JPH0278416A - Method for refining high-temperature reducing gas - Google Patents

Method for refining high-temperature reducing gas

Info

Publication number
JPH0278416A
JPH0278416A JP63228383A JP22838388A JPH0278416A JP H0278416 A JPH0278416 A JP H0278416A JP 63228383 A JP63228383 A JP 63228383A JP 22838388 A JP22838388 A JP 22838388A JP H0278416 A JPH0278416 A JP H0278416A
Authority
JP
Japan
Prior art keywords
gas
regeneration
temperature
absorbent
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63228383A
Other languages
Japanese (ja)
Other versions
JPH0790140B2 (en
Inventor
Yuzo Shirai
裕三 白井
Makoto Kobayashi
誠 小林
Mitsugi Suehiro
末弘 貢
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
光岡 薫明
Kenji Inoue
健治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Mitsubishi Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP63228383A priority Critical patent/JPH0790140B2/en
Priority to DE68921905T priority patent/DE68921905T2/en
Priority to EP89730023A priority patent/EP0328479B1/en
Priority to AT89730023T priority patent/ATE120480T1/en
Priority to AU29641/89A priority patent/AU610337B2/en
Priority to CA000590569A priority patent/CA1324875C/en
Priority to CN89101997.9A priority patent/CN1010379B/en
Publication of JPH0278416A publication Critical patent/JPH0278416A/en
Priority to US07/721,912 priority patent/US5154900A/en
Publication of JPH0790140B2 publication Critical patent/JPH0790140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the temp. rise of an adsorbent in regeneration by using at least four reactors packed with the adsorbent, applying adsorption, preregeneration, regeneration, cooling, and reduction, and completely serially performing preregeneration, regeneration, and cooling. CONSTITUTION:At least four reactors 21-24 packed with an adsorbent 25 are used, and an adsorption stage for adsorbing and removing the sulfur compd. in a high-temp. reducing gas with the adsorbent, the preregeneration and regeneration stages for regenerating the adsorbent with an oxygen-contg. gas, a cooling stage after the regeneration stage, and a reducing stage for reducing the regenerated adsorbent with the high-temp. reducing gas until the concns. of the reducing gas before and after the adsorbent are equalized are applied. The regeneration stage and the preregeneration stage are connected in series, a line for mixing the high-temp. gas leaving the regeneration stage into the gas leaving the preregeneration stage is provided, and the reaction heat in regeneration is continuously recovered even when the regeneration stage is switched. In addition, an SO2-contg. gas generated in the preregeneration, regeneration, and reduction stages is supplied to an S recovery system.

Description

【発明の詳細な説明】 「産業上の利用分野1 本発明は、高温還元性ガスの精製方法に関し、例えば、
石炭ガス化プロセスの生成ガスのような高温の還元性ガ
スに含まれる硫化水素、硫化カルボニル等の硫黄化合物
を合理的に除去する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field 1 The present invention relates to a method for purifying high-temperature reducing gas, for example,
The present invention relates to a method for rationally removing sulfur compounds such as hydrogen sulfide and carbonyl sulfide contained in high-temperature reducing gases such as gas produced in a coal gasification process.

(従来の技術j 近年、石油資源の枯渇、価格の高騰から燃料(又は原料
)の多様化が必須となり、石炭や重質油(タールサンド
M1、オイルシェール油、大慶原油、マヤ原油あるいは
減圧桟4h等)の利用技術の開発が進められている。
(Conventional technology) In recent years, due to the depletion of petroleum resources and soaring prices, it has become essential to diversify fuels (or raw materials). 4H, etc.) is being developed.

このガス化生成ガスは、原料の石炭やtR質油によって
異なるが、数IQO〜数11000ppの硫化水素(I
I、S) 、硫化カルボニル(C03)等の硫黄化合物
を含む。これらの硫黄化合物は、公害防止りあるいは後
流機器の腐食防止ト、除去する必要がある。
This gasification product gas differs depending on the raw material coal and tR quality oil, but the hydrogen sulfide (I
Contains sulfur compounds such as I, S) and carbonyl sulfide (C03). These sulfur compounds must be removed to prevent pollution or corrosion of downstream equipment.

この除去方法としては、乾式法が熱経済的に有利で、ま
たプロセス構成も簡素であることから、金属酸化物を主
成分とする吸収剤に高温でに記の硫黄化合物を接触させ
、金属酸化物を金属硫化物として除去する方法が一般的
となっている。
As a removal method, a dry method is thermoeconomically advantageous and has a simple process configuration. A common method is to remove substances as metal sulfides.

吸収剤としてはFc、 Zn、 Mn、 Cu、 Mo
、 W″S、の金属酸化物が使用され、250〜500
°Cで硫化水素や硫化カルボニルと接触させるが、I+
 、 SとFee’sの場合を例に説明すると、吸収反
応は(1)〜(4)式に示すように進むとされている。
Absorbents include Fc, Zn, Mn, Cu, Mo
, W″S, metal oxides of 250-500
When contacted with hydrogen sulfide or carbonyl sulfide at °C, I+
, S and Fee's as an example, the absorption reaction is said to proceed as shown in equations (1) to (4).

3FeyO* 4− Hl ’ 2FeJa )IIt
O”””””””(1)3FetOs 4 Co −+
 2FO3044Co、−−−−−−−−−−−−−−
(2)Feff04 j−li! +3H?S−> a
FeS+411?0−−−−−−−−−−(3)Fef
fO,) Co) at(ts−>3FeS+311t
04 C0f−−−−−(4)次いで、吸収反応後の吸
収剤は酸素含有ガスで(5)式に示すように元の金属酸
化物に再生され、この吸収、再生反応の繰り返しで高温
還元性ガス中の硫黄化合物はSO,ガスとして回収除去
される。
3FeyO* 4-Hl' 2FeJa )IIt
O”””””””(1)3FetOs 4 Co −+
2FO3044Co,------------
(2) Feff04 j-li! +3H? S->a
FeS+411?0---------(3)Fef
fO,) Co) at(ts->3FeS+311t
04 C0f---(4) Next, the absorbent after the absorption reaction is regenerated into the original metal oxide using an oxygen-containing gas as shown in equation (5), and by repeating this absorption and regeneration reaction, high-temperature reduction is achieved. The sulfur compounds in the gas are collected and removed as SO, gas.

4FeS−1−701−>2Fa*O,l 4SOf−
−−−−−−−−−−−−−(5)このプロセスで使用
される吸収剤は、前述の金属酸化物を単独あるいは耐熱
性の多孔質物質;こ担持したもの、移動床方式の場合は
球状や円柱状(こ成形したもの、固定床方式の場合はハ
ニカム状に成形したものである。
4FeS-1-701->2Fa*O,l 4SOf-
−−−−−−−−−−−−−(5) The absorbent used in this process includes the above-mentioned metal oxide alone or supported on a heat-resistant porous material; In the case of a fixed bed method, it is molded into a spherical or cylindrical shape, and in the case of a fixed bed method, it is molded into a honeycomb shape.

本発明者らは、先に、高温還元性ガス中に含まれる硫黄
化合物を金属酸化物を主成分とする吸収剤で吸収除去し
て、高温還元性ガスを精製する方法として、次のような
提案をした。
The present inventors have previously proposed the following method for purifying high-temperature reducing gas by absorbing and removing sulfur compounds contained in high-temperature reducing gas using an absorbent mainly composed of metal oxides. I made a suggestion.

■硫邑化合物を吸収した吸収剤を酸素含有ガスで再生す
る工程、次いで再生された吸収剤を高温還元性ガスで吸
収剤前後の精製の対象となる還元性ガス濃度が同一にな
るまで還元する工程、最後に高温還元性ガスを通気して
吸収剤で硫黄化合物を吸収除去する工程を連続的に繰り
返すことにより精製ガス中の還元性ガス濃度を安定化さ
せることを特徴とする固定床式高温還元性ガスの精製法
(特願昭60−85412号)。
■The process of regenerating the absorbent that has absorbed sulfur compounds with an oxygen-containing gas, and then reducing the regenerated absorbent with a high-temperature reducing gas until the concentration of the reducing gas to be purified before and after the absorbent becomes the same. A fixed-bed high-temperature method characterized by stabilizing the reducing gas concentration in the purified gas by continuously repeating the process and finally the step of aerating high-temperature reducing gas and absorbing and removing sulfur compounds with an absorbent. Method for purifying reducing gas (Japanese Patent Application No. 85412/1983).

また、本発明者らは、高温還元性ガス中に含まれる硫化
水素、硫化カルボニル等の硫黄化合物を吸収剤で吸収除
去して、高温還元性ガスを精製する方法として、次のよ
うな提案をしてきた。
In addition, the present inventors have proposed the following method for purifying high-temperature reducing gas by absorbing and removing sulfur compounds such as hydrogen sulfide and carbonyl sulfide contained in high-temperature reducing gas using an absorbent. I've been doing it.

