JPH0277621A - Gas meter - Google Patents

Gas meter

Info

Publication number
JPH0277621A
JPH0277621A JP63228521A JP22852188A JPH0277621A JP H0277621 A JPH0277621 A JP H0277621A JP 63228521 A JP63228521 A JP 63228521A JP 22852188 A JP22852188 A JP 22852188A JP H0277621 A JPH0277621 A JP H0277621A
Authority
JP
Japan
Prior art keywords
gas
poles
rotating member
gas meter
plastic magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63228521A
Other languages
Japanese (ja)
Inventor
Kinya Horibe
堀部 欽也
Masazumi Kawai
河合 正純
Taiichi Hoshino
星野 泰一
Yoshinori Fukazawa
深澤 美紀
Masashi Toyama
外山 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP63228521A priority Critical patent/JPH0277621A/en
Priority to GB8920754A priority patent/GB2223593B/en
Priority to DE19893930798 priority patent/DE3930798C2/en
Publication of JPH0277621A publication Critical patent/JPH0277621A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/065Indicating or recording devices with transmission devices, e.g. mechanical
    • G01F15/066Indicating or recording devices with transmission devices, e.g. mechanical involving magnetic transmission devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/20Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows
    • G01F3/22Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases
    • G01F3/227Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having flexible movable walls, e.g. diaphragms, bellows for gases characterised by the means for transfer of membrane movement information to indicating means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To measure the flow rate of gas with high accuracy by forming a rotary member, to which the rotary motion of a crank part is transmitted, from a plastic magnet. CONSTITUTION:When a membrane plate 11 is repeatedly operated by the gas flowing in from a gas inflow port 21 to pass through a measuring chamber and discharging from a gas outflow port 22, a wing shaft generates reciprocating rotary motion and this reciprocating rotary motion is converted to unidirectional rotary motion by a crank part 25 to rotate a rotary member 40. A pulse signal is sent out to a counter part from a magnetic sensor with the rotation of the rotary member 40 and the counter part is operated to integrate and display the flow rate of the gas on a liquid crystal display device 60. Since the plastic magnet constituting the rotary member 40 is integrally molded by usual injection or compression molding, manufacturing labor is unchangeable even when the number of poles are increased. Therefore, the number of poles are increased an a flow rate can be measured with high accuracy.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、ガス使用量を積算表示するガスメータに関
するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a gas meter that cumulatively displays the amount of gas used.

(従来の技術) 従来、第4図に示すように、計量部100内の計量膜(
図示せず)に起因する往復運動をクランク部110で回
転運動に変換し、その回転運動でカウンタ部(電子カウ
ンタ)120を作動してガス流量を積算表示するタイプ
のガスメータが知られている(特開昭62−15371
3号公報参照)。
(Prior Art) Conventionally, as shown in FIG.
There is a known type of gas meter in which a crank unit 110 converts reciprocating motion caused by a gas flow rate (not shown) into rotational motion, and the rotational motion operates a counter unit (electronic counter) 120 to display an integrated gas flow rate ( Japanese Patent Publication No. 62-15371
(See Publication No. 3).

このガスメータでは、クランク部110が装備された上
ケース130内に、クランク部110で生じた回転運動
が伝達されるキャップ状の回転部材140を設け、そし
てこの回転部材140の外周溝141内に、N極または
S極に着磁した複数の磁石150をN極とS極が交互に
位置するように装着している。また、回転部材140の
回転により複数の磁石150と順次対向するカウンタ部
120の位置に、磁気抵抗素子160を配置している。
In this gas meter, a cap-shaped rotating member 140 to which the rotational motion generated by the crank unit 110 is transmitted is provided in an upper case 130 equipped with a crank unit 110, and in an outer circumferential groove 141 of this rotating member 140, A plurality of magnets 150 magnetized to north or south poles are attached so that the north and south poles are alternately located. Further, a magnetoresistive element 160 is disposed at a position of the counter section 120 that faces the plurality of magnets 150 sequentially as the rotating member 140 rotates.

