JPH027838B2 - - Google Patents
Info
- Publication number
- JPH027838B2 JPH027838B2 JP55138894A JP13889480A JPH027838B2 JP H027838 B2 JPH027838 B2 JP H027838B2 JP 55138894 A JP55138894 A JP 55138894A JP 13889480 A JP13889480 A JP 13889480A JP H027838 B2 JPH027838 B2 JP H027838B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- aluminum
- thickness
- plating
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052782 aluminium Inorganic materials 0.000 claims description 56
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 56
- 238000007747 plating Methods 0.000 claims description 34
- 229910000831 Steel Inorganic materials 0.000 claims description 26
- 239000010959 steel Substances 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 18
- 229910045601 alloy Inorganic materials 0.000 claims description 18
- 239000010960 cold rolled steel Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000005482 strain hardening Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 64
- 238000005096 rolling process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000005097 cold rolling Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Printing Plates And Materials Therefor (AREA)
Description
本発明は強度の優れた平版印刷用原板の支持体
の製造法に関する。
平版印刷用原板の画像受理層(光導電層、感光
層、感熱層等)支持体としては従来より主として
アルミニウム板が使用されているが、アルミニウ
ム板としては強度上その厚さが0.3mm以上のもの
を使用する必要があつた。しかし支持体としてこ
のような厚さのアルミニウム板を使用しても、ア
ルミニウム板自体が軟質であるため、製版時や印
刷時の取扱いの際変形や凹凸状の損傷疵が発生
し、繰返し使用できる比率は極めて少なく、印刷
コストが高くなるという問題があつた。
本発明はかかる問題を解決した平版印刷用原板
の支持体の製造法を提供するものである。
従来より一般に画像受理層の支持体として、ア
ルミニウム板を使用しているが、支持体としてア
ルミニウムを必要とする部分は表層の数μの厚さ
である。すなわち表層の数μは画像受理層の密着
性や非画像部の親水性をよくするのに行う砂目立
てやアルマイト処理のため、アルミニウムのよう
な軟質性や化学的性質を必要とするが、支持体の
内部としてはかかる性質を必要としないものであ
る。
そこで本発明者らは芯金にて補強された支持体
について種々検討を行つた結果、支持体として溶
融アルミニウムめつき鋼板を使用することにより
所期の目的を達成することができたのである。
溶融アルミニウムめつき鋼板においては、めつ
き層1は、第1図に示す如く、鋼板2と接する合
金層3と、該合金層3の上に位置するアルミニウ
ム層4とから構成されているが、表層のアルミニ
ウム層4はアルミニウムと同じ性質であり、その
厚さも砂目立てやアルマイト処理をすることがで
きる厚さになつていて、従来のアルミニウム板と
変らない。従つて本鋼板を支持体として用いた場
合、芯金として鋼板が存在することによりアルミ
ニウム板よりはるかに大きい強度を発揮し、製
版、印刷時に異常な取扱いがない限り繰返し使用
できる。また繰返し使用によるアルミニウム層の
消耗は1回当り1〜2μであるので、この程度の
消耗はめつき厚みを厚くすることにより対拠する
ことができる。
この支持体のアルミニウム層はとくにアルミニ
ウム純度を必要とするものでなく、従来一般的に
使用されている溶融アルミニウム浴でめつきした
場合に得られるアルミニウム層の純度でよく、耐
熱加工用の溶融アルミニウムめつき鋼板の如くSi
を1〜10%含んでいても、まためつき上不可避的
に混入する他の元素を含んでいても支障はないこ
とが実験により確認できた。
しかしアルミニウム層の厚みとしては7μ以上
を必要とする。これは画像受理層の密着性および
制版後の非画像部の親水性をよくする都合上、支
持体には通常砂目立てなどを施すので、あまり薄
いとこれらの処理効果が小さくなるからである。
めつき層中の合金層は通常Al−FeまたはAl−
Fe−Si、あるいはこれらの双方の合金が混在し
たもので、一般に加工性は悪いものである。この
ため製版後版胴に取付ける際折曲げ加工等が行わ
れる支持体の場合、合金層は極力薄い方が好まし
い。通常溶融アルミニウムめつき鋼板支持体の場
合、品質的にめつきしたままの状態で使用するこ
とは困難で、めつき後合計圧下率が30〜85%の冷
間圧延加工を必須工程とするので、繰返し折曲げ
に耐えるためには、合金層の厚さは前記圧下率範
囲にて圧延した後の状態で5μが限界である。ま
た溶融めつきの際通常合金層の生成は不可避であ
り、前記圧下率範囲にて圧延しても0.2μ未満にす
ることは鋼板の加工硬化との関係において極めて
困難である。これらの点よりして、支持体の合金
層の厚さは0.2〜5μの範囲が望ましい。
溶融アルミニウムめつき鋼板の支持体は芯金と
してアルミニウム板より高強度の鋼板を有するの
で、その厚みは従来アルミニウム板より薄くする
ことができ、0.25mm、さらには0.15mmにもするこ
とができる。従つて、印刷時に版胴に取付ける際
の折曲げ加工は容易となり、印刷コストを安価に
できるという利点がある。
溶融アルミニウムめつき鋼板の支持体は冷間圧
延鋼板に前処理を施した後溶融アルミニウムめつ