■再生された吸収剤を高温還元性ガスで吸収剤前後のj
I!I製の対象となる還元性ガス濃度が同一になるまで
還元後、硫黄化合物を吸収除去する工程を連続的に繰り
返す高温還元性ガスの精製方法において、吸収剤を充填
した反応器を少なくとも三基使用し、吸収、予備再生、
[り生及び還元の四工程より構成し、該高温還元性ガス
を通気して該吸収剤で該硫黄化合物を吸収除去すること
により、吸収、再生の性能を安定化させることを特徴と
する高温還元性ガスの精製方法(特願昭62−1678
14号)。
■The regenerated absorbent is heated before and after the absorbent using high-temperature reducing gas.
I! A method for purifying high-temperature reducing gas that continuously repeats the process of absorbing and removing sulfur compounds after reduction until the target reducing gas concentration becomes the same, using at least three reactors filled with absorbent. use, absorb, pre-regenerate,
[A high-temperature process consisting of four steps of regeneration and reduction, characterized by stabilizing absorption and regeneration performance by aerating the high-temperature reducing gas and absorbing and removing the sulfur compounds with the absorbent. Method for purifying reducing gas (Patent application 1678-1988)
No. 14).

■高7!!還元性ガスに含まれる硫黄化合物を吸収剤で
吸収除去する工程、硫黄化合物を吸収した吸収剤をIl
l生反応に必要な温度に達するまで昇温させる予備再生
工程、rlI生反応温度に到達した吸収剤を酸素含有ガ
スで14生する工程、再生された吸収剤を高温還元性ガ
スで吸収剤前後の還元性ガス濃度が同一となるまで還元
する工程の四丁程で構成すると共に、前記再生工程に循
環させるガス量を調節するか、又はこの再生循環ガス量
の調節と再生工程に供給される高温還元性ガスの燃焼熱
の利用とにより、低負荷時の吸収、再生の性能を安定化
させることを特徴とする高温還元性ガスの精製法(特願
昭62−167815号)。
■High school 7! ! A process of absorbing and removing sulfur compounds contained in reducing gas with an absorbent, the absorbent that has absorbed the sulfur compounds is
A preliminary regeneration step in which the temperature is raised until it reaches the temperature required for the rl bioreaction, a step in which the absorbent that has reached the rlI bioreaction temperature is heated with an oxygen-containing gas, and the regenerated absorbent is heated before and after the absorbent with a high temperature reducing gas. The process consists of four stages of reducing until the reducing gas concentration of A method for purifying high-temperature reducing gas (Japanese Patent Application No. 167815/1982), which is characterized by stabilizing absorption and regeneration performance at low loads by utilizing the combustion heat of high-temperature reducing gas.

■硫黄化合物を吸収剤で吸収除去する吸収工程、吸収剤
を酸素含有ガスで再生する再生工程、再生]二程完了後
の冷却工程、再生された吸収剤を高温還元性ガスで吸収
剤前後の還元性ガス濃度が同一となるまで還元する工程
の四工程で構成すると共に、前記再生工程において、再
生反応器用[1高温ガスから連続的に熱回収を行い吸収
、再生の性能を安定化させることを特徴とする高温還元
性ガスの精製方法(特願昭63−27441号)。
■Absorption process in which sulfur compounds are absorbed and removed by an absorbent, regeneration process in which the absorbent is regenerated with oxygen-containing gas, cooling process after the completion of the second stage of regeneration, and the regenerated absorbent is heated before and after the absorbent with high-temperature reducing gas. It consists of four steps: a step of reducing until the reducing gas concentration becomes the same, and in the regeneration step, the regeneration reactor [1] Continuously recovers heat from the high temperature gas to stabilize absorption and regeneration performance. A method for purifying a high temperature reducing gas (Japanese Patent Application No. 63-27441).

■吸収剤を充填した反応器を少なくとも四塔使用し、高
温還元性ガス中に含まれる硫黄化合物を吸収剤で吸収除
去する吸収工程、吸収剤を酸素含有ガスで再生する再生
工程、再生工程完了後の冷却工程、再生された吸収剤を
高温還元性ガスで還元する還元工程の四五程からなり、
還元工程、再生工程及び冷却工程で還元反応器、両生反
応器及び冷却反応器用1コSO,a有ガスを後胤の硫黄
回収工程に供給して単体硫黄を回収することを特徴とす
る高温還元性ガスの精製方法(昭和63年9J1130
付は特許願)。
■An absorption process that uses at least four reactors filled with absorbent to absorb and remove sulfur compounds contained in high-temperature reducing gases, a regeneration process that regenerates the absorbent with oxygen-containing gas, and a regeneration process completed. It consists of about 45 steps, including a subsequent cooling step and a reduction step in which the regenerated absorbent is reduced with a high-temperature reducing gas.
High-temperature reducibility characterized by recovering elemental sulfur by supplying one SO, a-containing gas for the reduction reactor, amphiphilic reactor, and cooling reactor to the subsequent sulfur recovery process in the reduction process, regeneration process, and cooling process. Gas purification method (Showa 63 9J1130
(Patent application attached).

[発明が解決しようとする課厘] 以1−の提案における固定床方式ガス精製システムは、
吸収、再生及び還元の各工程からなる反応系と再生系か
らの放出SOtガスを処理する後流の硫黄回収系とから
構成されるが、長期間にわたつ°C安定した性能を得る
ためには、吸収剤の劣化を抑制するようなシステム=+
1びに方法を採用する必要がある。
[Problem to be solved by the invention] The fixed bed gas purification system proposed in 1- below is as follows:
It consists of a reaction system consisting of absorption, regeneration, and reduction steps, and a downstream sulfur recovery system that processes the SOt gas released from the regeneration system. is a system that suppresses deterioration of absorbent = +
It is necessary to adopt a method at each time.

吸収剤の劣化要因としては、11生時の温度上昇による
熱劣化や、副反応による不純物の蓄積等が挙げられる。
Factors contributing to the deterioration of the absorbent include thermal deterioration due to temperature rise during 11th generation, accumulation of impurities due to side reactions, and the like.

吸収工程を終了した吸収剤は、次に再生工程に移される
。すると、(5)式に示される反応が生じ、反応熱が発
生する。この反応熱は吸収剤に徐々に蓄積され、吸収剤
を昇温する。吸収剤の耐熱限界を越えると、担体の損傷
、鉄のシンタリング現象等が起き、吸収容量の低Fをき
たす。
The absorbent that has completed the absorption process is then transferred to the regeneration process. Then, the reaction shown in equation (5) occurs, and reaction heat is generated. This heat of reaction gradually accumulates in the absorbent, raising its temperature. When the heat resistance limit of the absorbent is exceeded, damage to the carrier, sintering of iron, etc. occur, resulting in a low F absorption capacity.

このため、前述の提案においては、反応器二基を+iI
<行して([1生し、−塔のifJ生工程が終rした後
もガスを導入し続け、吸収剤を冷却する冷却工程を設け
ると共に、そのガスをもう1つの再生反応λ1の中段に
導入し、用生反応器二塔による一部シリーズ(直列)運
転を採用することで、熱劣化を抑制する工夫がなされて
いる。
Therefore, in the above proposal, the two reactors are +iI
<Continue to introduce gas even after the completion of the ifJ generation process in the column, provide a cooling process to cool the absorbent, and transfer the gas to the middle stage of another regeneration reaction λ1. Efforts have been made to suppress thermal deterioration by introducing part of the system into series (series) operation using two raw reactor towers.

しかし、河生反応器二塔に並行に0.ガスを含むガスを
導入し始める再生初期においては、急激な発熱反応のた
めに、吸収剤温度が高温となる短所がある。
However, in parallel to the two Kawase reactor towers, 0. In the early stage of regeneration when a gas containing gas starts to be introduced, there is a disadvantage that the temperature of the absorbent becomes high due to a rapid exothermic reaction.

また、副反応の抑制についてのその後の研究において、
再生工程では、(5)式の反応以外に、例えば次の(6
)、 (7)式等の反応が一部生じ、PcSの一部は硫
酸鉄[Fa、(SQ、)−1に転化する。
In addition, in subsequent research on suppressing side reactions,
In the regeneration process, in addition to the reaction of formula (5), for example, the following (6)
), (7), etc. occur, and a portion of PcS is converted to iron sulfate [Fa, (SQ,)-1.

