JPH027829A - Monitor device of gas insulation type electrical equipment - Google Patents

Monitor device of gas insulation type electrical equipment

Info

Publication number
JPH027829A
JPH027829A JP63156476A JP15647688A JPH027829A JP H027829 A JPH027829 A JP H027829A JP 63156476 A JP63156476 A JP 63156476A JP 15647688 A JP15647688 A JP 15647688A JP H027829 A JPH027829 A JP H027829A
Authority
JP
Japan
Prior art keywords
gas
temperature
pressure
compartment
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63156476A
Other languages
Japanese (ja)
Other versions
JPH0620345B2 (en
Inventor
Keiichiro Takada
高田 啓一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63156476A priority Critical patent/JPH0620345B2/en
Publication of JPH027829A publication Critical patent/JPH027829A/en
Publication of JPH0620345B2 publication Critical patent/JPH0620345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To monitor droppage of gas density or abnormal gas pressure increase by setting a temperature increase value as an initial value based on the variation of gas pressure during initial power supply. CONSTITUTION:Upon occurrence of gas leak in a gas partition chamber 1, gas density or thermal capacity drops. When the gas pressure Pn in the gas partition chamber 1 variable with time elapsed after start of power supply and the outer air temperature Ta are recorded, the gas temperature increase T0 due to power supply can be operated according to formula I and the operated gas temperature rise T0 is set as an initial value. The gas temperature increase Tn for the current In can be operated through formula II based on the initial value. Tn operated based on the outer air temperature and current during operation of a gas insulation type electrical equipment is added to an outer air temperature Ta to obtain a gas temperature Tn+Ta. Since the gas density can be obtained based on the gas temperature, the gas density can be monitored with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はガス絶縁式開閉装置等のガス絶縁式電気設備
の監視装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a monitoring device for gas-insulated electric equipment such as a gas-insulated switchgear.

(従来の技術〕 通常のガス絶縁式開閉装置を第6図に示す、同図におい
て、30は遮断器、31は直線形断路器、32は線路用
接地装置、33はケーブル接続装置、34はケーブル分
割貫通形変流器、35は母線、36は点検用接地装置、
37は直角形断面断路器、38は導体(充電部)である
(Prior Art) A conventional gas insulated switchgear is shown in FIG. 6. In the figure, 30 is a circuit breaker, 31 is a linear disconnector, 32 is a line grounding device, 33 is a cable connection device, and 34 is a Cable split through type current transformer, 35 is a bus bar, 36 is a grounding device for inspection,
37 is a right-angled cross-section disconnector, and 38 is a conductor (live part).

導体38は三相分を一括して絶縁スペーサ39により絶
縁支持のうえ、金属容器に収納し、内部に散気圧のSF
、ガスを密封している。SF、ガスは絶縁および消弧媒
体として機能する。また、前記絶縁スペーサ39は導体
38の支持とともに、容器内を各エレメントごとに区分
して複数の独立したガス区画室を形成し、SF、ガスの
充・排気は必要な部分のみ行うようになヮている。
The three-phase conductor 38 is insulated and supported by an insulating spacer 39, housed in a metal container, and SF with diffused pressure inside.
, the gas is sealed. SF, gas acts as an insulating and arc-quenching medium. In addition, the insulating spacer 39 not only supports the conductor 38 but also divides the inside of the container into each element to form a plurality of independent gas compartments, so that filling and exhausting of SF and gas is performed only in the necessary parts. It's there.

これにより、小さい絶縁寸法で高い絶縁性能を得ること
ができ、従来の設備の比較すると、装置の容積や設置面
積を大幅に縮小することができ、しかも信組性の高いも
のになる。
As a result, high insulation performance can be obtained with small insulation dimensions, and when compared with conventional equipment, the volume and installation area of the equipment can be significantly reduced, and moreover, it becomes highly reliable.

このガス絶縁式開閉装置においては、ガス区画室内の封
入ガス(S F hガス)の漏れによるガス圧力低下あ
るいは異常過熱等によるガス圧力上昇を監視する必要が
ある。このための監視装置として、第5図に示すように
、ガス区画室1に、ガスの充填・排気のためのガス配管
41を取付け、この配管41の途中にガス圧力の異常を
検出するための圧カスインチ43が設けられる。
In this gas insulated switchgear, it is necessary to monitor the gas pressure drop due to leakage of the sealed gas (S F h gas) in the gas compartment or the gas pressure rise due to abnormal overheating. As a monitoring device for this purpose, as shown in FIG. 5, a gas pipe 41 for filling and exhausting gas is installed in the gas compartment 1, and a gas pipe 41 for detecting abnormalities in gas pressure is installed in the middle of this pipe 41. A pressure inch 43 is provided.