き浴でめつきし、その後冷間圧延加工を施すこと
により製造することができる。
周知の如く、溶融アルミニウムめつき鋼板の製
造には工業的純アルミニウムを溶解した浴でめつ
きして耐候用のものを製造する場合と、Siを1〜
10%含有するアルミニウム浴でめつきして耐熱、
加工用のものを製造する2種の方法があるが、本
発明では後者の方法により製造を行う。すなわち
前者の方法で製造した場合、めつき層中の合金層
が著しく発達し、繰返し折曲げを行う用途の場
合、めつき層の加工性は耐えられないのである。
以下後者の方法に従つて製造する場合を第2図
に基いて説明する。第2図はセンジマータイプの
連続溶融アルミニウムめつき装置の概略図であつ
て、めつき原板である冷間圧延鋼板2aはペイオ
フリール5にセツトする。この冷間圧延鋼板2a
としては通常未焼鈍材を用いるが、フラツクス方
式の連続溶融めつき装置の如く、ライン内焼鈍炉
を有しない場合には焼鈍材を用いる。
ペイオフリール5より冷間圧延鋼板2aは焼
鈍、還元炉6により焼鈍、前処理(還元処理)を
施した後、溶融アルミニウム浴7に浸漬したうえ
シンクロール8を介して垂直に引上げ、溶融アル
ミニウム浴7の直上に配置された1対の気体絞り
ノズル9で吹拭し、そのめつき層の厚みを調整す
る。この際のめつき層の厚みとしては片面にて、
20〜60μ、好ましくは30〜50μにする。
ところで溶融アルミニウム浴7としては本発明
の場合Siを1〜10%含有した浴を使用する。これ
はSi含有量が1%未満であるとSiによる合金層抑
制効果が小さく、合金層厚さはめつき層全体の60
〜70%の厚さにまで達し、60μ程度のめつきとし
ないと本発明の目的とするアルミニウム層の厚さ
が確保できなくなるからである。また合金層がこ
のように厚くなると、後に行うピンホールの圧着
処理を目的とした冷間圧延加工により合金層の表
面側に突出した突起部が表面に現れ、これが画像
受理層にピンホール等の欠陥をもたらす原因とも
なるからである。一方Siの合金層抑制効果はSi添
加量が大き程大きくなるが、10%を超えると共晶
点に近づき、品質上、作業上種々へい害が生じる
ため、一般に用いられていない。
さて上記のようにめつきした後冷却し、テンシ
ヨンリール10に巻取り溶融アルミニウムめつき
鋼板11とする。
しかしこのようにして製造したままの溶融アル
ミニウムめつき鋼板には第3図に示す如く、表面
にスパングル粒界の凹み12があつたり、めつき
層にピンホール13があつたりして直ちに平版印
刷用原板の支持体として使用することができな
い。すなわち、上記鋼板に画像受理層を形成して
も、画像受理層にもスパングル粒界の凹みやピン
ホールが現れ、平滑な表面を必要とする支持体に
は使用することができない。
そこで本発明においてはかかる問題を解決する
ため、溶融アルミニウムめつき鋼板に合計圧下率
が30〜85%の冷間圧延加工を施し、ピンホールを
圧着させるとともに、スパングル粒界の凹みを平
滑化するのである。
めつき層中に発生するピンホールは一般にめつ
き層の厚さが60μ以上と厚い場合にはブリツジ効
果により発生量は比較的少ないが、めつき層が薄
くなるに従つてその発生量は増大する。このピン
ホールを圧延によりめつき層に塑性変形を起させ
て圧着するには合計圧下率が20〜25%では完全に
圧着することができず、最低30%以上の圧下率を
必要とする。
一方合計圧下率が85%を超えると加工硬化が過
大となり、版胴に取付ける際の折曲げ加工が困難
となる。
一般に溶融アルミニウム鋼板に冷間圧延加工を
施した場合、鋼板とめつき層は比例して圧延され
るが、本発明においては圧延後片面めつき層のア
ルミニウム層が7μ以上になるようにする。
本発明における好ましい合計圧下率は50〜70%
である。この圧下率で圧延した場合、めつき層表
面は平滑化されるとともに、ピンホールも圧着さ
れ、かつ鋼板も適当に加工硬化されて支持体とし
て優れた強度を発揮する。
実施例
厚さ0.5mm、幅914mmの冷間圧延鋼板をSi含有量
8%の溶融アルミニウム浴でめつきし、その片面
めつき厚みを43μに調整した。めつき後圧下率60
%で冷間圧延し、厚さ0.2mmの支持体を製造し、
その支持体の試料番号をNo.1とした。
一方厚さ0.3mm、幅914mmの冷間圧延鋼板をSi含
有量9%の溶融アルミニウム浴でめつきし、その
片面めつき厚みを31μに調整した。めつき後圧下
率50%で冷間圧延し、厚さ0.15mmの支持体を製造
し、その支持体の試料番号をNo.2とした。
表1にこれらの支持体の表面粗度Hmaxを
JIS・B・0651により測定した結果を示す。
The present invention relates to a method for producing a support for a lithographic printing plate having excellent strength. Conventionally, aluminum plates have been mainly used as supports for image-receiving layers (photoconductive layers, photosensitive layers, thermosensitive layers, etc.) of planographic printing original plates, but aluminum plates with a thickness of 0.3 mm or more are recommended for strength reasons. I needed to use something. However, even if an aluminum plate of such thickness is used as a support, since the aluminum plate itself is soft, deformation and uneven damage occur during handling during plate making and printing, making it difficult to use repeatedly. There was a problem that the ratio was extremely low and printing costs were high. The present invention provides a method for manufacturing a support for a lithographic printing original plate that solves this problem. Conventionally, an aluminum