2PpS +−SOtト502→pe、(3Q4)、a
ss−am−*m***−m(5)2FetO*+6S
O*ト30− ’2Fet(SO4)s”””””(7
)この副生Ft3y(SOJ3は、次の還元工程におい
て、次の(8)、 (9)式等により再度SOtに還元
される。
2PpS +-SOt502→pe, (3Q4), a
ss-am-*m***-m(5)2FetO*+6S
O*To30-'2Fet(SO4)s"""""(7
) This by-product Ft3y (SOJ3) is reduced to SOt again in the next reduction step using the following equations (8) and (9).

3Fct(SO−)s II 0llt →2PcJa
 + 9SO,II 01120−(8)3Ff!y(
SO4)i+ l0CO−” 2Pe、IO++ 9s
o、 + l0COt”(9)このSO7を含む使用済
み還元性ガを吸収反応器に戻した場合、この吸収反応器
において、例えば次の(10)、 (II)式により、
SOtは吸収剤に吸収され、FeSとなる。
3Fct(SO-)s II 0llt →2PcJa
+9SO,II 01120-(8)3Ff! y(
SO4) i+ l0CO-” 2Pe, IO++ 9s
o.
SOt is absorbed by the absorbent and becomes FeS.

)’Q 、0. + 3SO,−+  IOF+、 →
 3FeS+  1olIto−−−−−−−(10)
Fc、O,+3SO,−1−10CO→3PeS+1o
cks””(11)(10)、 (II)式で反応する
Fe5O4は本来(3)、 (4)式での11.Sの吸
収に使用されるべきものであり、結局、II、Sを吸収
するを効なFe5Oaのロスとなり、吸収能力の減少に
つながる。
)'Q, 0. + 3SO, -+ IOF+, →
3FeS+ 1olIto---(10)
Fc, O, +3SO, -1-10CO → 3PeS+1o
Fe5O4, which reacts in formula (11) (10) and (II), originally reacts in formula (3) and (4) in 11. This should be used to absorb S, and as a result, Fe5Oa, which is effective in absorbing II and S, is lost, leading to a decrease in absorption capacity.

また、(10)、 (II)式で反応する+1.、Co
は、本来は粗ガス化ガスの原料であり、エネルギーロス
の原因となる。
(10), (II) +1. ,Co
is originally a raw material for crude gasification gas and causes energy loss.

従って、(6)、 (7)式等のPet(SOa)sの
副生反応を極力抑えることが好ましい。
Therefore, it is preferable to suppress by-product reactions of Pet(SOa)s such as those in formulas (6) and (7) as much as possible.

そのためには、吸収剤の耐熱限界温度内で、より高温の
再生を行うと共に、SO2濃度をできるだけ減少させる
ことが必要である。
To this end, it is necessary to perform regeneration at a higher temperature within the heat resistance limit temperature of the absorbent and to reduce the SO2 concentration as much as possible.

吸収剤の再生用ガスは、硫黄回収系での処理ガスに空気
又は酸素含有ガスを混合したものが使用されるため、硫
黄回収系での硫黄回収率を向−トさせ、再生反応器人口
ガス中の硫黄分(So、、 It、S。
The regeneration gas for the absorbent is a mixture of the treated gas in the sulfur recovery system and air or oxygen-containing gas. The sulfur content (So, It, S.

ガス状硫黄等)をできるだけ減らした方がFew(SO
jsの副生反応を抑制する意味で好ましい。
It is better to reduce Few (gaseous sulfur, etc.) as much as possible
This is preferred in terms of suppressing by-product reactions of js.

本発明は、再生時の吸収剤の温度」−昇、副反応による
吸収剤能力の減少及び組ガス化ガス中の1■、。
The present invention is characterized by an increase in the temperature of the absorbent during regeneration, a decrease in the absorbent capacity due to side reactions, and 1.

COのエネルギーロス等の問題点を解消することを目的
としてなされたものである。
This was done with the aim of solving problems such as energy loss of CO.

[3題を解決するための手段] 本発明は、」二記の目的を、吸収剤を充填していた反応
器を少な(とも四塔使用し、吸収を程、再生rt程、還
元工程からなる従来の技術に代えて、再生工程の前に新
たに予備再生工程を導入してシリーズ再生を採用すると
共に、従来吸収反応器人1]に戻していた使用済み還元
性ガスを後流の硫黄回収系に供給することにより、解決
するものである。
[Means for Solving the Three Problems] The present invention achieves the second object by reducing the number of reactors filled with absorbent (four towers are used, and reducing the number of reactors from the absorption stage, regeneration RT stage, and reduction stage). In place of the conventional technology, we introduced a new pre-regeneration process before the regeneration process and adopted series regeneration.In addition, we have adopted series regeneration by introducing a new preliminary regeneration process before the regeneration process. This is solved by supplying it to a recovery system.

すなわち、本発明は、高温還元性ガス中に含まれる硫黄
化合物を吸収剤で吸収除去する方法において、吸収剤を
充填した反応器を少なくとも四塔使用し、前記硫黄化合
物を吸収剤で吸収除去する吸収工程、該吸収剤を酸素含
有ガスで再生する予備再生工程及び再生工程、再生工程
完了後の冷却工程、両生された吸収剤を吸収剤前後の還
元性ガス濃度が同一になるまで高温還元性ガスで還元す
る還元工程のH工程からなり、前記再生工程と予(Ii
 !1生■程とはシリーズに連結し、かつ再生工程出(
」高温ガスを予備再生工程出[コガスに混合するライン
を設置して11■生工程切替時においても再生反応熱を
連続的に回収すると共に、予備再生工程、+rJ生工程
及び還元工程から発生するS0w含有ガスを硫黄回収系
へ供給して+11体硫黄を回収することを特徴とする高
温還元性ガスの精製方法に関するものである。
That is, the present invention provides a method for absorbing and removing sulfur compounds contained in a high-temperature reducing gas using an absorbent, in which at least four reactors filled with an absorbent are used, and the sulfur compounds are absorbed and removed by the absorbent. absorption process, a preliminary regeneration process and regeneration process in which the absorbent is regenerated with oxygen-containing gas, a cooling process after the completion of the regeneration process, and a high-temperature reducibility process for the ambiguous absorbent until the reducing gas concentration before and after the absorbent becomes the same. It consists of the H step of the reduction step of reducing with gas, and the regeneration step and the preliminary (Ii
! 1 life■ process is connected to the series, and the reproduction process starts (
A line is installed to mix the high-temperature gas with the co-gas from the pre-regeneration process, and the regeneration reaction heat is continuously recovered even when switching to the raw process. The present invention relates to a method for purifying a high-temperature reducing gas, characterized by supplying a S0w-containing gas to a sulfur recovery system to recover +11-body sulfur.

F作用1 前述のように、吸収二[程を完了した反応器に直ちにO
ta有ガスを導入し、再生工程を開始すれば、発熱反応
により急激に温度−に昇が起こる。
F action 1 As mentioned above, immediately add oxygen to the reactor after completing the second absorption step.
When a ta-containing gas is introduced and the regeneration process is started, an exothermic reaction causes a rapid rise in temperature.

本発明では、この発熱反応を緩和するために、次のよう
な操作を行う。
In the present invention, the following operation is performed in order to alleviate this exothermic reaction.

西塔を有する反応器は、常に、還元、吸収、予備1り生
、再生及び冷却工程を実施しており、吸収+7.程を終
了した反応器は、次に予備再生」:程に移行するが、導
入するガスの大゛Vは′+rI生反応器を経たIJ’ス
が使用されるため、再生の間ガス中の0.濃度は変化す
る。
The reactor with the west column is always carrying out reduction, absorption, pre-regeneration, regeneration and cooling steps, absorption +7. The reactor that has completed the process is then transferred to the preliminary regeneration process, but since the large V of the gas to be introduced is the IJ gas that has passed through the +rI bioreactor, the amount of gas in the gas during the regeneration is 0. Concentration varies.

すなわち、予備再生の進行と共にガス中の0.濃度は高
まっ“Cくる〇 従って、低0.濃度から徐々に再生されることになり、
吸収剤にとってはマイルドな再生となり好都合である。
That is, as the preliminary regeneration progresses, 0. The concentration increases, and therefore, it is gradually regenerated from a low concentration of 0.
This is advantageous for the absorbent as it results in mild regeneration.

また、1り本工程を経たガスを使用するため、−r備1
’T生工程の1q生人ロガス温度が高温であれば、JZ
備+Ij生反応器人[1ラインに150〜300℃程度
のO7aイ「冷ガスを導入することにより温度制御でき
る。
In addition, since we use gas that has gone through one step,
'If the 1q raw raw gas temperature of the T raw process is high, JZ
Temperature can be controlled by introducing cold gas into the bioreactor at a temperature of about 150 to 300°C in one line.

