems containing an oxygen transport membrane and catalyst
US6432376B1 (en) Membrane process for the production of hydrogen peroxide by non-hazardous direct oxidation of hydrogen by oxygen using a novel hydrophobic composite Pd-membrane catalyst
EP1024111A1 (en) Process and apparatus for producing high purity hydrogen
JP2004203737A (en) Method for producing hydrogen and carbon monoxide by partial oxidation of hydrocarbons
WO2002011869A3 (en) Zeolite membranes for selective oxidation of carbon monoxide in mixed hydrogen gas source
GB1332829A (en) Process for the production of hydrogen
Gimeno et al. Combination of a Two-Zone Fluidized Bed Reactor with a Pd hollow fibre membrane for catalytic alkane dehydrogenation
Wang et al. Partial oxidation of ethane to syngas in an oxygen-permeable membrane reactor
JP2631244B2 (en) Method and apparatus for producing hydrogen for fuel cells
JP4071427B2 (en) Reactor system for selective catalytic oxidation of hydrocarbon substrates
Nozaki et al. Oxide ion transport for selective oxidative coupling of methane with new membrane reactor
Lambert et al. Activity and selectivity of a catalytic membrane in the partial hydrogenation reactions of acetylene and 1, 3-butadiene
JPH0278636A (en) Production of c2 hydrocarbon and device therefor
Hwang et al. Stability of a silica membrane prepared by CVD using γ-and α-alumina tube as the support tube in the HI–H2O gaseous mixture
JP3914416B2 (en) Membrane reactor
Berg et al. Catalytic combustion of methane over magnesium oxide
Ross et al. Catalysis with membranes or catalytic membranes?
JP2755685B2 (en) Hydrogen production method for fuel cell
JP2003519067A (en) Method for the selective oxidation of carbon monoxide in hydrogen-containing streams
Choi et al. Performance of double-pipe membrane reactor comprising heteropolyacid catalyst and polymer membrane for the MTBE (methyl tert-butyl ether) decomposition