JPH0277771A - Developing device - Google Patents

Developing device

Info

Publication number
JPH0277771A
JPH0277771A JP22858988A JP22858988A JPH0277771A JP H0277771 A JPH0277771 A JP H0277771A JP 22858988 A JP22858988 A JP 22858988A JP 22858988 A JP22858988 A JP 22858988A JP H0277771 A JPH0277771 A JP H0277771A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
field generating
developing
developing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22858988A
Other languages
Japanese (ja)
Inventor
Takao Honda
本田 孝男
Katsuaki Kobayashi
克彰 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22858988A priority Critical patent/JPH0277771A/en
Publication of JPH0277771A publication Critical patent/JPH0277771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)

Abstract

PURPOSE:To prevent image trouble such as tailing and scattering and to obtain an image of invariably high quality by magnetizing and setting an area where development is possible so that the absolute value of the density variation rate of a vertical magnetic field component is maximum. CONSTITUTION:A magnet 3 for development 3 is fixed as a magnetic field producing means in a developing sleeve 2 at a specific position. A developing pole (a) in the magnet 3 is so set that the absolute value of the density variation rate of the vertical magnetic field component is maximum at a specific distance from the center position of the development area. In this case, if the maximum magnetic flux density is obtained on a straight line L passing the center 1a of a photosensitive drum and the center 2a of sleeve rotation, a groove 13a is formed almost at an angle theta of 80 deg. and a groove 13b is formed at an angle thetaof 20 deg. to cause an abrupt variation in magnetic force distribution, thereby obtaining a desired magnetic flux distribution.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は静電潜像を現像剤にて現像する技術の分野に
おいて利用され、特に現像剤を磁気力で拘束して現像を
行なう現像装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is utilized in the field of technology for developing electrostatic latent images with a developer, and in particular, a developing device that performs development by restraining the developer with magnetic force. Regarding.

[従来の技術] 従来、この種の現像装置は静電潜像担持体と、この静電
潜像担持体と近接領域を形成するように外周面を対向し
て配設し、その外周面に磁性を有する現像剤を担持する
非磁性の現像剤担持体とて構成されている。そして、上
記近接領域内において、この両者の外周面対向距離が一
定値以下となる所定域、すなわち一定の磁界強度の領域
を現像領域としている。
[Prior Art] Conventionally, this type of developing device has an electrostatic latent image carrier and an electrostatic latent image carrier, which is disposed with its outer circumferential surface facing each other so as to form a close area with the electrostatic latent image carrier. It is configured as a non-magnetic developer carrier that supports a magnetic developer. A predetermined area within the above-mentioned proximity area where the distance between the two outer peripheral surfaces facing each other is equal to or less than a certain value, that is, an area where the magnetic field strength is constant is defined as a development area.

この場合、上記現像剤担持体の表面て現像剤を担持する
手段として、現像剤担持体の内部に一磁極か現像剤担持
体外周面側に向くよう磁石を複数布する磁界発生手段か
固定設置されている。そして、この磁界発生手段を構成
する複数の磁石のうち一磁石は、上記静電潜像体と上記
現像剤担持体の近接領域の範囲内にあって最近接部に対
応する位置の近傍に配設され、回転体外周面側の一磁極
が現像領域の略中央部で垂直磁界成分(上記現像剤担持
体の表面に対し垂直な磁界成分)の最大密度点を有する
ように磁化設定されている。この垂直磁界成分が、現像
領域の範囲内で現像剤担持体外周面に現像剤を磁気的に
拘束していわゆる「穂立ち」を形成させ、上記静電潜像
担持体へ現像剤を移行せしめている。
In this case, as a means for supporting the developer on the surface of the developer carrier, a magnetic field generating means or fixedly installed magnetic field generating means in which a plurality of magnets are disposed inside the developer carrier with one magnetic pole facing toward the outer peripheral surface of the developer carrier. has been done. One magnet among the plurality of magnets constituting the magnetic field generating means is disposed in the vicinity of a position corresponding to the closest portion within the vicinity of the electrostatic latent image body and the developer carrier. The magnetization is set so that one magnetic pole on the outer circumferential surface of the rotating body has the maximum density point of the perpendicular magnetic field component (the magnetic field component perpendicular to the surface of the developer carrier) approximately at the center of the development area. . This perpendicular magnetic field component magnetically restrains the developer on the outer circumferential surface of the developer carrier within the range of the development area to form a so-called "spike" and transfer the developer to the electrostatic latent image carrier. ing.