このとき、ガス圧力は、ガス密度が一定でも外気温度の
変化に追従するガス温度の変化によって変化するので、
圧力スイッチ43は感温部44の中の基準ガスの温度と
、ガス区画室1内の温度とがバランスしているときは動
作せず、ガス区画室1でガス漏れによるガス密度の低下
などにより圧力バランスがあるレベル以上に達したとき
に動作するようになっている。なお、第5図において、
45は開閉弁、46はガス充・排口である。
At this time, even if the gas density is constant, the gas pressure changes due to changes in gas temperature that follow changes in outside air temperature.
The pressure switch 43 does not operate when the temperature of the reference gas in the temperature sensor 44 and the temperature in the gas compartment 1 are in balance, and the pressure switch 43 does not operate when the temperature of the reference gas in the temperature sensor 44 and the temperature in the gas compartment 1 are in balance, and if the gas density decreases due to gas leakage in the gas compartment 1, etc. It is designed to operate when the pressure balance reaches a certain level. In addition, in Fig. 5,
45 is an on-off valve, and 46 is a gas charging/discharging port.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ガス区画室1内のガスは内部の導体38への通電によっ
て外気温度以上に加熱されるが、圧力スイッチ43の感
温部44中の基準ガスは外気温度とほぼ等しい状態にあ
る。
Although the gas in the gas compartment 1 is heated to a temperature higher than the outside temperature by energizing the internal conductor 38, the reference gas in the temperature sensing portion 44 of the pressure switch 43 is at approximately the same temperature as the outside temperature.

したがって、圧力スイッチ43の動作圧力はガス区画室
1内の導体38への通電電流の大小によって一定せず、
ガス区画室1内の真のガス密度との間に誤差を生じると
いう問題があった。
Therefore, the operating pressure of the pressure switch 43 is not constant depending on the magnitude of the current flowing to the conductor 38 in the gas compartment chamber 1.
There was a problem in that an error occurred between this and the true gas density in the gas compartment 1.

したがって、この発明の目的は、ガス区画室内のガス密
度を誤差の少ない値で検出して、ガス密度の低下や異常
なガス圧力の上昇を監視するガス絶縁式電気設備の監視
装置を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a monitoring device for gas-insulated electric equipment that detects the gas density in a gas compartment with a value with little error and monitors a decrease in gas density or an abnormal increase in gas pressure. It is.

〔課題を解決するための手段〕[Means to solve the problem]

この発明のガス絶縁式電気設備の監視装置は、ガス区画
室の圧力を計測する圧力計と、ガス区画室内の導体に流
れる電流を計測する電流計と、ガス区画室の周囲の外気
温度を計測する温度計と、演算装置とを備え、前記電流
計で計測しながら導体に電流■。を通電したときのガス
区画室のガス温度上昇値ΔToを式(1)により演算し
、P、1−P。
The monitoring device for gas-insulated electrical equipment of the present invention includes a pressure gauge that measures the pressure in the gas compartment, an ammeter that measures the current flowing through the conductor in the gas compartment, and an ammeter that measures the outside air temperature around the gas compartment. A current is applied to the conductor while being measured by the ammeter. The gas temperature rise value ΔTo in the gas compartment when electricity is applied is calculated by equation (1), and P, 1-P.

ΔT、 −−T、  ・・・・(1) P7 : 電’ll I oの通電時のガス区画室のガ
ス圧力 Po : 通電前の前記イカ計により計測したガス区画
室のガス圧力 T、: 前記温度計により測定した外気温度に0 : 
定数 前記電流計の計測値に従って導体にt ’tRI−を通
電したたときのガス区画室のガス温度上昇値ΔT7を式
(2)により演算し、 α: 定数 これからガス区画室のガス温度ΔT、、+T、を演算し
、ガス密度を演算するようにしたものである。
ΔT, --T, ... (1) P7: Gas pressure in the gas compartment when the current is energized Po: Gas pressure in the gas compartment measured by the squid meter before energization T,: 0 to the outside temperature measured by the thermometer:
Constant Calculate the gas temperature rise value ΔT7 in the gas compartment when the conductor is energized with t'tRI− according to the measured value of the ammeter using equation (2), α: constant From this, the gas temperature ΔT in the gas compartment, , +T, and calculate the gas density.