計量部100内の計量膜に起因する往復運動がクランク
部110で回転運動に変換され、この回転運動により回
転部材140が回転すると、磁気抵抗素子160が複数
の磁石150と順次対向し、磁石150からの磁気的作
用を受けてその抵抗が変化する。この抵抗変化に基づい
て、磁気抵抗素子160からカウンタ部120にパルス
信号が送出され、カウンタ部120に装備した液晶表示
器170によりガス流量が積算表示される。
The reciprocating motion caused by the measuring membrane in the measuring section 100 is converted into a rotational motion by the crank section 110, and when the rotating member 140 rotates due to this rotational motion, the magnetoresistive element 160 sequentially faces the plurality of magnets 150, and the magnet 150 Its resistance changes as a result of the magnetic action from the Based on this resistance change, a pulse signal is sent from the magnetoresistive element 160 to the counter section 120, and a liquid crystal display 170 provided in the counter section 120 displays the cumulative gas flow rate.

(発明が解決しようとする課題) 上記ガスメータでは、回転部材140が1回転すると、
回転部材140に装着された磁石150と等しい数のパ
ルス信号がカウンタ部12Qに送出される。換言すると
、回転部材140の1回転でガスの流量が0.71とす
れば、0.7/(磁石の数)gの単位で流量を計量(検
出)することが出来る。
(Problem to be Solved by the Invention) In the above gas meter, when the rotating member 140 rotates once,
The number of pulse signals equal to the number of magnets 150 attached to the rotating member 140 is sent to the counter section 12Q. In other words, if the gas flow rate is 0.71 per rotation of the rotating member 140, the flow rate can be measured (detected) in units of 0.7/(number of magnets) g.

しかしながら、回転部材140の外周溝141内に、N
極またはS極に着磁した複数の磁石150をN極とS極
が交互に位置するように装着しているため、装着する磁
石150の数(極数2に限界が有り、ガス流量を高精度
で計量することが出来ない問題があった。
However, within the outer circumferential groove 141 of the rotating member 140, N
Since a plurality of magnets 150 magnetized to poles or south poles are installed so that the north and south poles are positioned alternately, the number of installed magnets 150 (the number of poles is limited to 2), and the gas flow rate cannot be increased. There was a problem that it was not possible to measure accurately.

また、磁石150の磁極(N極、S極)を反転させて回
転部材140の外周溝141に取付けるため、製造に手
間がかかる問題(製造工数が多い問題)があった。
Further, since the magnetic poles (N pole, S pole) of the magnet 150 are reversed and attached to the outer circumferential groove 141 of the rotating member 140, there is a problem in that the manufacturing process is time-consuming (problem that the number of manufacturing steps is large).

さらに、製造に手間がかかるため、製造コストを低減す
ることが難しい問題もあった。
Furthermore, since manufacturing is time-consuming, there is also the problem that it is difficult to reduce manufacturing costs.

この発明は上記従来技術の問題点を解消するもので、そ
の目的とするところは、ガス流量を高精度で計量するこ
とが出来、また製造に手間がかからず、さらに容易に製
造コストを低減することが出来るガスメータを提供する
ことである。
This invention solves the above-mentioned problems of the conventional technology.The purpose of this invention is to be able to measure gas flow rate with high precision, and also to reduce the manufacturing cost by requiring less time and effort in manufacturing. The purpose of the present invention is to provide a gas meter that can perform

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するためこの発明の請求項(1)記載の
ガスメータでは、計量部内の計量膜に起因する往復運動
をクランク部で回転運動に変換し、その回転運動でカウ
ンタ部を作動してガス流量を積算表示するガスメータに
おいて、前記クランク部の回転運動が伝達される回転部
材を、N極とS極を交互に配置して一体成形したプラス
チック磁石で形成し、該回転部材の回転運動によりその
N極、S極と順次対向する位置に磁気感知素子を設け、
この磁気感知素子の信号を前記カウンタ部に送出してカ
ウンタ部を作動させるように構成したことを特徴として
いる。
(Means for Solving the Problems) In order to achieve the above object, the gas meter according to claim (1) of the present invention converts the reciprocating motion caused by the metering membrane in the metering section into rotational motion in the crank section, and In a gas meter that operates a counter section by motion to display an integrated gas flow rate, the rotating member to which the rotational motion of the crank section is transmitted is formed of an integrally molded plastic magnet with alternating north and south poles. , a magnetic sensing element is provided at a position facing the north pole and south pole of the rotating member in sequence due to the rotational movement of the rotating member;
The present invention is characterized in that the signal from the magnetic sensing element is sent to the counter section to operate the counter section.

また、この発明の請求項(2)記載のガスメータでは、
Baフェライト、Brフェライト等のフェライト系、S
m1Co5 、Sm2 Co17、Nd−Fe−B、R
−Co (R=Y、Ce、Pr、Pt。
Further, in the gas meter according to claim (2) of the present invention,
Ferrite type such as Ba ferrite, Br ferrite, S
m1Co5, Sm2Co17, Nd-Fe-B, R
-Co (R=Y, Ce, Pr, Pt.