[発明か解決しようとする課題] しかしながら、従来の現像装置にあっては、現像領域の
両端側へと向うにしたがい磁石の上記垂直磁界成分の密
度か徐々に減少し、逆に水平磁界成分(上記現像剤担持
体の周方向の磁界成分)の密度が徐々に増す。その結実
現像領域の両端側になるほど現像剤の穂立ちが傾斜して
しまい、そのためその部分での現像がなされた画像には
種々の障害が生じる。例えば、「尾引き」と称され、上
記現像剤担持体の回転に伴ない画像形成の方向(画像が
形成される記録材の搬送方向)とは逆方向に現像剤か線
状に延びて尾を引いているように見える状態や、「飛び
散り」と称され上記「尾引き」がさらり悪化して複写画
像の周近部にまで現像剤の粒子が飛び散る状態などの画
像形成に悪影響を与える。これは、上記磁界発生手段と
して樹脂または高分子物質に磁性体を混合させた一体成
形部材を使用する場合に顕著である。
[Problem to be solved by the invention] However, in the conventional developing device, the density of the vertical magnetic field component of the magnet gradually decreases toward both ends of the developing area, and conversely, the density of the horizontal magnetic field component ( The density of the magnetic field component in the circumferential direction of the developer carrier gradually increases. The developer spikes become more inclined towards both ends of the formed image area, and various problems occur in the image developed in those areas. For example, this is called "tailing", and as the developer carrier rotates, the developer may extend linearly in a direction opposite to the direction of image formation (the conveyance direction of the recording material on which the image is formed). This adversely affects image formation, such as a state in which developer particles appear to be trailing, or a state in which the above-mentioned "tailing" (referred to as "splatter") worsens and developer particles scatter near the periphery of the copied image. This is remarkable when an integrally molded member made of resin or polymeric material mixed with a magnetic material is used as the magnetic field generating means.

このときの現像領域を拡大し、現像剤の穂立ちの様子を
示したのが第7図である。同図において現像剤担持体と
しての現像スリーブ2上に現像剤10か担持されている
。また、静電潜像担持体としての感光トラムl上には静
電潜像(第7図ては参照符号11のマイナス極性として
表わされている)が担持されている。そして感光ドラム
lと現像スリーブ2との最近接部(図示の場合、現像領
域の中央部)では現像スリーブ2上て穂立ちした現像剤
10か電気的吸引力を受けて感光ドラム1側へ移動する
。しかし、現像領域中央部から両端側の非現像領域へと
向うにしたがい、水平磁界成分の影響を受けて穂立ちか
徐々に傾斜するようになってくる。この傾向け、参照符
号12で示されるごとく現像領域両端部においてはかな
り顕著に表われている。例えば、第7図に示された現像
領域の左側部分においては、現像スリーブ2上で傾斜し
ている現像剤IOの穂立ちの一部が、感光ドラムlと現
像スリーブ2との間隔が大きくなる傾向にあるにも拘ら
ず、矢印W方向に電気的に感光ドラムlへ吸引されてい
くために、回転している感光ドラムl上ては画像形成方
向Aに現像剤IOのずれか生じてしまう。この現像剤1
0のずれか複写画像上では後方に線状となって延びる上
述の「尾引き」である。
FIG. 7 shows an enlarged view of the developing area at this time, showing the appearance of spikes of developer. In the figure, a developer 10 is supported on a developing sleeve 2 serving as a developer carrier. Further, an electrostatic latent image (represented by reference numeral 11 of negative polarity in FIG. 7) is carried on the photosensitive tram l as an electrostatic latent image carrier. Then, at the closest part between the photosensitive drum 1 and the developing sleeve 2 (in the case shown, the central part of the developing area), the developer 10 that has stood up on the developing sleeve 2 moves toward the photosensitive drum 1 due to the electric attraction force. do. However, as one moves from the center of the developing area to the non-developing areas at both ends, the spikes gradually become slanted due to the influence of the horizontal magnetic field component. This tendency is quite noticeable at both ends of the developing area, as indicated by reference numeral 12. For example, in the left side portion of the developing area shown in FIG. 7, part of the spikes of the developer IO tilted on the developing sleeve 2 causes the distance between the photosensitive drum l and the developing sleeve 2 to become large. Despite this trend, since the developer is electrically attracted to the photosensitive drum l in the direction of the arrow W, only a deviation of the developer IO occurs in the image forming direction A on the rotating photosensitive drum l. . This developer 1
A deviation of 0 is the above-mentioned "tailing" that extends linearly backward on the copied image.

本発明は、従来のこのような現像装置の有していた「尾
引き」、「飛び散り」などの画像形成における悪影響を
解決することを目的とする。
An object of the present invention is to solve the adverse effects on image formation such as "tailing" and "splatter" that conventional developing devices have.

[課題を解決するだめの手段] 本発明の現像装置は、上記目的達成のために、静電潜像
坦持体と、内部に磁界発生手段か配設され所定の方向に
回転する現像剤坦持体とを有し、 」−記静電潜像坦持体と上記現像剤坦持体とか両者の外
周面間に最近接部をもつ近接領域を形成するように配設
され、上記磁界発生手段の上記最近接部の近傍に磁界発
生部を有している現像装置において、 」二記磁界発生
手段は、上記磁界発生部により形成される磁界の磁界発
生手段表面に対し垂直な成分の磁力強度分布を上記磁界
発生部の近傍の所定位置にて変化せしめることを可能と
する磁界変化手段を備えている、 ことによって構成される。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the developing device of the present invention includes an electrostatic latent image carrier and a developer carrier which is provided with a magnetic field generating means therein and rotates in a predetermined direction. The electrostatic latent image carrier and the developer carrier are disposed so as to form a proximal region having the closest portion between the outer peripheral surfaces of the electrostatic latent image carrier and the developer carrier, and the magnetic field is generated. In a developing device having a magnetic field generating section in the vicinity of the nearest portion of the means, the magnetic field generating means described in 2.2 above is a magnetic field generating section that generates magnetic force of a component perpendicular to the surface of the magnetic field generating means of the magnetic field generated by the magnetic field generating section. The magnetic field changing means is provided to change the intensity distribution at a predetermined position near the magnetic field generating section.