〔作用〕[Effect]

この発明によれば、初期通電時のガス圧力変化からガス
温度上昇値へT0を初期値として設定し、これと以後の
運転時の通電電流値とからガス温度上昇値ΔT、1を演
算し、これと外気温度T、とからガス区画室のガス温度
ΔT、+T、を演算するものである。したがって、ガス
区画室内の導体への通電電流に影響されるガス温度を正
確に検出することができるため、これからガス区画室内
のガス密度を誤差の少ない値で検出して、ガス密度の低
下や異常なガス圧力の上昇を高精度に監視することがで
きる。
According to this invention, T0 is set as an initial value for changing the gas temperature rise value from the gas pressure change during initial energization, and the gas temperature rise value ΔT,1 is calculated from this and the energization current value during subsequent operation, From this and the outside air temperature T, the gas temperatures ΔT and +T in the gas compartment are calculated. Therefore, the gas temperature, which is affected by the current flowing to the conductor inside the gas compartment, can be accurately detected, so the gas density inside the gas compartment can be detected with a value with little error, and the gas density can be detected as low or abnormal. The increase in gas pressure can be monitored with high precision.

(実施例〕 第1図はこの実施例にかかるガス絶縁式電気設備の監視
装置を示している。第1図において、導体を収容した管
路3は導体を絶縁支持するための絶縁スペーサ4によっ
て区画され、ガス区画室1が形成される。このガス区画
室1内にはSF、ガスが封入されている。
(Example) Fig. 1 shows a monitoring device for gas-insulated electric equipment according to this embodiment. It is divided to form a gas compartment 1. This gas compartment 1 is filled with SF and gas.

ガス区画室1にはSF、ガスの充填・排気口5を有する
配管6が取付けられ、この配管6の開閉弁7,7間に圧
力センサ8が設けられる。
A pipe 6 having SF and gas filling/exhaust ports 5 is attached to the gas compartment 1, and a pressure sensor 8 is provided between the on-off valves 7, 7 of the pipe 6.

また、この圧力センサ8とは別に、ガス区画室lの周囲
の外気温度を測定するための温度計(温度センサ等、図
示せず)と、ガス区画室1内の圧力を測定する圧力計と
、ガス区画室1内の導体に流れる1流を計測する電流計
(図示せず)とがそれぞれ設けられる つぎに、この監視装置の操作手順を説明する。
In addition to this pressure sensor 8, there is also a thermometer (temperature sensor, etc., not shown) for measuring the outside air temperature around the gas compartment l, and a pressure gauge for measuring the pressure inside the gas compartment 1. , and an ammeter (not shown) for measuring the current flowing through the conductor in the gas compartment 1. Next, the operating procedure of this monitoring device will be explained.

ガス区画室1内のガス密度が一定である場合、第2図に
直線Aで示すように、ガス温度Tとガス圧力P0とは直
線的な関係となるので、導体への通電開始前のガス特性
を次の方程式で表すものとする。
When the gas density in the gas compartment 1 is constant, the gas temperature T and the gas pressure P0 have a linear relationship, as shown by the straight line A in FIG. Let the characteristics be expressed by the following equation.

Pa  =ko  X”l”+p0 これから、ガス温度Tは次式で表される。Pa = ko X”l”+p0 From this, the gas temperature T is expressed by the following equation.

T= (po −Po )/ka もし、ガス区画室lにガス漏れが生じている場合には、
ガス密度が低下し、熱容量が低下するため、ガス圧力と
温度は直線Bで示すような関係になる。
T= (po −Po)/ka If there is a gas leak in the gas compartment l,
Since the gas density decreases and the heat capacity decreases, the relationship between gas pressure and temperature is as shown by straight line B.

通電を開始し、時間経過とともに変化するガス区画室1
内のガス圧力P7と外気温度T、とを記録すれば、その
時々の通電によるガス温度上昇値ΔToは次式により演
算できる。
Gas compartment 1 changes over time after energization starts
By recording the internal gas pressure P7 and the outside air temperature T, the gas temperature increase value ΔTo due to current application can be calculated using the following equation.