次に、一定時間経過後、予備再生工程から+tj生工程
へ移行するが、予備再生工程において吸収剤の−・部は
既に再生が進行しているので、iTf生工程で所定O2
濃度(l〜3’101%程度)を含む再生用ガスが再生
反応器に導入されても急激な温度−F昇を招くことがな
い利点がある。
Next, after a certain period of time has elapsed, the pre-regeneration process moves to the +tj raw process, but since the - part of the absorbent has already been regenerated in the pre-regeneration process, the predetermined O2 in the iTf raw process is
There is an advantage that even if a regeneration gas containing a concentration (approximately 1 to 3' 101%) is introduced into the regeneration reactor, a sudden rise in temperature -F does not occur.

また、吸収剤が耐熱限界温度を越える程度の高4が予想
される場合は、該当個所に150〜300℃程度の島を
含有しない冷ガスを吹込むことにより吸収剤の保護を図
ることができる。
In addition, if the temperature of the absorbent is expected to exceed its heat resistance limit, the absorbent can be protected by blowing cold gas that does not contain islands at a temperature of about 150 to 300°C into the affected area. .

すなわち、吸収剤が複数段に分割して充填されている再
生反応器の比較的高温部である所定の段の位置に、硫黄
回収系を経た150〜300℃程度のO2を含有しない
冷ガスを、その吹込量を制御して吹込むことにより、吸
収剤内部を所定温度(例えば、800℃)以下に保持す
ることができるので、吸収剤の寿命延長にとって極めて
効果的である。
That is, a cold gas that does not contain O2 and has a temperature of about 150 to 300 degrees Celsius that has passed through a sulfur recovery system is supplied to a predetermined stage, which is a relatively high temperature section, of a regeneration reactor that is filled with absorbent divided into multiple stages. By controlling the amount of blowing and blowing, the inside of the absorbent can be maintained at a predetermined temperature (for example, 800° C.) or lower, which is extremely effective for extending the life of the absorbent.

また、本発明では、予備再生工程と再生工程をシリーズ
にしてi[f生を行うため、従来の二基パラレル1り生
システムに比べて、後流の硫黄回収系への0 、 /’
Fイfガスの漏れ込みを防ぐことができる利点もある。
In addition, in the present invention, the preliminary regeneration step and the regeneration step are performed in series to perform i[f regeneration, so compared to the conventional two-parallel regeneration system, 0, /'
There is also the advantage that leakage of Fif gas can be prevented.

二項パラレル再生システムの場合、再生工程の進行と共
に出口ガス中に0.ガスが含有され易くなるため、厳密
な制御を必要とするが、本発明の場合は、常に二項シリ
ーズ運転となるため、1耳生玉程終r後の冷却工程での
出口ガス中のOtガスは予備再生工程で利用されること
となり、後流の硫黄回収系へ供給するガス中には常に0
.ガスを含有しない状態にすることができる。
In the case of a two-term parallel regeneration system, as the regeneration process progresses, 0. Strict control is required because gas is likely to be contained, but in the case of the present invention, since the operation is always in a two-term series, Ot gas in the outlet gas during the cooling process after the end of one round of rolling. will be used in the preliminary regeneration process, and there will always be zero in the gas supplied to the downstream sulfur recovery system.
.. It can be made into a state that does not contain gas.

一方、熱収支の面においても、本発明は従来法に比べて
有利である。
On the other hand, the present invention is also advantageous over conventional methods in terms of heat balance.

すなわち、吸収工程終了後、予備再生工程への切替え直
後においては、硫黄回収系のL流に設置されている熱交
換器の高温側入口ガスは、再生中級も低い温度となる。
That is, immediately after switching to the preliminary regeneration step after the absorption step is completed, the high temperature side inlet gas of the heat exchanger installed in the L stream of the sulfur recovery system has a low temperature even in the regeneration intermediate stage.

この熱交換器の高温側人[−1ガスの熱は、再生用人口
ガスの温度(400〜500℃程度)維持に使用される
ため、所定温度(450〜550℃程度)以−ににする
必要があり、かつその温度は安定させることが好ましい
The heat of the high-temperature side gas of this heat exchanger is used to maintain the temperature of the artificial gas for regeneration (about 400 to 500 degrees Celsius), so the temperature should not exceed a predetermined temperature (about 450 to 550 degrees Celsius). It is preferable to keep the temperature stable.

このため、本発明では、再生反応器出口の高温ガスを制
御弁により予備再生反応型出[1ガスに混合し、熱交換
器の高温側人口ガス温度を所定温度に保持することがで
きる。
Therefore, in the present invention, the high-temperature gas at the outlet of the regeneration reactor is mixed with the pre-regeneration reaction type gas by the control valve, and the temperature of the artificial gas on the high temperature side of the heat exchanger can be maintained at a predetermined temperature.

F6i再生工程及び1■生玉程の進行具合で、各工程で
の出ロガス温L9は変化するが、再生工程出口の高温ガ
スの予備再生工程出口ラインへの供給!Itを調節する
ことにより、熱交換器の高温個人[jガス温度を一定に
制御できるので、再生反応器人口ガス温度を常に所定温
度(400〜500℃程度)に保持することは容易であ
る。
The output log gas temperature L9 in each process changes depending on the progress of the F6i regeneration process and 1■ raw balls, but the high temperature gas at the regeneration process outlet is supplied to the preliminary regeneration process exit line! By adjusting It, the high temperature gas temperature of the heat exchanger can be controlled to a constant value, so it is easy to always maintain the regeneration reactor population gas temperature at a predetermined temperature (about 400 to 500°C).

次に、再生工程終了後、冷却工程に移行する。Next, after the regeneration step is completed, the cooling step is started.

冷却口「程では、再生人口ガスと同一条件(温度、組成
)Fの0.含有ガスを導入し、吸収剤の蓄熱の回収と再
生の完全化を図る。
At the cooling port, a gas containing 0.0 F under the same conditions (temperature, composition) as the regenerated artificial gas is introduced to recover the heat stored in the absorbent and complete the regeneration.

所定時間の冷却工程を経た後、還元工程に移行する。前
述したように、再生工程において、吸収剤のFcSは、
大部分Fete、、に転化するが、一部は再生用ガス中
に含まれる30wガスと反応して、硫酸鉄[Fee(S
O4)、1を副生する。このFee(SO4)*が、こ
の還元工程で分解し、S02ガスを放出する。従って、
このSO,ガスを含む還元処理後のガスは、予備出生工
程後のガスと相俟って後流の硫黄回収系へ供給され、処
理される。
After passing through a cooling process for a predetermined time, the process moves to a reduction process. As mentioned above, in the regeneration process, the absorbent FcS is
Most of it is converted to Fete, but a part reacts with the 30W gas contained in the regeneration gas and converts into iron sulfate [Fee(S)].
O4), 1 is produced as a by-product. This Fee(SO4)* is decomposed in this reduction step and releases S02 gas. Therefore,
The gas containing SO and gas after the reduction process is supplied to the downstream sulfur recovery system together with the gas after the preliminary birthing process, and is processed.

なお、この還元工程でのガスの流れは、吸収工程と順流
で行うこともできるが、F(!t(SO4)sの802
への分解の面で、逆流がより好ましい。
Note that the gas flow in this reduction process can be carried out in the same direction as the absorption process, but the
Countercurrent flow is more preferred in terms of decomposition.

また、吸収■二枚において、吸収剤はガス流れの上段側
から硫化されて行くため、出]」ガス中の硫黄化合物を
所定濃度(例えば!00ppm)以下に抑えろためには
吸収剤の硫化率(Fe分がPeSになっている割合)を
10〜50%程度にしておく必要がある。
In addition, in the two sheets of absorption, the absorbent is sulfurized from the upper stage of the gas flow, so in order to suppress the sulfur compounds in the gas to a predetermined concentration (for example, !00 ppm), the sulfidation rate of the absorbent must be (The ratio of Fe to PeS) needs to be kept at about 10 to 50%.

従って、その硫化された部分が再生工程において一部硫
酸鉄[Fe−(SO4)ff−1化され、その分解によ
って発生するSO2が、例えば(10)、(I+)式の
反応により酸化鉄ゾーンでm吸収されるのを防ぐために
も、できるだけ還元用ガスは酸化鉄ゾーンを通過した後
、比較的Fet(SOa)sが多く含有されるゾーンを
通過する逆流還元の方法が好ましいのである。
Therefore, the sulfurized portion is partially converted to iron sulfate [Fe-(SO4)ff-1 in the regeneration process, and the SO2 generated by the decomposition is transferred to the iron oxide zone by the reactions of formulas (10) and (I+). In order to prevent m-absorption, it is preferable to use a backflow reduction method in which the reducing gas passes through an iron oxide zone and then a zone containing a relatively large amount of Fet(SOa)s.