La)等の希土類系またはアルニコ系等の磁性粉末をフ
ィラーとし、ポリアミド、ポリアセタール、ポリエチレ
ン、ポリプロピレン、ポリフェニレンサルファイド、フ
ッ素樹脂等の熱可塑性樹脂、エポキシ樹脂、フェノール
樹脂、エリア樹脂等の熱硬化性樹脂または天然ゴム、シ
リコンゴム、アクリロニトリル・ブタジェンゴム等のゴ
ムをバインダーとしたプラスチック磁石により、または
そのプラスチック磁石の表面に、エポキシ系樹脂被膜を
施すか、あるいは静電塗装を施して前記回転部材を形成
したことを特徴としている。
Rare earth-based or alnico-based magnetic powder such as La) is used as filler, thermoplastic resin such as polyamide, polyacetal, polyethylene, polypropylene, polyphenylene sulfide, fluororesin, thermosetting resin such as epoxy resin, phenolic resin, area resin, etc. Alternatively, the rotating member is formed of a plastic magnet using a rubber such as natural rubber, silicone rubber, or acrylonitrile-butadiene rubber as a binder, or by applying an epoxy resin coating or electrostatic coating to the surface of the plastic magnet. It is characterized by

また、この発明の請求項(3)記載のガスメータでは、
前記プラスチックマグネットを形成するバインダーが、
被測定ガスに対して耐食性の優れた材料からなることを
特徴としている。
Further, in the gas meter according to claim (3) of the present invention,
The binder forming the plastic magnet is
It is characterized by being made of a material with excellent corrosion resistance against the gas to be measured.

(作用) 請求項(1)記載のガスメータでは、計量部内の計量膜
に起因する往復運動がクランク部で回転運動に変換され
て、この回転運動が回転部材に伝達されると、該回転部
材が回転して、そのN極とS極が順次磁気感知素子と対
向する。これにより磁気感知素子からカウンタ部に信号
が送出されて、カウンタ部が作動し、ガス流量が積算表
示される。
(Function) In the gas meter according to claim (1), when the reciprocating motion caused by the metering membrane in the metering section is converted into rotational motion in the crank section and this rotational motion is transmitted to the rotating member, the rotating member As it rotates, its north and south poles sequentially face the magnetic sensing element. As a result, a signal is sent from the magnetic sensing element to the counter section, the counter section is activated, and the gas flow rate is integrated and displayed.

ここで、回転部材は、N極とS極を交互に配置して一体
成形したプラスチック磁石で形成されているので、製造
の手間がかからず極数を増やすことが簡単である。
Here, since the rotating member is formed of an integrally molded plastic magnet with N poles and S poles arranged alternately, it is easy to increase the number of poles without requiring much manufacturing effort.

また、請求項(2) 、(3)記載のガスメータでは、
被測定ガスにより回転部材が腐食されない。
Further, in the gas meter according to claims (2) and (3),
Rotating members are not corroded by the gas to be measured.

(実施例) 以下この発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明に係るガスメータを一部切欠して示し
た拡大正面図、第2図は同上部を切欠して示した側面図
である。図中符号10はガス計量室を構成する下ケース
、20はガス計量室に連通ずるガス流入口21、ガス流
出口22を備えた上ケースである。
FIG. 1 is an enlarged front view with a portion of the gas meter according to the present invention cut away, and FIG. 2 is a side view with the upper portion thereof cut away. In the figure, reference numeral 10 is a lower case constituting a gas measuring chamber, and 20 is an upper case provided with a gas inlet 21 and a gas outlet 22 communicating with the gas measuring chamber.

下ケース10内には一対の膜板(計量膜)11が配置さ
れていて、ガス流入口21から流入して計量室を通りガ
ス流出口22から出て行くガスにより作動を繰り返す。
A pair of membrane plates (measuring membranes) 11 are disposed within the lower case 10, and are repeatedly operated by gas flowing in from the gas inlet 21, passing through the metering chamber, and exiting from the gas outlet 22.

また、上ケース20の正面側にはカウンタ部30が設け
られ、また上ケース20内部には膜板11の作動より往
復回転運動する翼軸(図示せず)に連結されるリンク2
3.24等を具備したクランク部25が設けられている
Further, a counter portion 30 is provided on the front side of the upper case 20, and a link 2 is provided inside the upper case 20, which is connected to a wing shaft (not shown) that rotates back and forth due to the operation of the membrane plate 11.
A crank part 25 equipped with a 3.24 or the like is provided.