plate has been generally used as a support for the image-receiving layer, but the portion that requires aluminum as a support is the surface layer with a thickness of several microns. In other words, the surface layer of several micrometers needs to have the same softness and chemical properties as aluminum because it is grained and alumite treated to improve the adhesion of the image-receiving layer and the hydrophilicity of non-image areas. Such properties are not required inside the body. Therefore, the inventors of the present invention conducted various studies on supports reinforced with metal cores, and as a result, they were able to achieve their desired objective by using a hot-dip aluminum plated steel plate as the support. In a molten aluminum plated steel sheet, the plating layer 1 is composed of an alloy layer 3 in contact with the steel sheet 2 and an aluminum layer 4 located on the alloy layer 3, as shown in FIG. The surface aluminum layer 4 has the same properties as aluminum, and its thickness is such that it can be subjected to graining and alumite treatment, and is no different from conventional aluminum plates. Therefore, when this steel plate is used as a support, it exhibits much greater strength than an aluminum plate due to the presence of the steel plate as a core metal, and can be used repeatedly as long as there is no abnormal handling during plate making and printing. Further, since the aluminum layer wears out by repeated use by 1 to 2 microns per use, this level of wear can be counteracted by increasing the plating thickness. The aluminum layer of this support does not require a particular aluminum purity, and may have the purity of an aluminum layer obtained by plating in a conventionally commonly used molten aluminum bath. Like a plated steel plate Si
It has been confirmed through experiments that there is no problem even if the material contains 1 to 10% of 1 to 10%, and even if it contains other elements that are inevitably mixed in due to glare. However, the thickness of the aluminum layer needs to be 7μ or more. This is because the support is usually subjected to graining to improve the adhesion of the image-receiving layer and the hydrophilicity of the non-image area after printing, and if the support is too thin, the effects of these treatments will be reduced. The alloy layer in the plating layer is usually Al-Fe or Al-
It is Fe-Si or a mixture of both, and generally has poor workability. For this reason, in the case of a support that is subjected to a bending process or the like when attached to a plate cylinder after plate making, it is preferable that the alloy layer be as thin as possible. Normally, in the case of hot-dip aluminum plated steel plate supports, it is difficult to use them in the plated state due to quality reasons, and cold rolling with a total reduction rate of 30 to 85% is required after plating. In order to withstand repeated bending, the maximum thickness