硫黄回収系上流の熱交換器で所定温度まで降温されたガ
スは、硫黄回収系に供給され、必要硫黄を回収後、’+
r工生相生用ガスて循環使用される。
The gas whose temperature has been lowered to a predetermined temperature in the heat exchanger upstream of the sulfur recovery system is supplied to the sulfur recovery system, and after recovering the necessary sulfur, '+
It is used for circulation as gas for reciprocity.

このように、本発明は、吸収剤の保護及び安定性能簿の
而から、従来の高温還元性ガスの精製方法を改良するも
のである。
As described above, the present invention improves the conventional method for purifying high temperature reducing gas from the viewpoint of absorbent protection and stability performance.

[実施例] 第1図は、本発明方法の一実施態様例を示す図である。[Example] FIG. 1 is a diagram showing an example of an embodiment of the method of the present invention.

第1図におイテ、1.2.4及び66はH,S、 CO
3等の硫黄化合物を、含む脱塵高温還元性ガスライン、
3.5〜g、 54.57.60及び63は同ガス流路
切替バルブ、9〜12は再生工程及び還元工程の反応器
から出る比較的高濃度硫黄化合物含有ガスの切替バルブ
、17〜20は再生反応器出口高温ガスを予備再生反応
器出口ガスに混合するためのガス流路切替バルブ、21
〜24は吸収剤25を複数段(ここでは4段)に分割し
て充填した反応器、34〜41は比較的低温の酸素を含
有しない循環ガスの一部を再生工程を行っている反応器
の3,4段(再生用ガス人[1側から数えて)の冷却に
供給するための流路切替バルブ、55.58.61及び
64は吸収工程にある反応器からの精製ガスの流路切替
バルブ、56.59゜62及び65は再生工程にある反
応器への再生ガス供給のための流路切替バルブ、47.
49.51及び53は予6i1り生王程にある反応器へ
の酸素含有冷ガスを供給するための流路切替バルブ、7
0は精製ガス取出ライン、82はrTT生ガス循環ライ
ン、69は後述のガスライン96の分岐ライン、68は
同流路切替バルブ、71.72は空気又は酸素含有ガス
供給のためのライン及び同流路切替バルブ、67、81
及び86は熱交換器、73及びア4はガスライン96の
分岐ライン、75〜78はガスライン74の分岐ライン
、79及び8Gはライン73のガスにライン71からの
空気又は酸素含有ガスを混合したものの分岐ライン、8
3は降温された比較的高濃度の硫黄化合物含有ガスライ
ン、84はSO,還元反応器、88は硫黄凝縮器、87
.89.91.92及び95〜97はガスライン、90
は硫黄ミスト分離器、g3はブロワ、98は硫黄凝縮器
88をバイパスするためのガス流路切替バルブ、99及
び100は液体硫黄(回収硫黄)ラインである。
Ite in Figure 1, 1.2.4 and 66 are H, S, CO
A dedusting high-temperature reducing gas line containing sulfur compounds such as No. 3,
3.5-g, 54.57.60 and 63 are the same gas flow path switching valves, 9-12 are switching valves for relatively high concentration sulfur compound-containing gas coming out of the reactor in the regeneration process and reduction process, 17-20 21 is a gas flow path switching valve for mixing the regeneration reactor outlet high temperature gas with the preliminary regeneration reactor outlet gas;
- 24 are reactors filled with the absorbent 25 divided into multiple stages (four stages in this case); 34 - 41 are reactors in which a part of relatively low-temperature oxygen-free circulating gas is subjected to a regeneration process. Flow path switching valves for supplying cooling gas to the 3rd and 4th stages (counting from the 1st side) of the regeneration gas, 55, 58, 61 and 64 are flow paths for purified gas from the reactor in the absorption process. Switching valve, 56.59° 62 and 65 are flow path switching valves for supplying regeneration gas to the reactor in the regeneration process, 47.
49. 51 and 53 are flow path switching valves for supplying oxygen-containing cold gas to the reactor in the pre-6i1 raw temperature stage, 7
0 is a purified gas extraction line, 82 is an rTT raw gas circulation line, 69 is a branch line of gas line 96, which will be described later, 68 is a flow path switching valve, and 71.72 is a line for supplying air or oxygen-containing gas; Flow path switching valve, 67, 81
and 86 are heat exchangers, 73 and A4 are branch lines of the gas line 96, 75 to 78 are branch lines of the gas line 74, and 79 and 8G are mixtures of the gas in line 73 with air or oxygen-containing gas from line 71. Branch line of what was done, 8
3 is a gas line containing a relatively high concentration of sulfur compounds whose temperature has been lowered, 84 is an SO, reduction reactor, 88 is a sulfur condenser, 87
.. 89.91.92 and 95-97 are gas lines, 90
is a sulfur mist separator, g3 is a blower, 98 is a gas flow path switching valve for bypassing the sulfur condenser 88, and 99 and 100 are liquid sulfur (recovered sulfur) lines.

第1図では吸収剤25が充填された同一構造の反応74
21〜24を(1)、 (2)式による還元工程、(3
)、 (4)式による吸収工程、(5)式による再生工
程と順次切り替えて行〈実施態様を示しているが、本発
明は固定床式に限定されるものではな(、還元性ガス中
のII、S、 CO3等の硫黄化合物を吸収剤で吸収除
去後、(5)式による再生を繰り返すプロセスなら流動
床式、移動床式を問わず適用できる。また、四基以上の
固定床式にも適用できるのはいうまでもない。
In FIG. 1, a reaction 74 of the same structure is filled with an absorbent 25.
21 to 24 in a reduction step according to formulas (1) and (2), (3
), the absorption process according to formula (4), and the regeneration process according to formula (5) are sequentially switched. If it is a process in which sulfur compounds such as II, S, and CO3 are absorbed and removed using an absorbent and then regenerated according to formula (5), it can be applied regardless of whether it is a fluidized bed type or a moving bed type.In addition, a fixed bed type with four or more Needless to say, it can also be applied to

更に、吸収剤の組成、形状に何ら限定されるものではな
いが、ここではFe、03を吸収剤とする場合につき説
明する。
Further, although the composition and shape of the absorbent are not limited in any way, the case where Fe, 03 is used as the absorbent will be explained here.

ライン1のIl、S、 COS″5の硫黄化合物を含有
する高温還元性ガスは、例えば石炭のガス化ガスを図示
省略の集塵装置でダスト濃度10+++g/ Ns’程
度まで脱塵したものであり、石炭の種類やガス化条件で
5″X、なるが、ダスト以外に数10−数1000pp
階のH,S。
The high-temperature reducing gas containing sulfur compounds of Il, S, and COS''5 in line 1 is obtained by, for example, dedusting coal gasification gas to a dust concentration of about 10+++ g/Ns' using a dust collector (not shown). , 5"X depending on the type of coal and gasification conditions, but in addition to dust, there are tens to thousands of pp.
H and S on the floor.

C(IS、 till、及びハロゲン等が含まれており
、ガス温度はガス化炉出[1都での熱回収により250
〜500℃、圧力はガス化炉の形状により異なるが、通
常、常圧〜25Kg/ c*’Gである。
C (contains IS, till, and halogen, etc., and the gas temperature is 250
~500℃, pressure varies depending on the shape of the gasifier, but is usually normal pressure ~25Kg/c*'G.

第1図は反応器21で予備tQ生工程を、反応器22で
吸収工程を、反応器23で還元工程を、反応器24で再
生工程を行っている状態を示している。
FIG. 1 shows a state in which a preliminary tQ production process is carried out in a reactor 21, an absorption process is carried out in a reactor 22, a reduction process is carried out in a reactor 23, and a regeneration process is carried out in a reactor 24.

第2図は、本発明実施時の吸収、予備再生、再生、冷却
及び還元工程のタイムスケジュールの例を示す図である
FIG. 2 is a diagram showing an example of a time schedule for absorption, preliminary regeneration, regeneration, cooling, and reduction steps when implementing the present invention.

ここに、吸収、予備再生、再生、冷却及び還元工程と硫
黄回収系の運転については、ラインlの脱塵ガス化ガス
とほぼ同圧(常圧〜30にg/c+s’G程度)で行わ
れるものとして、第1図について、第2図のタイムスケ
ジュールのもとで、以下に説明する。
Here, the absorption, preliminary regeneration, regeneration, cooling and reduction processes and operation of the sulfur recovery system are carried out at approximately the same pressure as the dedusting gasification gas in line 1 (at about normal pressure to 30g/c+s'G). 1 will be explained below based on the time schedule of FIG. 2.