上記クランク部25は、軸の往復回転運動を一方向回転
運動に変換するもので、N極とS極を交互に配置して一
体成形したプラスチック磁石からなる回転部材40が連
結されている。また、上記カウンタ部30には、回転部
材40の磁極(N極、S極)と順次対向する位置に磁気
感知素子50が設けられている。
The crank section 25 converts the reciprocating rotational motion of the shaft into a unidirectional rotational motion, and is connected to a rotating member 40 made of an integrally molded plastic magnet with N and S poles arranged alternately. Further, the counter section 30 is provided with a magnetic sensing element 50 at a position facing the magnetic poles (N pole, S pole) of the rotating member 40 in sequence.

ここで、回転部材40を構成するプラスチック磁石は、
磁性粉末を熱可塑性樹脂、熱硬化性樹脂またはゴム等か
らなるバインダーで固め、そして必要に応じ表面にエポ
キシ系樹脂被膜を施すか、または静電塗装を施して形成
されている。また、このプラスチック磁石の極数は、例
えば8極、16極に設定されている(第3図(a)、(
b)、(C)、(d)参照)。
Here, the plastic magnet that constitutes the rotating member 40 is
It is formed by hardening magnetic powder with a binder made of thermoplastic resin, thermosetting resin, rubber, etc., and applying an epoxy resin coating or electrostatic coating to the surface as necessary. In addition, the number of poles of this plastic magnet is set to, for example, 8 poles or 16 poles (Fig. 3(a), (
b), (C), (d)).

上記磁性粉末としては、例えば、Baフェライト(バリ
ウムフェライト)、Brフェライト(ストロンチウムフ
ェライト)等のフェライト系磁性粉末、Sm1Co5 
、Sm2 Co17、Nd−FeBX RCo系(R−
Y、 Ce、 Pr、 Pt。
Examples of the magnetic powder include ferrite magnetic powder such as Ba ferrite (barium ferrite), Br ferrite (strontium ferrite), Sm1Co5
, Sm2 Co17, Nd-FeBX RCo system (R-
Y, Ce, Pr, Pt.

La)等の希土類系磁性粉末またはアルニコ系(MnB
 t、MnA1.パイカロイ)磁性粉末等がある。
Rare-earth magnetic powder such as La) or alnico-based (MnB
t, MnA1. Picaloy) magnetic powder, etc.

また、上記熱可塑性樹脂としては、例えば、ポリアミド
、ポリアセタール、ポリエチレン、ポリプロピレン、フ
ッ素樹脂(ポリテトラフルオロエチレン、ポリクロロト
リフルオロエチレン、ポリビニリデンフルオライド等)
またはポリフェニレンサルファイド等がある。
Examples of the thermoplastic resin include polyamide, polyacetal, polyethylene, polypropylene, and fluororesin (polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, etc.)
Or polyphenylene sulfide, etc.

また、上記熱硬化性樹脂としては、エポキシ樹脂、フェ
ノール樹脂、エリア樹脂、メラミン樹脂またはジアリル
フタレート等がある。
Further, examples of the thermosetting resin include epoxy resin, phenol resin, area resin, melamine resin, diallyl phthalate, and the like.

また、上記ゴムとしては、天然ゴム、シリコンゴム、ア
クリロニトリル番ブタジェンゴム、スチレンブタジェン
ゴム、ポリイソプレンゴムまたはシスポリブタジェンゴ
ム等がある。
Examples of the above-mentioned rubber include natural rubber, silicone rubber, acrylonitrile butadiene rubber, styrene butadiene rubber, polyisoprene rubber, and cis-polybutadiene rubber.