[作用] L記のように構成された現像装置か起動すると、現像剤
担持体の表面上に薄層化された現像剤か静電潜像担持体
と現像剤担持体の近接領域に搬送される。該現像剤は、
上記近接領域の現像回部領域において、磁界発生手段の
磁界発生部と磁界変化手段とにより設定された磁界によ
って穂立ちし、静電静電担持体に担持された静電潜像の
電荷に応した可視像を形成する。
[Operation] When the developing device configured as described in L is started, the developer formed in a thin layer on the surface of the developer carrier is transported to the area adjacent to the electrostatic latent image carrier and the developer carrier. Ru. The developer is
In the developing circuit region of the above-mentioned adjacent region, the magnetic field generated by the magnetic field generating section of the magnetic field generating means and the magnetic field changing means causes the magnetic field to stand up, and responds to the charge of the electrostatic latent image carried on the electrostatic carrier. form a visible image.

[実施例] 以下、添付図面にもとづいて、本発明の実施例装置を説
明する。
[Example] Hereinafter, an example device of the present invention will be described based on the accompanying drawings.

第1図(A)は、第一実施例装置としての現像装置で現
像剤担持体としての現像スリーブの周辺を示す断面図で
あり、第1図(H)は第1図(A)の現像スリーブと静
電潜像担持体としての感光ドラムか形成する近接領域を
拡大し、該近接領域内の垂直磁界成分の分布の様子を模
式的に示した図である。
FIG. 1(A) is a sectional view showing the periphery of a developing sleeve as a developer carrier in a developing device as the first embodiment, and FIG. FIG. 2 is an enlarged view of a close area formed by a sleeve and a photosensitive drum serving as an electrostatic latent image carrier, and schematically shows the distribution of perpendicular magnetic field components in the close area.

第1図(A)において、現像スリーブ2は、感光トラム
1に所定間隙をもって対向する位置にA方向に回転自在
に配設されている。該現像スリーブ2の内部には、樹脂
等の材料からなる磁界発生手段としての現像用マグネッ
ト3か所定の位置に固定配置されている。現像用マグネ
ット3は、その製造時に例えば第1図(A)に示されて
いるように、周部の所定の位置に四つの磁界発生部a。
In FIG. 1(A), the developing sleeve 2 is rotatably disposed in the direction A at a position facing the photosensitive tram 1 with a predetermined gap therebetween. Inside the developing sleeve 2, a developing magnet 3 made of a material such as resin and serving as a magnetic field generating means is fixedly arranged at a predetermined position. When the developing magnet 3 is manufactured, for example, as shown in FIG. 1(A), four magnetic field generating parts a are formed at predetermined positions on the circumference.

b、c、dか形成され、磁界発生部aか現像極を、磁界
発生部すか現像剤坦持体(カット極)を、磁界発生部C
及びdが現像剤搬送極を、それぞれ形成している。第2
図には、上記現像用マクネット3の拡大断面図か示され
ている。図中において、1aは感光ドラム中心、2aは
現像スリーブ回転中心てあり、Lは感光トラム中心1a
と現像スリーブ回転中心2aとを通る直線である。現像
マクネット3は、直線りに対して現像スリーブ回転中心
2aを中心に所定の角度θ1.θ2を有する直線Ml、
M2と現像用マグネット3の外周線の交点周辺に半円形
の溝13a及び溝13bが形成されている。
b, c, and d are formed, the magnetic field generating part a is the developing pole, the magnetic field generating part is the developer carrier (cut pole), and the magnetic field generating part C is the developer carrier (cut pole).
and d form developer transport poles, respectively. Second
The figure shows an enlarged sectional view of the developing Macnet 3. In the figure, 1a is the center of the photosensitive drum, 2a is the center of rotation of the developing sleeve, and L is the center of the photosensitive tram 1a.
This is a straight line passing through the developing sleeve rotation center 2a. The developing magnet 3 is formed at a predetermined angle θ1.about.the developing sleeve rotation center 2a with respect to the straight line. Straight line Ml having θ2,
A semicircular groove 13a and a groove 13b are formed around the intersection of M2 and the outer circumferential line of the developing magnet 3.

この溝13a及び+3bは現像用マクネット3の軸とモ
行に形成されている。
The grooves 13a and +3b are formed in parallel with the axis of the developing magnet 3.

また、現像スリーブ2の上部には、現像剤IOの穂立ち
高さを規制して現像スリーブ上の現像剤を薄層化するた
めのフレート4か一上記磁界発生部すに対向した位置に
配設されている。現像スリーブ2の右側は、開口にて上
詰現像スリーフ2の左部分を突出状態で配置し、かつ該
現像スリーブ2へ供給する現像剤10を収容するための
容器8となっている。なお、2aは現像スリーブ2の回
転中心であると共に現像用マグネット3の固定中心ても
ある。
Further, on the upper part of the developing sleeve 2, a plate 4 is disposed at a position opposite to the above-mentioned magnetic field generating section for regulating the height of the spikes of the developer IO and thinning the developer on the developing sleeve. It is set up. The right side of the developing sleeve 2 has an opening in which the left portion of the upper developing sleeve 2 is placed in a protruding state, and serves as a container 8 for accommodating the developer 10 to be supplied to the developing sleeve 2. Note that 2a is the rotation center of the developing sleeve 2 and also the fixing center of the developing magnet 3.