of the alloy layer after rolling in the above rolling reduction range is 5μ. Further, during hot-dip galvanizing, the formation of a normal alloy layer is unavoidable, and it is extremely difficult to reduce the thickness to less than 0.2 μm even when rolled within the above-mentioned rolling reduction range in relation to the work hardening of the steel sheet. From these points, the thickness of the alloy layer of the support is preferably in the range of 0.2 to 5 μm. Since the support of the molten aluminum plated steel plate has a steel plate having higher strength than the aluminum plate as the core metal, its thickness can be made thinner than the conventional aluminum plate, and can be made as thin as 0.25 mm or even 0.15 mm. Therefore, the bending process when attaching to the plate cylinder during printing becomes easy, and there is an advantage that printing costs can be reduced. A support for a molten aluminum plated steel plate can be produced by pre-treating a cold rolled steel plate, plating it in a molten aluminum plating bath, and then cold rolling. As is well known, hot-dip aluminum-plated steel sheets are manufactured in two ways: weather-resistant ones by plating in a bath containing industrially pure aluminum;
Heat resistant by plating in an aluminum bath containing 10%
There are two methods for manufacturing products for processing, and the latter method is used in the present invention. In other words, when manufactured by the former method, the alloy layer in the plating layer develops significantly, and the workability of the plating layer cannot withstand repeated bending. The case of manufacturing according to the latter method will be explained below based on FIG. 2. FIG. 2 is a schematic diagram of a Sendzimer type continuous molten aluminum plating apparatus, in which a cold rolled steel plate 2a, which is a plating original plate, is set on a payoff reel 5. This cold rolled steel plate 2a
An unannealed material is usually used for this purpose, but an annealed material is used when an in-line annealing furnace is not provided, such as in a flux type continuous melting and gluing device. The cold-rolled steel plate 2a is annealed from the payoff reel 5, subjected to annealing and pretreatment (reduction treatment) in the reduction furnace 6, and then immersed in a molten aluminum bath 7 and pulled up vertically through a sink roll 8, and then transferred to the molten aluminum bath. The thickness of the plating layer is adjusted by wiping with a pair of gas throttle nozzles 9 placed directly above the plating layer. In this case, the thickness of the plating layer on one side is as follows:
20-60μ, preferably 30-50μ. In the present invention, a bath containing 1 to 10% Si is used as the molten aluminum bath 7. This is because when the Si content is less than 1%, the effect of suppressing the alloy layer due to Si is small, and the alloy layer thickness is 60% of the entire plating layer.