ΔT、−T−T。ΔT, -T-T.

−(P−po )/ka  T、  ・・(1)このΔ
T、を初期値として設定する。このときのΔToの経過
時間に対する特性を第3図に示す。
-(P-po)/ka T, ... (1) This Δ
T, is set as the initial value. The characteristics of ΔTo at this time with respect to elapsed time are shown in FIG.

この初期値をベースにして通電電流が■7となったとき
のガス温度上昇値ΔT、、は、臥 ΔT、l−ΔT6 X (T、1/Io )   ・・
(2)(αは前出)より演算可能である。α値は装置の
設計データより決定される。ΔT、のときの経過時間に
対する特性を第3図に併せて示す。
Based on this initial value, the gas temperature rise value ΔT when the current is 7 is 臥ΔT, l - ΔT6 X (T, 1/Io)...
It is possible to calculate from (2) (α is mentioned above). The α value is determined from the design data of the device. FIG. 3 also shows the characteristics with respect to the elapsed time when ΔT.

このようにして、ガス絶縁式電気設備の運転時の外気温
度の測定値と、通電電流の測定値とから演算したΔT、
、に外気温度T、を足してガス温度ΔT、+T、が演算
できる。したがって、このガス温度から、たとえばピッ
ティ・ブリンヂマンのガス状態方程式(Beattie
−Bridgeman formula)を用いてガス
密度を求めることができるため、高精度でガス密度の監
視を行うことができる。
In this way, ΔT calculated from the measured value of the outside air temperature and the measured value of the energizing current during operation of the gas-insulated electrical equipment,
, and the outside air temperature T, the gas temperature ΔT, +T can be calculated. Therefore, from this gas temperature, for example, the Pittie-Bringeman gas state equation (Beattie
Since the gas density can be determined using the Bridgeman formula, the gas density can be monitored with high accuracy.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、初期通電時のガス圧力変化からガス
温度上昇値ΔToを初期値として設定することにより、
運転時の通電1a流値と外気温度とからガス区画室のガ
ス温度を演算することができるため、ガス区画室内のガ
ス密度を高精度で検出して、ガス密度の低下や異常なガ
ス圧力の上昇を正確に監視することができる。
According to this invention, by setting the gas temperature rise value ΔTo as an initial value from the gas pressure change at the time of initial energization,
Since the gas temperature in the gas compartment can be calculated from the energization 1a flow value during operation and the outside air temperature, the gas density in the gas compartment can be detected with high accuracy to prevent a decrease in gas density or abnormal gas pressure. The rise can be accurately monitored.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の概略図、第2図はガス区
画室内のガス圧力と温度との関係を示すグラフ、第3図
は通電状態での経過時間とガス温度上昇値との関係を示
すグラフ、第4図は通常のガス絶縁式開閉装置の断面図
、第5図は従来の監視装置の概略図である。 1−・ガス区画室、4・・−絶縁スペーサ、8−圧力セ
ンサ
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is a graph showing the relationship between gas pressure and temperature in the gas compartment, and Fig. 3 is a graph showing the relationship between the elapsed time in the energized state and the gas temperature rise value. A graph showing the relationship, FIG. 4 is a sectional view of a conventional gas insulated switchgear, and FIG. 5 is a schematic diagram of a conventional monitoring device. 1--Gas compartment, 4--Insulating spacer, 8-Pressure sensor

Claims (1)