第1図(B)は、−に記第1図(A)における近接領域
を拡大して示しており、同図では、磁界発生部aの周表
面側の磁極である現像極(本実施例てはN極)の垂直磁
界成分の分布の様子を、現像スリーブ2の周表面位置て
の磁束密度を矢印の長さて示している。
FIG. 1(B) shows an enlarged view of the adjacent region in FIG. 1(A) indicated by -, and in the same figure, the developing pole (this example The distribution of the perpendicular magnetic field components of the N and N poles is shown by the length of the arrow indicating the magnetic flux density at the circumferential surface position of the developing sleeve 2.

周知のように磁界発生部aの磁界は、該磁界発生部aを
中心として全方向に形成される。したかって、現像スリ
ーブ2の表面には垂直磁界成分と水平磁界成分とが形成
され、現像剤の穂立ちの方向け図中に示された垂直磁界
成分と、図示されていない水平磁界成分とによって決ま
る。ここで、水平磁界成分というのは、スリーブ円周で
の接線の方向についての磁界成分である。
As is well known, the magnetic field of the magnetic field generating part a is formed in all directions with the magnetic field generating part a as the center. Therefore, a vertical magnetic field component and a horizontal magnetic field component are formed on the surface of the developing sleeve 2. It's decided. Here, the horizontal magnetic field component is a magnetic field component in the direction of a tangent to the circumference of the sleeve.

この現像極の水平磁界成分あるいは垂直磁界成分の密度
分布状態を修正することにより、既述した従来装置の問
題点として指摘した現像領域の両端部で生じる、現像剤
の傾斜した穂立ちによる現像を防止することができる。
By modifying the density distribution state of the horizontal magnetic field component or the vertical magnetic field component of this development pole, development due to slanted spikes of developer occurring at both ends of the development area, which was pointed out as a problem with the conventional device mentioned above, can be solved. It can be prevented.

すなわち、現像領域の両端部での、現像極の水平磁界成
分あるいは垂直磁界成分の磁束密度の変化率を大きくな
るよう修正して設定することにより上述問題点が解消さ
れる。
That is, the above-mentioned problem is solved by correcting and setting the rate of change of the magnetic flux density of the horizontal magnetic field component or the vertical magnetic field component of the developing pole at both ends of the developing area to be large.

以下では、上記のように現像用マグネット′3の表面に
溝13a及び13bか形成された本実施例装置の現像極
が形成する垂直磁界成分の密度分布゛状態を図をもって
具体的に説明する。第4図には、垂直磁界成分の密度分
布か示されている。
In the following, the density distribution state of the perpendicular magnetic field component formed by the developing pole of the present embodiment apparatus in which the grooves 13a and 13b are formed on the surface of the developing magnet '3 as described above will be explained in detail with reference to the drawings. FIG. 4 shows the density distribution of the perpendicular magnetic field component.

なお、図中の実線は、本実施例による装置の現像極の垂
直磁界成分の密度分布を示し、また二点鎖線は従来の装
置の現像極の垂直磁界成分示している。
The solid line in the figure shows the density distribution of the vertical magnetic field component of the developing pole of the apparatus according to this embodiment, and the two-dot chain line shows the vertical magnetic field component of the developing pole of the conventional apparatus.