第1図において、ライン1内の脱塵ガス化ガスは流路切
替バルブ6を介して反応器22に供給され、該ガス中の
硫黄化合物が、通常、300〜500℃で、(3)、 
(4)式によって吸収剤25に吸収除去され、精製ガス
となって流路切替バルブ58を介してライン70から図
示省略のガスタービンに供給される。
In FIG. 1, the dedusting gasification gas in the line 1 is supplied to the reactor 22 via the flow path switching valve 6, and the sulfur compounds in the gas are normally at 300 to 500°C (3).
It is absorbed and removed by the absorbent 25 according to equation (4), becomes purified gas, and is supplied to a gas turbine (not shown) from the line 70 via the flow path switching valve 58.

予備再生工程中、反応器21へのガスは、反応器24の
再生工程を経たガスが、ライン16、ガス流路切替バル
ブ20、ライン26〜30及びガス流路切替バルブ46
を介して導入される。
During the preliminary regeneration process, the gas that has passed through the regeneration process in the reactor 24 is supplied to the reactor 21 through the line 16, the gas flow switching valve 20, the lines 26 to 30, and the gas flow switching valve 46.
introduced via.

吸収→予備再生工程(同時に、予備再生→再生工程)移
行後のしばら(の間は、反応器21の出口ガス温度は、
ライン1の脱塵ガス化ガスの温度とさほど変わりないか
、又はせいぜい数10℃位しか高くないので、再生工程
の再生入口ガス温度をラインlの脱塵ガス化ガスの温度
と同等又はそれ以−1−の高温にしたい場合、後流の熱
交換器81によるだけでは実用的に再生工程の再生入口
ガスを所定温度(400〜500℃)に維持することが
できない。
For a while after the transition from absorption to pre-regeneration step (at the same time, pre-regeneration to regeneration step), the outlet gas temperature of the reactor 21 is
Since the temperature of the dedusting gasification gas in line 1 is not much different, or is only a few tens of degrees higher at most, the regeneration inlet gas temperature in the regeneration process is set to be equal to or higher than the temperature of the dedusting gasification gas in line 1. If a high temperature of -1- is desired, it is not practical to maintain the regeneration inlet gas in the regeneration process at a predetermined temperature (400 to 500°C) only by using the downstream heat exchanger 81.

そのような場合は、熱交換器81の高温側入口ガスを所
定温度(450〜550℃)に維持するために、反応器
24の出口高温ガスの必要量を、予備再生工程にある反
応器21の出L1ガスに、ガス流路切替バルブ17を介
してガスライン13に混合し、流路切替バルブ9を介し
て熱交換器81に導入することで対処できる。
In such a case, in order to maintain the high-temperature side inlet gas of the heat exchanger 81 at a predetermined temperature (450 to 550°C), the required amount of the high-temperature gas at the outlet of the reactor 24 is replaced by the reactor 21 in the preliminary regeneration process. This can be handled by mixing the output L1 gas into the gas line 13 via the gas flow switching valve 17 and introducing it into the heat exchanger 81 via the flow switching valve 9.

反応器24の出口高温ガスの残りは、予備再生工程の再
生人口ガスを所定温度に制御するために、ライン30か
ら流路切替バルブ46を介して、ガスライン80の分岐
ライン79から流路切替バルブ47を介して送、られて
来る酸素含有冷ガスに混入し、反応器21に導入される
The remainder of the high-temperature gas at the outlet of the reactor 24 is transferred from the line 30 to the branch line 79 of the gas line 80 via the flow path switching valve 46 in order to control the regenerated artificial gas in the preliminary regeneration step to a predetermined temperature. It is mixed with the oxygen-containing cold gas sent through valve 47 and introduced into reactor 21 .

その結果、反応器21内の吸収剤25を急激な温度−1
−昇から保護することができ、かつ熱交換器81の高温
側人口ガス温度の安定化にも寄与する。
As a result, the absorbent 25 in the reactor 21 suddenly rises to a temperature of -1
- It can be protected from temperature rise and also contributes to stabilizing the temperature of the artificial gas on the high temperature side of the heat exchanger 81.

当然のことながら、反応器24の再生工程並びに反応器
z1の予備再生工程の進行具合で各反応器21゜24出
ロガスの温度は変わるので、反応器24出ロガスの反応
器z1出ロガスへの導入量を、0〜70%程度の範囲で
制御し、熱交換器81の高温側人口ガス温度を所定の温
度(例えば500℃)以りに制御する。
Naturally, the temperature of the log gas output from each reactor 21 and 24 changes depending on the progress of the regeneration process of the reactor 24 and the preliminary regeneration process of the reactor z1, so the temperature of the log gas output from the reactor 24 to the log gas output from the reactor z1 changes. The introduced amount is controlled within a range of about 0 to 70%, and the temperature of the artificial gas on the high temperature side of the heat exchanger 81 is controlled to a predetermined temperature (for example, 500° C.) or higher.

反応′rji23は還元工程中にあり、還元用ガスは、
ガスライン4から分岐したガスライン66より流路切替
バルブ60を介して反応器23に導入される。
Reaction 'rji23 is in the reduction process, and the reducing gas is
The gas is introduced into the reactor 23 from a gas line 66 branched from the gas line 4 via a flow path switching valve 60 .

Sotを含有する反応器23の出[]ガスは、ガスライ
ンI5、流路切替バルブ11を介して予i再生処理後の
ガスと合流して、熱交換器81により冷却されて、硫黄
回収系に導入され、所定の硫黄が回収される。
The output gas from the reactor 23 containing Sot is combined with the gas after the pre-regeneration treatment via the gas line I5 and the flow path switching valve 11, cooled by the heat exchanger 81, and sent to the sulfur recovery system. A certain amount of sulfur is recovered.

なお、還元用ガス66の流量は、ラインlの脱塵ガス化
ガスの0.5〜5%程度に調節される。
Note that the flow rate of the reducing gas 66 is adjusted to about 0.5 to 5% of the dedusting gasification gas in line 1.

硫黄回収系を経たガスは、ガスライン96を介してガス
ライン73.74に分岐される。
The gas that has passed through the sulfur recovery system is branched to gas lines 73 and 74 via gas line 96.

ガスライン73に再生用空気又は酸素含有ガスがライン
71、流路切替バルブ72を介して混合され、その中の
大部分のガス(0,濃度として1〜:(Vo1%程度)
がライン80から熱交換器81へ送られ、ここで再生に
必要な所定温度(400〜500℃程度)まで加熱後、
ガスライン82、ガス流路切替バルブ65を介して反応
器24に戻されて、循環再生される。
Regeneration air or oxygen-containing gas is mixed into the gas line 73 through the line 71 and the flow path switching valve 72, and most of the gas (0, concentration: 1~(about 1% Vo))
is sent from line 80 to heat exchanger 81, where it is heated to a predetermined temperature (approximately 400 to 500°C) necessary for regeneration.
The gas is returned to the reactor 24 via the gas line 82 and the gas flow path switching valve 65, and is recycled and regenerated.

第2図のタイムスケジュールのように、連続吸収・再生
サイクルを形成し°Cいる場合、反応器24では、3,
4段目(再生ガス人口側からみて)の吸収剤25が再生
反応熱により800〜1000℃程度の比較的高温にさ
らされる場合がある。そのような場合は、再生工程で温
度が上昇する反応器内の該当吸収剤の温度を600〜8
00℃程度迄に冷却するために、次のような操作を行う
When forming a continuous absorption/regeneration cycle as shown in the time schedule of Fig. 2, the reactor 24 has 3,
The absorbent 25 in the fourth stage (viewed from the regeneration gas population side) may be exposed to a relatively high temperature of about 800 to 1000° C. due to the heat of regeneration reaction. In such a case, the temperature of the absorbent in the reactor, where the temperature rises during the regeneration process, should be adjusted to 600-800℃.
In order to cool down to about 00°C, the following operation is performed.

すなわち、硫黄回収系を経たガスライン96のガスは、
ガスライン74の分岐ライン78を経て、反応器24の
3,4段1」(あるいは3又は4段[1)(+り生ガス
人口側からみて)にガス流路切替バルブ40゜41(あ
るいは40又は41)を介して導入される。
That is, the gas in the gas line 96 that has passed through the sulfur recovery system is
A gas flow switching valve 40° 41 (or 40 or 41).

このガスはOtを全く含んでいないだけでなく、その温
度は150〜300℃程度で、rll生工程での再生人
【−」ガス温度に比較して相当低いので、反応器24の
3.4段目の吸収剤25に対して冷却効果は充分ある。
This gas not only does not contain any Ot, but also has a temperature of about 150 to 300°C, which is considerably lower than the regenerated gas temperature in the rll raw process. There is a sufficient cooling effect on the absorbent 25 in the tiers.