This is because unless the aluminum layer reaches a thickness of ~70% and the plating is about 60μ, it will not be possible to secure the thickness of the aluminum layer that is the objective of the present invention. In addition, when the alloy layer becomes thick like this, protrusions protruding from the surface side of the alloy layer appear on the surface due to the cold rolling process for the purpose of crimping pinholes, which will be performed later, and this will cause pinholes etc. to appear in the image receiving layer. This is because it may cause defects. On the other hand, the effect of suppressing the alloy layer of Si increases as the amount of Si added increases, but if it exceeds 10%, it approaches the eutectic point and causes various damage in terms of quality and work, so it is not generally used. After being plated as described above, it is cooled and wound onto a tension reel 10 to form a molten aluminum plated steel sheet 11. However, as shown in Fig. 3, the molten aluminum plated steel sheet manufactured in this manner has concavities 12 of spangled grain boundaries on the surface and pinholes 13 in the plating layer, and immediately lithographic printing is performed. It cannot be used as a support for original plates. That is, even if an image-receiving layer is formed on the above-mentioned steel sheet, the image-receiving layer will also have dents and pinholes at the spangle grain boundaries, making it impossible to use the image-receiving layer as a support that requires a smooth surface. Therefore, in the present invention, in order to solve this problem, the molten aluminum plated steel sheet is subjected to cold rolling at a total reduction rate of 30 to 85% to crimp the pinholes and smooth out the depressions at the spangle grain boundaries. It is. The number of pinholes that occur in the plating layer is generally relatively small when the plating layer is thicker than 60μ due to the bridge effect, but as the plating layer becomes thinner, the number of pinholes generated increases. do. In order to compress these pinholes by causing plastic deformation in the plating layer by rolling, complete compression cannot be achieved with a total rolling reduction of 20 to 25%, and a rolling reduction of at least 30% is required. On the other hand, if the total rolling reduction exceeds 85%, work hardening will be excessive, making it difficult to bend the plate when attaching it to the plate cylinder. Generally, when a molten aluminum steel sheet is subjected to cold rolling, the steel sheet and the plated layer are rolled in proportion, but in the present invention, the aluminum layer of the single-sided plated layer is made to have a thickness of 7μ or more after rolling. The preferred total rolling reduction rate in the present invention is 50 to 70%
It is. When rolled at this rolling reduction ratio, the surface of the plating layer is smoothed, pinholes are crimped, and the steel plate is suitably work hardened to exhibit excellent strength as a support. Example A cold-rolled steel plate with a thickness of 0.5 mm and a width of 914 mm was plated in a molten aluminum bath containing 8% Si, and the plating thickness on one side was adjusted to 43 μm. Post-plating reduction rate 60
% cold rolled to produce a support with a thickness of 0.2 mm,
The sample number of the support was designated as No.1. On the other hand, a cold-rolled steel plate with a thickness of 0.3 mm and a width of 914 mm was plated in a molten aluminum bath containing 9% Si, and the plating thickness on one side was adjusted to 31 μm. After plating, cold rolling was performed at a reduction rate of 50% to produce a support with a thickness of 0.15 mm, and the sample number of the support was designated as No. 2. Table 1 shows the surface roughness Hmax of these supports.
The results measured according to JIS B 0651 are shown.
【表】
また上記各支持体の片面めつき層の厚みおよび
その変化を表2に示す。[Table] Table 2 also shows the thickness of the single-sided plated layer of each of the supports and its changes.
【表】
次にアルミニウム層中のピンホールの有無を
JIS・H・8672−1969に規定するフエロキシル試
験法により調査した結果を表3に示す。試験片と
して100×100mmのものを各支持体について5枚作
成し、各試験片に発生したピンホールの数を調査
した。[Table] Next, check the presence or absence of pinholes in the aluminum layer.
Table 3 shows the results of investigation using the feroxyl test method specified in JIS H 8672-1969. Five test pieces of 100 x 100 mm were prepared for each support, and the number of pinholes generated in each test piece was investigated.