横軸は、第1図(A)に示される磁界発生部aと、現像
スリーブ2の回転方向Aにおいて上流側に位置する磁界
発生部すとの中間位置にあって、磁界発生部aの現像極
の垂直磁界成分の密度がθガウスとなる位置を基準位置
θ。とじ、現像スリーブ2の回転中心2aに対して下流
側(現像極側)へ角度θをもって示されている。縦軸は
現像スリーブ2の表面での垂直磁界成分密度なG(ガウ
ス)て表わしている。同図において、本実施例と従来装
置の垂直磁界成分密度を比較すると、本実施例の場合(
実線)の方が従来装M(二点鎖線)よりも中央位置(角
度θ−50度近辺)の最大密度点Sを頂点としてその近
傍ては密度の変化率が比較的安定しており、中央位置か
ら両側へ所定距離となる位置で変化率か大きくなってい
る。上記の関係をより明らかにするため、第4図の縦軸
の垂直磁界成分の密度(G(ガウスン)を上記角度θで
微分し、角度0に対する変化率を縦軸にとったものが第
5図である。この両者を比較すると、中央位置から両側
へ所定距離となる位置で、変化率が大きく、極大値(最
大値)及び極小値(最小値)か明瞭となっている。これ
は、上述したことく本実施例装置の現像極は、現像領域
の中央位置から所定距離となる位置て、垂直磁界成分の
密度変化率の絶対値が極大となるよう゛′段設定れてい
るからである。なお第31に示されるごとく、現像剤担
持体中心に対する単位中心角度当りの水平磁界成分の密
度変化量が30ガウス以下では多くの場合、「尾引き」
、「飛び散り」等の画像障害の発生か確認されており、
一般に、密度変化率の絶対値の極大値は30ガウス/度
以上となるよう磁化設定することか好ましい。
The horizontal axis is located at an intermediate position between the magnetic field generating part a shown in FIG. The reference position θ is the position where the density of the vertical magnetic field component of the pole is θ Gauss. The binding is shown at an angle θ toward the downstream side (towards the developing pole) with respect to the rotation center 2a of the developing sleeve 2. The vertical axis represents the vertical magnetic field component density G (Gauss) on the surface of the developing sleeve 2. In the figure, when comparing the perpendicular magnetic field component density of this example and the conventional device, in the case of this example (
The rate of change in density is relatively stable in the vicinity of the maximum density point S at the center position (near the angle θ - 50 degrees) with the maximum density point S at the center position (near the angle θ - 50 degrees) as the apex, compared to the conventional system M (two-dot chain line). The rate of change becomes large at positions that are a predetermined distance from the position on both sides. In order to clarify the above relationship, the density (G (Gaussian)) of the vertical magnetic field component on the vertical axis in Figure 4 is differentiated by the angle θ, and the rate of change with respect to the angle 0 is plotted on the vertical axis. When comparing the two, the rate of change is large at positions a certain distance from the center position to both sides, and it is clear whether it is a local maximum value (maximum value) or a local minimum value (minimum value). As mentioned above, the development pole of the apparatus of this embodiment is set in steps such that the absolute value of the density change rate of the vertical magnetic field component is maximum at a position a predetermined distance from the center of the development area. As shown in No. 31, "tailing" often occurs when the density change of the horizontal magnetic field component per unit center angle with respect to the center of the developer carrier is 30 Gauss or less.
It has been confirmed that image disturbances such as "splatters" have occurred.
Generally, it is preferable to set the magnetization so that the maximum absolute value of the density change rate is 30 Gauss/degree or more.

ここで、現像マグネット3に形成された溝13a及び1
3bの位置について説明する。−上述した第4図の最大
磁束密度点Sか直線Lfにある場合、磁束密度変化量の
最大点を最大磁束密度点Sから約20°〜30°の間に
設定するために、設定する最大点での磁束密度に急激な
変化をつける必要がある。したがって、第4図において
θが約80°近傍に溝13aを形成し、θか約20°近
傍゛に溝13bを形成することにより、磁力分布に急激
な変化を起こさせ、第4図あるいは第5図に示すような
磁束分布を得゛ることかできる。なお、溝13a及び溝
13bの幅及び深さは任意であり、所望の磁力分布に応
してそれぞれ調整すればよい。
Here, the grooves 13a and 1 formed in the developing magnet 3 are
The position of 3b will be explained. - When the maximum magnetic flux density point S in Fig. 4 mentioned above is on the straight line Lf, the maximum point to be set is It is necessary to make a sudden change in the magnetic flux density at a point. Therefore, by forming the groove 13a in the vicinity of θ of about 80° in FIG. 4 and the groove 13b in the vicinity of θ of about 20°, a sudden change is caused in the magnetic force distribution. It is possible to obtain a magnetic flux distribution as shown in Fig. 5. Note that the width and depth of the grooves 13a and 13b are arbitrary, and may be adjusted depending on the desired magnetic force distribution.

また、溝13a及び13bは、本実施例ては直線りに対
して角度θ、及びθ2の位置に形成し、その形状を半円
としたか、溝は例えば第8’[Jに示したように直線り
に対して角度θ1の位置たけに形成させてもよく、その
形状は、半円状に限るものではない。
Further, in this embodiment, the grooves 13a and 13b are formed at angles θ and θ2 with respect to the straight line, and the shape is semicircular, or the grooves are formed, for example, as shown in No. It may be formed at a position at an angle θ1 with respect to the straight line, and its shape is not limited to a semicircular shape.

以上説明したごとくに磁化設定された現像極を有する本
実施例装置の現像領域を拡大した現像剤の穂立ちの状態
を示したのか第6図である。現像領域の両端部Nl、 
N2て垂直磁界成分の密度の変化率か大きいので該現像
領域の端部ての穂立ちの有無かはっきりとしている。そ
の結果、スリーブ2−して垂直に穂立ちした現像剤か現
像領域内て整然と配列されている。その結果、現像剤1
oは乱れることなく感光ドラム1に吸引移行して「尾引
き」、「飛び散りj等の画像障害を生じない。
FIG. 6 is an enlarged view of the developing area of the apparatus of this embodiment having developing poles magnetized as described above, showing the state of developer spikes. Both ends Nl of the development area,
Since the rate of change in the density of the perpendicular magnetic field component in N2 is large, it is clear whether or not there is a spike at the end of the development area. As a result, the vertical spikes of developer in the sleeve 2 are arranged in an orderly manner within the developing area. As a result, developer 1
o is suctioned and transferred to the photosensitive drum 1 without disturbance, and does not cause image disturbances such as "tailing" and "scattering".