この冷却方法を用いて、高温部の吸収剤25の冷却を行
うことにより、吸収剤25中の担体の損傷、Feのシン
タリング等の防止を図ることができるので、吸収剤25
の寿命延長に極めて有効である。
By cooling the absorbent 25 in the high temperature section using this cooling method, it is possible to prevent damage to the carrier in the absorbent 25, sintering of Fe, etc.
It is extremely effective in extending the lifespan of.

なお、予備再生工程においては、ガスライン8oの分岐
ライン79とガス流路切替バルブ47を介して酸素含有
の冷ガスが反応器21に供給され、ここで−部の再生が
行なわれる。
In the preliminary regeneration step, oxygen-containing cold gas is supplied to the reactor 21 via the branch line 79 of the gas line 8o and the gas flow path switching valve 47, and the negative part is regenerated here.

反応W21人ロガロガス中2濃度は、反応器24人L1
ガスと比較して、1/4〜2/4程度とかなり低(、r
IT生反応熱による温度上昇は緩慢となるので、吸収剤
25の急激な昇温から保護できる。
Reaction W21 people 2 concentration in logaro gas is reactor 24 people L1
Compared to gas, it is quite low at about 1/4 to 2/4 (, r
Since the temperature rise due to the heat of IT bioreaction becomes slow, the absorbent 25 can be protected from a rapid temperature rise.

反応器21の出口ガスは、ガスライン13、ガス流路切
替バルブ9を経て熱交換器81に導入され、硫黄回収系
においてガス中5へガスの還元処理(硫黄回収)が行わ
れる。
The outlet gas of the reactor 21 is introduced into the heat exchanger 81 via the gas line 13 and the gas flow path switching valve 9, and is subjected to a reduction process (sulfur recovery) into the gas 5 in the sulfur recovery system.

反応器21における予備再生工程が終了すれば、再生工
程に移行すると共に、反応器22は予備再生工程へ、反
応器23は吸収工程へ、反応器24は還元工程へと工程
を変えて行く。
When the preliminary regeneration process in the reactor 21 is completed, the process moves to the regeneration process, and the reactor 22 changes to the preliminary regeneration process, the reactor 23 to the absorption process, and the reactor 24 to the reduction process.

このとき、反応器21は予備再生工程を経た後であるの
で、急激な温度上昇を伴うことなく再生工程に移行でき
る。
At this time, since the reactor 21 has undergone the preliminary regeneration step, it can proceed to the regeneration step without a sudden temperature rise.

本発明は、上述したように、再生反応を経た後の高温ガ
スを予備再生高温出口ガスラインに対して、そのときの
ガス温度に応じた量を供給する方法を採用しており、熱
交換器81の高温側人口ガス温度の変動を小さ(抑えら
れ、安定した運転ができる。
As described above, the present invention employs a method of supplying the high-temperature gas after the regeneration reaction to the pre-regeneration high-temperature outlet gas line in an amount according to the gas temperature at that time, and the heat exchanger Fluctuations in the artificial gas temperature on the high-temperature side of 81 can be suppressed and stable operation can be achieved.

一応、再生反応器と予備再生反応器を完全なシリーズ運
転とすることにより、吸収剤の再生を充分に行える1−
1rtJ生終了後の反応器出口ガス中の()、ガスを後
段の硫黄回収系に混入させる懸念もなく、そのメリット
は大きいと言える。
By operating the regeneration reactor and pre-regeneration reactor in complete series, the absorbent can be regenerated sufficiently.1-
There is no concern that the () gas in the reactor outlet gas after the completion of 1rtJ production will be mixed into the subsequent sulfur recovery system, and this can be said to be a great advantage.

また、低負荷でライン1の高温還元性ガスの流量が減少
したり、あるいは低硫黄炭を使用する場合には、(3)
、 (4)式の吸収反応で生成する吸収剤中のFeS量
が通常より少な(なり、再生反応熱徹が減少し、Pi生
系の熱収支をとることが次第に困難になって来る。
In addition, if the flow rate of high temperature reducing gas in line 1 decreases under low load or if low sulfur coal is used, (3)
, The amount of FeS in the absorbent produced by the absorption reaction of equation (4) becomes smaller than usual (the heat exhaustion of the regeneration reaction decreases, and it becomes increasingly difficult to balance the heat of the Pi production system).

負荷が所定以下(例えば50%以下)になって熱収支を
とるのが難しくなった場合は、硫黄回収系の硫黄凝縮器
88を一部バイパスして対応する方法を採ることもでき
る。
If the load becomes less than a predetermined value (for example, less than 50%) and it becomes difficult to maintain a heat balance, a corresponding method may be adopted in which the sulfur condenser 88 of the sulfur recovery system is partially bypassed.

すなわち、so、i元反応後のガスをガスライン85、
熱交換器86を経てガスライン87からガス流路切替バ
ルブ98を介してブロワ93人口ガスライン92ヘバイ
パスする方法である。
That is, the gas after the so and i element reactions is transferred to the gas line 85,
This is a method of bypassing the gas line 87 via the heat exchanger 86 to the blower 93 and the artificial gas line 92 via the gas flow path switching valve 98.

その際、バイパスガス中にII、S、ガス状硫黄等の硫
黄分が含有されており、それらの硫黄分は再生反応器入
口又は反応器内で燃焼するため、再生系内の補熱に寄与
することとなる。
At that time, the bypass gas contains sulfur such as II, S, and gaseous sulfur, and these sulfur components are combusted at the inlet of the regeneration reactor or within the reactor, contributing to reheating within the regeneration system. I will do it.

−・方、ガス化炉の負荷変動、炭種変更等により、精製
の対象となる処理ガス量、硫黄化合物の含有11が変動
しても、吸収性能と再生性能を安定化させることが実用
上強く要求される。
- On the other hand, it is practical to stabilize the absorption performance and regeneration performance even if the amount of processed gas to be purified and the content of sulfur compounds change due to changes in the gasifier load, changes in coal type, etc. strongly requested.

例えば、IItS、 cos等の硫黄化合物を含有する
ライン1の高温還元性ガスの量が減少したり、あるいは
低硫黄炭を使用する場合には、吸収反応で生成する吸収
剤中のFeS量が通常より少なくなり、再生]二枚の負
荷が低減する。
For example, if the amount of high-temperature reducing gas in line 1 containing sulfur compounds such as IItS and cos decreases, or if low-sulfur coal is used, the amount of FeS in the absorbent produced by the absorption reaction will decrease. [Reproduction] The load on the two sheets is reduced.

従って、再生反応を通常の負荷と同じ循環ガス流「1で
行うと一短時間で反応が終了し、再生工程の時間経過に
伴い再生反応熱…が減少する。
Therefore, if the regeneration reaction is carried out with the same circulating gas flow as the normal load, the reaction will be completed in a short time, and the heat of the regeneration reaction will decrease as time passes in the regeneration process.

そのため、再生工程中の反応器の内部温度及び11冒二
、Iガス温度が、通常負荷時より相対的に低くなるので
、安定した再生運転を維持するには補熱が必要となる。
Therefore, the internal temperature of the reactor and the temperature of the I gas during the regeneration process are relatively lower than during normal load, so supplementary heat is required to maintain stable regeneration operation.

この補熱方法としては、系外からco、 it等の可燃
性ガスを含有するラインlの脱塵高温還元性ガスを供給
し、該ガスと酸素との燃焼反応による燃焼熱の利用が考
えられる。
A conceivable way to supplement this heat is to supply dedusting high-temperature reducing gas from line 1 containing combustible gases such as CO and IT from outside the system, and use the combustion heat from the combustion reaction between the gas and oxygen. .

しかし、高温還元性ガスのこのような使用は、ガス精製
の後流側で使用すべきCo、 H,等を消費することに
なり、ガス精製システムの経済性を高める観点からは極
力避けることが好ましい。
However, such use of high-temperature reducing gas consumes Co, H, etc. that should be used downstream of gas purification, and should be avoided as much as possible from the perspective of improving the economic efficiency of the gas purification system. preferable.

従って、低負荷時も安定した連続運転を維持するために
、再生ガス循環量を減少させて、再生反応時間を延長さ
せることで大抵は対処し得る。
Therefore, in order to maintain stable continuous operation even under low load conditions, it is usually possible to reduce the regeneration gas circulation amount and extend the regeneration reaction time.

低負荷時の再生ガス循環ラインは、前述の通常負荷と同
じであるが、ブロワ93の保護のために次の手段を講じ
る。
The regeneration gas circulation line during low load is the same as the normal load described above, but the following measures are taken to protect the blower 93.

すなわち、通常、ブロワは吸引ガス量が減少すると、冷
却不足となり過昇温の状態となるので、ブロワの吸引ガ
ス量は一定にすることが好ましい。
That is, normally, when the amount of suction gas in a blower decreases, cooling becomes insufficient and the temperature rises excessively, so it is preferable to keep the amount of suction gas in the blower constant.