【表】
また上記各支持体に常法に従つて砂目立てを行
い、その後光硬化樹脂を塗布して画像受理層を形
成して平版印刷用原板を製造した。この原板を製
版して平版印刷機で印刷テストしたところスパン
グル粒界の凹みやピンホールによる異常は現れ
ず、その他印刷はむらはなく良好であつた。
本実施例より明らかな如く、冷間圧延鋼板をSi
含有量8〜9%の溶融アルミニウム浴でめつきす
れば、合金層を4〜7μ以下に抑制することがで
き、かつめつき後圧下率50〜70%の冷間圧延を施
せば合金層は5μ以下にすることができる。また
めつき後アルミニウム層の厚さが27〜36μあれば
冷間圧延後アルミニウム層の厚さは13〜17μに保
持することができ、合金層は表層に露出せず、繰
返し使用できる厚さである。
また冷間圧延により表面は平滑化されるととも
に、ピンホールも圧着され、画像受理層形成に好
適な素地となる。
以上の如く本発明による支持体は表層部が砂目
立てや製版処理できるアルミニウム層になつてお
り、かつ内部に鋼板の芯金が存在するため強度が
大きく、従来のアルミニウム板の如く、変形や損
傷疵が発生することがないため、繰返し使用し可
能と考えられる。
また得られた支持体は折曲げ加工が容易で繰返
し使用による折曲げによりめつき層のはくりもな
く、ピンホール1のない平滑化された表面を有
し、画像受理層支持体としての優れた表面を有し
ている。[Table] Each of the supports described above was grained in accordance with a conventional method, and then a photocurable resin was applied to form an image-receiving layer to produce a lithographic printing original plate. When this original plate was made into a plate and subjected to a printing test using a lithographic printing machine, no abnormalities due to concavities or pinholes at the spangle grain boundaries appeared, and the printing was otherwise good with no unevenness. As is clear from this example, the cold rolled steel plate is
If plated in a molten aluminum bath with a content of 8 to 9%, the alloy layer can be suppressed to 4 to 7μ or less, and if cold rolled with a reduction rate of 50 to 70% after plating, the alloy layer will be It can be made less than 5μ. In addition, if the thickness of the aluminum layer after plating is 27 to 36μ, the thickness of the aluminum layer after cold rolling can be maintained at 13 to 17μ, and the alloy layer is not exposed to the surface layer and has a thickness that can be used repeatedly. be. Moreover, the surface is smoothed by cold rolling, and pinholes are also compressed, resulting in a suitable base material for forming an image-receiving layer. As described above, the support according to the present invention has a surface layer made of an aluminum layer that can be subjected to graining and plate-making, and has a steel plate core inside, so it has high strength and is resistant to deformation and damage like conventional aluminum plates. It is considered that it can be used repeatedly as it does not cause any flaws. In addition, the obtained support is easy to bend, does not peel off the plating layer by bending due to repeated use, and has a smooth surface without pinholes 1, making it excellent as an image-receiving layer support. It has a hard surface.
第1図は本発明法により製造した支持体である
溶融アルミニウムめつき鋼板の断面図である。第
2図は連続溶融アルミニウムめつき装置の概略図
である。第3図はピンホールおよびスパングル粒
界の凹みを有する溶融アルミニウムめつき鋼板の
断面図である。
1……めつき層、2……鋼板、2a……冷間圧
延鋼板、3……合金層、4……アルミニウム層、
5……ペイオフリール、6……焼鈍、還元炉、7
……溶融アルミニウム浴、8……シンクロール、
9……気体絞りノズル、10……テンシヨンリー
ル、11……溶融アルミニウムめつき鋼、12…
…スパングル粒界の凹み、13……ピンホール。
FIG. 1 is a sectional view of a hot-dip aluminum plated steel plate which is a support manufactured by the method of the present invention. FIG. 2 is a schematic diagram of a continuous molten aluminum plating apparatus. FIG. 3 is a cross-sectional view of a hot-dip aluminum plated steel sheet having pinholes and spangled grain boundary depressions. 1... Plated layer, 2... Steel plate, 2a... Cold rolled steel plate, 3... Alloy layer, 4... Aluminum layer,
5... Payoff reel, 6... Annealing, reduction furnace, 7
...molten aluminum bath, 8... sink roll,
9... Gas throttle nozzle, 10... Tension reel, 11... Molten aluminum plated steel, 12...
...Concavities in spangled grain boundaries, 13...Pinholes.