次に、本発明の他の実施例装置として本発明における現
像用マクネット3内部に設けられたDf動磁性部材によ
る磁束密度分布調整機構について説明する。第9図は現
像用マクネット3に形成された溝13の内部に可動磁性
部材14aが配設された場合の例である。この可動磁性
部材14aは破線て示した位置14bへと移動可能てあ
り、溝13の内壁の図示しないガイドレールに沿って移
動する。また、可動磁性部材14aには磁性部材駆動装
置15か連結されており、14aを図中の矢印Y方向に
自在に移動可能である。したかって、磁束密度の微調整
が可能となり、磁束密度分布の形状を最適な形状とする
ことか容易となる。第10図は可動磁性部材14aか現
像用マグネット3及び現像スリーブ2の周方向に移動可
能にしたもので、可動磁性部材1.4aは、破線で示し
た同rII動磁性部材14bとの間を磁性部材駆動装置
15によって振り子連動方向に駆動される構成である。
Next, as another embodiment of the present invention, a magnetic flux density distribution adjustment mechanism using a Df dynamic magnetic member provided inside the developing magnet 3 according to the present invention will be described. FIG. 9 shows an example in which the movable magnetic member 14a is disposed inside the groove 13 formed in the developing magnet 3. FIG. This movable magnetic member 14a is movable to a position 14b indicated by a broken line, and moves along a guide rail (not shown) on the inner wall of the groove 13. Further, a magnetic member driving device 15 is connected to the movable magnetic member 14a, and the movable magnetic member 14a can be freely moved in the direction of the arrow Y in the figure. Therefore, it becomes possible to finely adjust the magnetic flux density, and it becomes easy to optimize the shape of the magnetic flux density distribution. In FIG. 10, the movable magnetic member 14a is movable in the circumferential direction of the developing magnet 3 and the developing sleeve 2. It is configured to be driven in a pendulum interlocking direction by a magnetic member driving device 15.

また磁力発生部材3周辺に検知手段としての磁束密度検
知器16設け、図示しない磁力発生部材回転駆動装置に
より2aを中心として現像用マクネット3をX方向に回
転させ、現像用マクネウト3表面の磁束密度を検知して
その磁束分布を図示しない磁束分布検出器により検出し
、磁束分布の回転角度に対する磁束密度変化量を算出す
る。次に、図示しない調整手段は算出した磁束密度変化
量のパターンと予め設定された所望の磁束密度変化量パ
ターンとを比較して、所望のパターンになるように可動
磁性部材14aを移動させるための信号を磁性部材駆動
電源18に送り磁性部材駆動装置15を動かすような機
構となっている。
Further, a magnetic flux density detector 16 as a detection means is provided around the magnetic force generating member 3, and the developing mcnet 3 is rotated in the X direction about 2a by a magnetic force generating member rotation drive device (not shown), so that the magnetic flux on the surface of the developing mcnet 3 is The density is detected, the magnetic flux distribution is detected by a magnetic flux distribution detector (not shown), and the amount of change in magnetic flux density with respect to the rotation angle of the magnetic flux distribution is calculated. Next, an adjustment means (not shown) compares the calculated pattern of magnetic flux density variation with a desired preset pattern of magnetic flux density variation, and moves the movable magnetic member 14a to obtain the desired pattern. The mechanism is such that a signal is sent to the magnetic member drive power source 18 to move the magnetic member drive device 15.

またこの磁性部材駆動f膜装置15は第10図の振り子
運動と第9図の伸縮運動の組み合せも可能であり、最適
な磁束密度分布に自動調整か行なえる。
Further, this magnetic member driving f-film device 15 can also combine the pendulum movement shown in FIG. 10 and the telescopic movement shown in FIG. 9, and can automatically adjust to the optimum magnetic flux density distribution.

なお、以」−のような自動調整機構は、第9図の実施例
装置に適用することも可能である。
Incidentally, the automatic adjustment mechanism as described below can also be applied to the apparatus of the embodiment shown in FIG.

以上説明した本発明装置の現像用マクネット3としては
フェラ、イト焼結タイプ、樹脂性の一体成形タイブ等広
く適用可能であり、また、現像極磁化設定も垂直成分の
最大密度点を中央とし左右対称である必要はなく、非対
称であってもよい。
The developing magnet 3 of the apparatus of the present invention described above can be widely applied to Ferra, sintered type, resin integrally molded type, etc. Also, the development pole magnetization can be set with the maximum density point of the vertical component at the center. It does not have to be bilaterally symmetrical, and may be asymmetrical.