上記熱可塑性樹脂、熱硬化性樹脂、ゴム等のうち被測定
ガスに対して耐食性の優れたもの、例えば熱可塑性樹脂
のなかでは、(1)ポリアセクールが最も優れ、次いで
(2)ポリアミドイミド、(3)ポリアミド、(4)フ
ッ素樹脂、(5)塩化ビニリデン、(6)アイオノマー
、(7)ポリプロピレン、(8)ポリエチレンの順で優
れている。また、熱硬化性樹脂のなかでは、(1)エポ
キシ樹脂が最も優れ、次いで(2)フェノール樹脂、(
3)エリア樹脂、(4)メラミン樹脂、(5)ジアリル
フタレートの順で優れている。また、ゴムのなかでは、
(1)スチレンブタジェンゴムが最も優れ、次いで(2
)ポリイソプレンゴム、(3)シスポリブタジェンゴム
の順で優れている。
Among the thermoplastic resins, thermosetting resins, rubbers, etc., which have excellent corrosion resistance against the gas to be measured, for example, among the thermoplastic resins, (1) polyacecool is the most excellent, followed by (2) polyamideimide, ( 3) polyamide, (4) fluororesin, (5) vinylidene chloride, (6) ionomer, (7) polypropylene, and (8) polyethylene are superior in this order. Among thermosetting resins, (1) epoxy resin is the most superior, followed by (2) phenol resin, (
3) Area resin, (4) melamine resin, and (5) diallyl phthalate are superior in this order. Also, in rubber,
(1) Styrene-butadiene rubber is the best, followed by (2)
) Polyisoprene rubber and (3) cis-polybutadiene rubber are superior in this order.

なお、プラスチック磁石には、可塑剤、滑剤、カップリ
ング剤等の添加剤が適量添加されている。
Note that appropriate amounts of additives such as plasticizers, lubricants, and coupling agents are added to plastic magnets.

また、上記磁気感知素子50として、例えば、リードス
イッチ、ホール素子、ホールICまたは磁気抵抗素子等
がある。
Furthermore, examples of the magnetic sensing element 50 include a reed switch, a Hall element, a Hall IC, or a magnetoresistive element.

ここで、リードスイッチは、磁極が接近すると磁性体か
らなるリード(舌片)が磁化されてリードの先端部同士
が互いに吸引し合ってONになり、磁極が離れると吸引
力が弱まりリードのバネ復帰力により互いに離れてOF
Fとなる。磁気感知素子50としてこのリードスイッチ
を使用する場合には、回転部材40に対して例えば第3
図(a)、(b)に示すように配置する。同図(a)で
は、回転部材40のラジアル方向に配置した場合を示し
、また同図(b)では、アキシャル方向に配置した場合
を示している。一方のリードがN極と対向し、また他方
のリードがS極と対向して、リード同士が吸引し合って
ONになっている状態から、回転部材40の回転により
一方のリードがS極、他方のリードがN極に対向するま
での過程で吸引力(磁力)が弱まりリードのバネ復帰力
によりOFFとなり、そして一方のリードがS極、他方
のリードがN極に対向すると再びONになる。回転部材
40が1回転すると、リードスイッチから極数に等しい
数のパルス信号が出力され、これがカウンタ部30に送
出される。リードスイッチの場合、余り小型化できない
ので、プラスチック磁石の極数は8極に設定される。
In a reed switch, when the magnetic poles approach each other, the reeds (tongues) made of a magnetic material are magnetized and the tips of the reeds attract each other and turn on. When the magnetic poles move apart, the attractive force weakens and the reed springs are turned on. separated from each other due to the return force
It becomes F. When using this reed switch as the magnetic sensing element 50, for example, a third
Arrange as shown in Figures (a) and (b). 4A shows a case in which the rotary member 40 is arranged in the radial direction, and FIG. 2B shows a case in which it is arranged in the axial direction. One lead faces the north pole and the other lead faces the south pole, and from the state where the leads attract each other and are turned on, the rotation of the rotating member 40 causes one lead to become the south pole, and the other lead faces the south pole. In the process until the other lead faces the N pole, the attractive force (magnetic force) weakens and turns OFF due to the spring return force of the lead, and then turns ON again when one lead faces the S pole and the other lead faces the N pole. . When the rotating member 40 rotates once, the reed switch outputs a number of pulse signals equal to the number of poles, which are sent to the counter section 30. In the case of a reed switch, the number of poles of the plastic magnet is set to eight since it is not possible to reduce the size very much.