【特許請求の範囲】 ガス区画室の圧力を計測する圧力計と、ガス区画室内の
導体に流れる電流を計測する電流計と、ガス区画室の周
囲の外気温度を計測する温度計と、演算装置とを備え、 前記電流計で計測しながら導体に電流I_oを通電した
ときのガス区画室のガス温度上昇値ΔT_oを式(1)
により演算し、 ΔT_o=(P_n−P_o)/(K_o)−T_a…
(1) P_n:電流I_oの通電時のガス区画室のガス圧力 P_o:通電前の前記圧力計により計測したガス区画室
のガス圧力 T_a:前記温度計により測定した外気温度 K_o:定数前記電流計の計測値に従って導体に電流I
_nを通電したたときのガス区画室のガス温度上昇値Δ
T_nを式(2)により演算し、 ΔT_n=ΔT_o(I_n/I_o)^α…(2) α:定数 これからガス区画室のガス温度ΔT_n+T_aを演算
し、ガス密度を求めるようにしたガス絶縁式電気設備の
監視装置。
[Claims] A pressure gauge that measures the pressure in the gas compartment, an ammeter that measures the current flowing through a conductor in the gas compartment, a thermometer that measures the outside air temperature around the gas compartment, and an arithmetic device. and the gas temperature rise value ΔT_o in the gas compartment when a current I_o is applied to the conductor while being measured by the ammeter is expressed by equation (1).
Calculated by ΔT_o=(P_n-P_o)/(K_o)-T_a...
(1) P_n: Gas pressure in the gas compartment when current I_o is applied P_o: Gas pressure in the gas compartment measured by the pressure gauge before energization T_a: Outside air temperature measured by the thermometer K_o: Constant The ammeter The current I in the conductor according to the measured value of
Gas temperature rise value Δ in the gas compartment when _n is energized
T_n is calculated by equation (2), ΔT_n=ΔT_o(I_n/I_o)^α...(2) α: constant From this, the gas temperature ΔT_n+T_a in the gas compartment is calculated, and the gas density is determined. Equipment monitoring device.
JP63156476A 1988-06-23 1988-06-23 Monitoring equipment for gas-insulated electrical equipment Expired - Lifetime JPH0620345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156476A JPH0620345B2 (en) 1988-06-23 1988-06-23 Monitoring equipment for gas-insulated electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156476A JPH0620345B2 (en) 1988-06-23 1988-06-23 Monitoring equipment for gas-insulated electrical equipment

Publications (2)

Publication Number Publication Date
JPH027829A true JPH027829A (en) 1990-01-11
JPH0620345B2 JPH0620345B2 (en) 1994-03-16

Family

ID=15628589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156476A Expired - Lifetime JPH0620345B2 (en) 1988-06-23 1988-06-23 Monitoring equipment for gas-insulated electrical equipment

Country Status (1)

Country Link
JP (1) JPH0620345B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337231A (en) * 2014-08-15 2016-02-17 中国广核集团有限公司 Detection and optimization method for power generation and distribution system of nuclear power station
JP2017026559A (en) * 2015-07-28 2017-02-02 株式会社日立製作所 Gas leak detection device and gas leak detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337231A (en) * 2014-08-15 2016-02-17 中国广核集团有限公司 Detection and optimization method for power generation and distribution system of nuclear power station
JP2017026559A (en) * 2015-07-28 2017-02-02 株式会社日立製作所 Gas leak detection device and gas leak detection method
US10190935B2 (en) 2015-07-28 2019-01-29 Hitachi, Ltd. Gas leak detection device and gas leak detection method

Also Published As

Publication number Publication date
JPH0620345B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US4517838A (en) Thermal mass flow meter
CN109406004A (en) A kind of switchgear temperature rise analytical method
US4848926A (en) Fluid temperature and flow monitor
US4746223A (en) Meter for integrating the operating time of a steam trap
US4036051A (en) Heat meters
US3365944A (en) Adiabatic calorimeter
JPH027829A (en) Monitor device of gas insulation type electrical equipment
US2525439A (en) Thermocouple
RU2327122C1 (en) Temperature sensor
JP5233728B2 (en) Gas pressure monitoring device and gas insulated electrical equipment
JPH027830A (en) Monitor device of gas insulation type electrical equipment
US3466642A (en) Method and device for automatic leakage detection in liquid-pressure insulated power cables
JPH0113300B2 (en)
RU1811610C (en) Device for testing characteristics of flows
JPH10325759A (en) Temperature sensor
JP3441833B2 (en) Gas sensor
JP3049702B2 (en) Gas leak monitoring device for gas insulated switchgear
SU1051388A1 (en) Device for measuring temperature
CN115087158A (en) Heater bundle with virtual sensing for thermal gradient compensation
JPS628480Y2 (en)
JPH05258967A (en) Gas-insulated transformer
JPS5838753Y2 (en) gas insulated electrical equipment
RU2008599C1 (en) Method of and device for checking heat pipe tightness
RU338U1 (en) Thermoelectric converter
JP3128989B2 (en) Temperature measurement device