従って、再生ガス副環流量の減少に伴い、流路切替バル
ブ94を介して硫黄回収除去後のライン92のガスの一
部をライン95を経て硫黄凝縮器88の前に戻して、ブ
ロワ93では通常負荷時とほぼ同一のガス量を確保する
ようにする。
Therefore, as the regeneration gas sub-recirculation amount decreases, a part of the gas in the line 92 after sulfur recovery and removal is returned to the front of the sulfur condenser 88 via the line 95 via the flow path switching valve 94, and the blower 93 Ensure that the amount of gas is almost the same as during normal load.

−に記の再生循環ガス量の調節だけでは再生糸内の補熱
ができない場合には、更に再生工程中の反応器入口ライ
ンに高温還元性ガスを供給し、C01H7等の可燃性ガ
スの燃焼熱の利用による補熱を行うことで対処できる。
- If it is not possible to replenish the heat inside the regenerated yarn by adjusting the amount of regenerated circulating gas as described in 2., a high-temperature reducing gas is further supplied to the reactor inlet line during the regeneration process, and combustible gas such as C01H7 is combusted. This can be dealt with by reheating using heat.

なお、第1図では、反応器で吸収と予備再生操作、再生
操作及び還元操作を向流(逆流)にして行うフローの例
を示しているが、その操作を並流にして行うこともでき
る。
Although Figure 1 shows an example of a flow in which the absorption, pre-regeneration, regeneration, and reduction operations are performed in countercurrent flow (reverse flow) in the reactor, these operations can also be performed in parallel flow. .

[発明の効果] 以ヒのように、本発明方法においては、吸収剤を充填し
た反応器を少なくとも四塔使用し、吸収、予備再生、再
生、冷却、還元の五工程とし、このうち予備再生と再生
、冷却工程を完全にシリーズ運転を行わせることにより
、再生反応熱に由来する吸収剤への異常蓄熱を緩和し、
吸収剤の寿命保護を行うことができると共に、再生反応
器出口高温ガスを有効に熱回収することで、再生反応器
人口ガス温度の安定化に寄与することができる。
[Effect of the invention] As described below, in the method of the present invention, at least four reactors filled with an absorbent are used, and the five steps of absorption, pre-regeneration, regeneration, cooling, and reduction are performed. By performing complete series operation of the regeneration and cooling processes, abnormal heat accumulation in the absorbent resulting from regeneration reaction heat is alleviated.
Not only can the life of the absorbent be protected, but also by effectively recovering heat from the high-temperature gas at the outlet of the regeneration reactor, it is possible to contribute to stabilizing the temperature of the regeneration reactor population gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施態様例を説明するだめのフ
ローを示す図、第2図は本発明実施時の吸収再生サイク
ルのタイムスケジュールを示す図である。
FIG. 1 is a diagram showing a flowchart for explaining one embodiment of the method of the present invention, and FIG. 2 is a diagram showing a time schedule of an absorption and regeneration cycle when the present invention is implemented.

Claims (1)

【特許請求の範囲】[Claims] 高温還元性ガス中に含まれる硫黄化合物を吸収剤で吸収
除去する方法において、吸収剤を充填した反応器を少な
くとも四塔使用し、前記硫黄化合物を吸収剤で吸収除去
する吸収工程、該吸収剤を酸素含有ガスで再生する予備
再生工程及び再生工程、再生工程完了後の冷却工程、再
生された吸収剤を吸収剤前後の還元性ガス濃度が同一に
なるまで高温還元性ガスで還元する還元工程の五工程か
らなり、前記再生工程と予備再生工程とはシリーズに連
結し、かつ再生工程出口高温ガスを予備再生工程出口ガ
スに混合するラインを設置して再生工程切替時において
も再生反応熱を連続的に回収すると共に、予備再生工程
、再生工程及び還元工程から発生するSO_2含有ガス
を硫黄回収系へ供給して単体硫黄を回収することを特徴
とする高温還元性ガスの精製方法。
In a method of absorbing and removing sulfur compounds contained in a high-temperature reducing gas using an absorbent, an absorption step in which at least four reactors filled with an absorbent are used and the sulfur compounds are absorbed and removed by the absorbent; A preliminary regeneration step and a regeneration step in which the absorbent is regenerated with an oxygen-containing gas, a cooling step after the regeneration step is completed, and a reduction step in which the regenerated absorbent is reduced with a high-temperature reducing gas until the reducing gas concentration before and after the absorbent becomes the same. The regeneration process and the pre-regeneration process are connected in series, and a line is installed to mix the high-temperature gas at the outlet of the regeneration process with the gas at the outlet of the pre-regeneration process, so that the regeneration reaction heat can be absorbed even when the regeneration process is switched. A method for purifying high-temperature reducing gas, which comprises continuously recovering SO_2-containing gas generated from a preliminary regeneration step, a regeneration step, and a reduction step, and supplying it to a sulfur recovery system to recover elemental sulfur.
JP63228383A 1988-02-10 1988-09-14 Refining method for high temperature reducing gas Expired - Lifetime JPH0790140B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63228383A JPH0790140B2 (en) 1988-09-14 1988-09-14 Refining method for high temperature reducing gas
DE68921905T DE68921905T2 (en) 1988-02-10 1989-02-03 Method of cleaning hot reducing gas.
EP89730023A EP0328479B1 (en) 1988-02-10 1989-02-03 Method for purifying high-temperature reducing gas
AT89730023T ATE120480T1 (en) 1988-02-10 1989-02-03 METHOD FOR PURIFYING HOT REDUCTION GAS.
AU29641/89A AU610337B2 (en) 1988-02-10 1989-02-06 Method for purifying high-temperature reducing gas
CA000590569A CA1324875C (en) 1988-02-10 1989-02-09 Method for purifying high-temperature reducing gas
CN89101997.9A CN1010379B (en) 1988-02-10 1989-02-10 Process for purification of reducing gases under high temp.
US07/721,912 US5154900A (en) 1988-02-10 1991-06-20 Method for purifying high-temperature reducing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228383A JPH0790140B2 (en) 1988-09-14 1988-09-14 Refining method for high temperature reducing gas

Publications (2)

Publication Number Publication Date
JPH0278416A true JPH0278416A (en) 1990-03-19
JPH0790140B2 JPH0790140B2 (en) 1995-10-04

Family

ID=16875608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228383A Expired - Lifetime JPH0790140B2 (en) 1988-02-10 1988-09-14 Refining method for high temperature reducing gas

Country Status (1)

Country Link
JP (1) JPH0790140B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351920A (en) * 1986-04-24 1988-03-05 Mitsubishi Heavy Ind Ltd Purifying method for high-temperature reducing gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351920A (en) * 1986-04-24 1988-03-05 Mitsubishi Heavy Ind Ltd Purifying method for high-temperature reducing gas

Also Published As

Publication number Publication date
JPH0790140B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
JP5425586B2 (en) Method and apparatus for removing carbon dioxide and hydrogen sulfide
CN112063422B (en) Blast furnace gas desulfurization and sulfur resource utilization method and device
CN108114592A (en) Desulfurization in regenerative calcium cycle system
CN103979500B (en) The sulphur recovery of comprehensive hydrogen manufacturing and exhaust treatment system and technique
US4302221A (en) Process for regeneration of carbonaceous adsorbent for use in desulfurization of exhaust gas
JPH02180614A (en) Process for refining high temperature reducing gas
JP2865845B2 (en) Purification method of high-temperature reducing gas
KR20200094193A (en) System for tail gas treatment of sulfur recovery unit
GB2190683A (en) Method for purifying high-temperature reducing gas
JP3831435B2 (en) Gas purification equipment
EP0328479B1 (en) Method for purifying high-temperature reducing gas
CN106362550A (en) Claus tail gas treatment process and device
US2994588A (en) Process for production of sulphur from sour gas
JPH0278416A (en) Method for refining high-temperature reducing gas
JP2651381B2 (en) Purification method of high-temperature reducing gas
JPH0790137B2 (en) Refining method for high temperature reducing gas
JP2617561B2 (en) Purification method of high-temperature reducing gas
JP2615057B2 (en) Purification method of high-temperature reducing gas
EP1116511A1 (en) Method for removing sulfur compounds from gas mixtures
JPH0776348B2 (en) Refining method for high temperature reducing gas
JPH07106293B2 (en) Refining method for high temperature reducing gas
JPH07102297B2 (en) Refining method for high temperature reducing gas
JPH10314536A (en) High temperature dry desulfurization device
JPH01253168A (en) Absorption tower regeneration of gas refiner for fuel cell
JPS63122790A (en) Purification of high-temperature reducing gas