[発明の効果] 以」−説明したように、本発明に係る現像装置は、該発
生磁界発生手段に形成した磁界変化手段により磁界発生
手段の磁界発生部による磁界の一部を変化させ、現像可
能領域において、水平磁界成分の密度変化率の絶対値か
極大値となるよう磁化設定したのて、現像領域の両端部
において垂直磁界成分の密度か急激に変化することとな
り、現像剤の穂立ちの有無をはっきりさせることができ
る。よって、傾斜した現像剤により現像がなされるとい
う事態がなくなり、従来装置の有していた「尾引き」、
「飛び散り」等の画像障害を防止てき、常に高品質の画
像を提供てきるという効果をもたらす。磁界発生体は、
固定磁石と樹脂との一体成形によって製作可能てあり、
フェライト焼結タイプ磁石、張り合せタイプ、埋め込み
タイプの磁石に比較して大幅な廉価化及び軽量化も可能
となる。
[Effects of the Invention] As described above, the developing device according to the present invention changes a part of the magnetic field generated by the magnetic field generating section of the magnetic field generating means by the magnetic field changing means formed in the generated magnetic field generating means, and After magnetization is set to the absolute value or maximum value of the density change rate of the horizontal magnetic field component in the possible region, the density of the vertical magnetic field component changes rapidly at both ends of the development region, causing spikes of developer to rise. It is possible to clarify the presence or absence of Therefore, there is no longer a situation where the development is done by tilted developer, and the "tailing" that conventional devices had,
This has the effect of preventing image disturbances such as "splatters" and constantly providing high-quality images. The magnetic field generator is
It can be manufactured by integrally molding a fixed magnet and resin.
It is also possible to significantly reduce the price and weight compared to sintered ferrite type magnets, bonded type magnets, and embedded type magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明−・実施例装置の概要構成断面図
、第1図(B)は第1図(A)の近接領域を拡大して該
領域ての垂直磁界成分密度分布を示した図、第2図は磁
界発生手段の拡大断面図、第3図は垂直磁界成分密度の
変化率と画像障害発生状態との関係を示す図、第4図は
本発明の一実施例装置の現像極と従来装置の現像極の垂
直磁界成分の密度分布を示した図、第5図は第4図の水
平磁界成分について現像剤担持体の中心角に対する変化
率を示した図、第6図は本発明装置の現像領域を拡大し
て現像剤の穂立ちの状態を示した図、第7図は従来装置
の現像領域を拡大して現像剤の穂立ちの状態を示した図
、第8図〜第1O図は磁界発生手段の他の例を示す拡大
断面図である。 1・・・・・・・・・静電潜像担持体(感光ドラム)2
・・・・・・−・・現像剤担持体(現像スリーブ)3・
・・・・・・・・磁界発生手段(現像用ツタネット)1
0・・・・・・・・・現像剤 a−・・・・・−現像磁極を形成する磁界発生部特許出
願人       キャノン株式会社代 理 人  弁
理士  藤  岡   徹第  1  図 (A) 第  1  図 (B) リ \−一/
FIG. 1(A) is a cross-sectional view of a schematic configuration of an embodiment of the present invention, and FIG. 1(B) is an enlarged view of the adjacent region of FIG. 1(A) to show the perpendicular magnetic field component density distribution in the region. 2 is an enlarged sectional view of the magnetic field generating means, FIG. 3 is a diagram showing the relationship between the rate of change of the vertical magnetic field component density and the state of occurrence of image disturbance, and FIG. 4 is an apparatus according to an embodiment of the present invention. Figure 5 is a diagram showing the density distribution of the vertical magnetic field component of the developing pole of the conventional device and the developing pole of the conventional device. 7 is an enlarged view of the development area of the device of the present invention showing the state of developer spikes; FIG. 8 to 1O are enlarged sectional views showing other examples of magnetic field generating means. 1... Electrostatic latent image carrier (photosensitive drum) 2
......-Developer carrier (developing sleeve) 3.
......Magnetic field generating means (developing tube net) 1
0...Developer a--Magnetic field generating part forming the development magnetic pole Patent applicant Canon Co., Ltd. Agent Patent attorney Toru Fujioka Fig. 1 (A) Fig. 1 Figure (B) Re\-1/

Claims (1)