Claims (1)
10%含有する溶融アルミニウム浴でめつきするこ
とにより溶融アルミニウムめつき鋼板を製造し、
次いで該めつき鋼板に合計圧下率30〜85%の冷間
加工を施し、めつき層表面のピンホールの圧着お
よび表面平滑化をはかるとともに、冷間圧延鋼板
の厚みを0.15〜0.25mmに、また片面めつき層の合
金層およびアルミニウム層の厚さをそれぞれ0.2
〜5μおよび7μ以上にすることを特徴とする印刷
用原板の支持体の製造法。1 After pre-treating the cold rolled steel plate, Si is added to 1~
A molten aluminum plated steel plate is produced by plating in a molten aluminum bath containing 10%,
Next, the plated steel plate is subjected to cold working at a total reduction rate of 30 to 85%, in order to compress pinholes on the surface of the plated layer and smooth the surface, and to make the thickness of the cold rolled steel plate 0.15 to 0.25 mm. In addition, the thickness of the alloy layer and aluminum layer of the single-sided plating layer was 0.2
A method for producing a support for a printing original plate, characterized in that the support has a thickness of ~5μ and 7μ or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13889480A JPS5763292A (en) | 1980-10-04 | 1980-10-04 | Original printing plate holding member and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13889480A JPS5763292A (en) | 1980-10-04 | 1980-10-04 | Original printing plate holding member and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5763292A JPS5763292A (en) | 1982-04-16 |
JPH027838B2 true JPH027838B2 (en) | 1990-02-21 |
Family
ID=15232599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13889480A Granted JPS5763292A (en) | 1980-10-04 | 1980-10-04 | Original printing plate holding member and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5763292A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10147627B2 (en) | 2002-06-19 | 2018-12-04 | Murata Machinery Ltd. | Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4596189A (en) * | 1984-03-01 | 1986-06-24 | Surface Science Corp. | Lithographic printing plate |
KR100738833B1 (en) | 2006-04-18 | 2007-07-18 | 한국선재(주) | Device and method zinc-plating wire |
-
1980
- 1980-10-04 JP JP13889480A patent/JPS5763292A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10147627B2 (en) | 2002-06-19 | 2018-12-04 | Murata Machinery Ltd. | Automated material handling system for semiconductor manufacturing based on a combination of vertical carousels and overhead hoists |
Also Published As
Publication number | Publication date |
---|---|
JPS5763292A (en) | 1982-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4435230A (en) | Aluminum alloy printing plate and method for manufacturing same | |
EP0496416B1 (en) | Nickel alloy electroplated cold-rolled steel sheet excellent in press-formability and phosphating-treatability and method for manufacturing same | |
US4526103A (en) | Aluminum coated steel support for planographic plate | |
US6524768B1 (en) | Aluminium sheet with rough surface | |
EP0638435B1 (en) | Support for planographic printing plate | |
JPH027838B2 (en) | ||
JP2648679B2 (en) | Manufacturing method of painted aluminum plated steel sheet with excellent corrosion resistance and workability | |
US20050284551A1 (en) | Process for producing aluminum alloy substrate for lithographic printing plate | |
JP2007136464A (en) | METHOD FOR MANUFACTURING Al-Mg-Si SYSTEM ALUMINUM ALLOY SHEET EXCELLENT IN SURFACE QUALITY | |
JP3092929B2 (en) | Ni, Cu coated stainless steel sheet and method for producing the same | |
JP2787371B2 (en) | Manufacturing method of aluminum plated steel sheet with excellent plating adhesion and appearance | |
JPS6215358B2 (en) | ||
JP2002060917A (en) | Method for producing galvanized steel sheet | |
JP3857493B2 (en) | Aluminum alloy plate for embossing and aluminum alloy coated plate for embossing | |
JP3276582B2 (en) | Ni diffusion plated steel sheet and method for manufacturing the same | |
JPH0941110A (en) | Production of high tensile strength hot dip galvanized steel sheet | |
JP3092930B2 (en) | Ni, Cu coated cold rolled steel sheet and method for producing the same | |
JP2978096B2 (en) | High strength hot-dip galvanized steel sheet with excellent plating properties | |
JPH01242765A (en) | Alloying hot dip galvanized steel sheet and its production | |
JP4131577B2 (en) | Manufacturing method of plated steel sheet | |
JP2642284B2 (en) | High strength and high ductility alloyed hot-dip galvanized steel sheet | |
JP4655826B2 (en) | Cold-rolled steel sheet for photosensitive resin plate material and manufacturing method thereof | |
JPH0240518B2 (en) | HEIBANINSATSUYOGENBANNOSHIJITAIOYOBISONOSEIZOHO | |
JP2000328221A (en) | Galvannealed steel sheet | |
JP3860968B2 (en) | Aluminum alloy plate for embossing and aluminum alloy coated plate for embossing |