【特許請求の範囲】 (1)静電潜像坦持体と、内部に磁界発生手段が配設さ
れ所定の方向に回転する現像剤坦持体とを有し、 上記静電潜像坦持体と上記現像剤坦持体とが両者の外周
面間に最近接部をもつ近接領域を形成するように配設さ
れ、上記磁界発生手段の上記最近接部の近傍に磁界発生
部を有している現像装置において、 上記磁界発生手段は、上記磁界発生部により形成される
磁界の磁界発生手段表面に対し垂直な成分の磁力強度分
布を上記磁界発生部の近傍の所定位置にて変化せしめる
ことを可能とする磁界変化手段を備えている、 ことを特徴とする現像装置。 (2)静電潜像担持体と現像剤担持体の近接領域には現
像可能領域が形成され、磁界変化手段は該現像可能領域
における、垂直磁界成分の上記現像剤担持体の周方向に
おける密度変化率が極大値をとる位置に形成されている
こととする請求項(1)に記載の現像装置。(3)磁界
変化手段は、磁界発生手段の表面上の所定の位置に中心
に向け所定深さをもって形成された溝であり、該溝は上
記磁界発生手段の軸方向に延びて形成されていることと
する請求項(1)または(2)に記載の現像装置。 (4)磁界変化手段は、溝の内部に該溝の深さ方向に移
動可能な可動磁性部材が配設されていることとする請求
項(3)に記載の現像装置。 (5)磁界変化手段は、磁界発生手段の内部に所定の空
間が形成され、該空間内に所定の動作が可能な可動磁性
部材が配設されていることとする請求項(1)または(
2)に記載の現像装置。 (6)磁界発生手段表面の磁束密度を検知する検知手段
が上記磁界発生手段の近傍に配設され、検知した磁束密
度と検知時における上記磁界発生手段の回転速度から磁
束密度変化量を算出して、予め設定された上記磁界発生
手段表面の磁束密度変化量のパターンと比較し、実際の
磁束密度変化量のパターンが該設定された磁束密度のパ
ターンとなるように可動磁性部材の位置を調整する駆動
信号を該可動磁性部材に接続された磁性部材駆動手段に
与える調整手段を有することとする請求項(4)または
請求項(5)に記載の現像装置。(7)磁界発生手段は
、現像領域における、垂直磁界成分の現像剤担持体の周
方向における密度変化率が30ガウス毎度以上になる位
置に形成されていることとする現像装置。
[Scope of Claims] (1) comprising an electrostatic latent image carrier and a developer carrier having a magnetic field generating means disposed therein and rotating in a predetermined direction; The body and the developer carrier are arranged so as to form a proximate region having a proximate portion between their outer peripheral surfaces, and the magnetic field generating means has a magnetic field generating portion near the proximate portion. In the developing device, the magnetic field generating means changes the magnetic force intensity distribution of the component of the magnetic field generated by the magnetic field generating section perpendicular to the surface of the magnetic field generating means at a predetermined position near the magnetic field generating section. A developing device characterized in that it is equipped with a magnetic field changing means that enables. (2) A developable region is formed in a region close to the electrostatic latent image carrier and the developer carrier, and the magnetic field changing means controls the density of the perpendicular magnetic field component in the circumferential direction of the developer carrier in the developable region. The developing device according to claim 1, wherein the developing device is formed at a position where the rate of change takes a maximum value. (3) The magnetic field changing means is a groove formed with a predetermined depth toward the center at a predetermined position on the surface of the magnetic field generating means, and the groove is formed to extend in the axial direction of the magnetic field generating means. The developing device according to claim (1) or (2). (4) The developing device according to claim 3, wherein the magnetic field changing means includes a movable magnetic member disposed inside the groove that is movable in the depth direction of the groove. (5) The magnetic field changing means has a predetermined space formed inside the magnetic field generating means, and a movable magnetic member that can perform a predetermined operation is disposed within the space.
2) The developing device according to item 2). (6) A detection means for detecting the magnetic flux density on the surface of the magnetic field generation means is disposed near the magnetic field generation means, and the amount of change in magnetic flux density is calculated from the detected magnetic flux density and the rotational speed of the magnetic field generation means at the time of detection. Then, the position of the movable magnetic member is adjusted so that the actual pattern of change in magnetic flux density matches the set pattern of magnetic flux density by comparing it with a preset pattern of change in magnetic flux density on the surface of the magnetic field generating means. The developing device according to claim 4 or 5, further comprising an adjusting means for applying a drive signal to a magnetic member driving means connected to the movable magnetic member. (7) A developing device in which the magnetic field generating means is formed at a position in the developing region where the density change rate of the perpendicular magnetic field component in the circumferential direction of the developer carrier is 30 Gauss per degree or more.
JP22858988A 1988-09-14 1988-09-14 Developing device Pending JPH0277771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22858988A JPH0277771A (en) 1988-09-14 1988-09-14 Developing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22858988A JPH0277771A (en) 1988-09-14 1988-09-14 Developing device

Publications (1)

Publication Number Publication Date
JPH0277771A true JPH0277771A (en) 1990-03-16

Family

ID=16878732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22858988A Pending JPH0277771A (en) 1988-09-14 1988-09-14 Developing device

Country Status (1)

Country Link
JP (1) JPH0277771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491541A (en) * 1992-11-12 1996-02-13 Minolta Camera Kabushiki Kaisha Developing apparatus having adjacent similar magnetic poles
JP2010134138A (en) * 2008-12-04 2010-06-17 Kaneka Corp Magnet roller
JP2016153813A (en) * 2015-02-20 2016-08-25 コニカミノルタ株式会社 Magnet roller, developing roller, developing device, and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491541A (en) * 1992-11-12 1996-02-13 Minolta Camera Kabushiki Kaisha Developing apparatus having adjacent similar magnetic poles
JP2010134138A (en) * 2008-12-04 2010-06-17 Kaneka Corp Magnet roller
JP2016153813A (en) * 2015-02-20 2016-08-25 コニカミノルタ株式会社 Magnet roller, developing roller, developing device, and image forming apparatus

Similar Documents

Publication Publication Date Title
JPH0277771A (en) Developing device
US20160091830A1 (en) Development device
JP2773151B2 (en) Developing device
JP3430787B2 (en) Developing device
US5424489A (en) Magnetic brush developing apparatus
JPH087500B2 (en) Development device
JP2725686B2 (en) Magnetic brush developing device
JP2618620B2 (en) Developing device
JPH08250326A (en) Magnet roll
US4383498A (en) Apparatus for applying magnetic toner to a magnetic transport roll
JP2819550B2 (en) Developing device
EP0474409B1 (en) A magnetic brush developing apparatus
JPH0284679A (en) Developing device
JP3092427B2 (en) Developing device
JPS6183566A (en) Toner layer forming device
JPH0332790B2 (en)
JPS6338968A (en) Developing device
JPH09114249A (en) Developing device
JPH03114088A (en) Powder developing device of electrophotographic system
JPS60250376A (en) Electrostatic latent image developing device
JPH06266233A (en) Developing device
JPS60203973A (en) One-component developing device
JPH0876519A (en) Carrier for electrostatic latent image developer
JPH0968866A (en) Magnet roll and its production
JPS63201674A (en) Developing device