また、ホール素子、ホールICは、それ自体に流れる電
流の方向と直角の方向に磁界が作用すると、これら電流
、磁界に対して直角方向にホール電圧が発生する。磁気
感知素子50としてこのホール素子、ホールICを使用
する場合には、回転部材40に対して例えば第3図(C
)、(d)に示すように配置する。同図(c)では、回
転部材40のラジアル方向に配置した場合を示し、また
同図(d)では、アキシャル方向に配置した場合を示し
ている。回転部材40の回転により例えばN極と対向し
ている状態からS極に対向する状態に変わってホール素
子、ホールICに作用する磁界の方向が変化すると、ホ
ール電圧v1iが例えば+vHから−vHに変わる。回
転部材40が1回転すると、ホール素子、ホールICか
ら極数の士に等しい数のパルス信号が出力され、これが
カウンタ部30に送出される。ホール素子、ホールIC
の場合、リードスイッチに比して小さいので、プラスチ
ック磁石の極数を16極に設定することが出来る。
Furthermore, when a magnetic field acts on a Hall element or a Hall IC in a direction perpendicular to the direction of a current flowing through it, a Hall voltage is generated in a direction perpendicular to the current or magnetic field. When using this Hall element or Hall IC as the magnetic sensing element 50, for example, as shown in FIG.
) and (d). FIG. 4(c) shows a case where the rotary member 40 is arranged in the radial direction, and FIG. 4(d) shows a case where it is arranged in the axial direction. When the rotation of the rotating member 40 changes the direction of the magnetic field acting on the Hall element and the Hall IC, for example from a state facing the north pole to a state facing the south pole, the Hall voltage v1i changes from, for example, +vH to -vH. change. When the rotating member 40 rotates once, the Hall element and the Hall IC output a number of pulse signals equal to the number of poles, and these pulse signals are sent to the counter section 30. Hall element, Hall IC
In this case, since it is smaller than a reed switch, the number of poles of the plastic magnet can be set to 16.

また、磁気抵抗素子は、それ自体に流れる電流の方向と
磁界(磁力線)の方向が平行になったとき抵抗が最大と
なり、直交したとき抵抗が最小となる。磁気感知素子5
0としてこの磁気抵抗素子を使用する場合には、回転部
材40に対しホール素子等の場合と同様に配置する(第
3図(C)、(d)参照)。回転部材40が1回転する
と、磁気抵抗素子から極数の士に等しい数のパルス信号
4(出力され、これがカウンタ部30に送出される。
Furthermore, the resistance of a magnetoresistive element is maximum when the direction of the current flowing through itself and the direction of the magnetic field (magnetic field lines) are parallel, and the resistance is minimum when the direction of the current flowing through the element is parallel to the direction of the magnetic field (lines of magnetic force), and the resistance is minimum when the direction of the current flowing through the element is parallel to the direction of the magnetic field (lines of magnetic force). Magnetic sensing element 5
When this magnetoresistive element is used as a magneto-resistance element, it is arranged with respect to the rotating member 40 in the same manner as a Hall element or the like (see FIGS. 3(C) and 3(d)). When the rotating member 40 rotates once, the magnetoresistive element outputs a number of pulse signals 4 (equal to the number of poles), which are sent to the counter section 30.

磁気抵抗素子の場合もホール素子等と同様にリードスイ
ッチに比して小さいので、プラスチック磁石の極数を1
6極に設定することが出来る。
In the case of magnetic resistance elements, as well as Hall elements, they are smaller than reed switches, so the number of poles of the plastic magnet is reduced to 1.
It can be set to 6 poles.

なお、上記カウンタ部30は電子カウンタにより構成さ
れていて、磁気感知素子50からのパルス信号により作
動して、ガス流量を積算する。このカウンタ部30には
、液晶表示器60が取付けられていて、ガス流量を積算
表示する。
Note that the counter section 30 is constituted by an electronic counter, and is activated by a pulse signal from the magnetic sensing element 50 to integrate the gas flow rate. A liquid crystal display 60 is attached to this counter section 30 and displays the cumulative gas flow rate.

上記実施例によれば、ガス流入口21から流入して計量
室を通りガス流出口22から出て行くガスにより膜板1
1が作動を繰り返すと、翼軸が往復回転運動をし、この
往復回転運動がクランク部25で一方向回転運動に変換
されて、回転部材40が回転する。この回転部材40の
回転に伴って磁気感知素子50からパルス信号がカウン
タ部30に送出され、カウンタ部30が作動して、液晶
表示器60によりガス流量が積算表示される。
According to the above embodiment, the membrane plate 1 is caused by the gas flowing in from the gas inlet 21, passing through the metering chamber, and exiting from the gas outlet 22.
1 repeats the operation, the blade shaft makes a reciprocating rotational movement, and this reciprocating rotational movement is converted into a unidirectional rotational movement by the crank portion 25, and the rotating member 40 rotates. As the rotating member 40 rotates, a pulse signal is sent from the magnetic sensing element 50 to the counter section 30, the counter section 30 is operated, and the gas flow rate is displayed on the liquid crystal display 60 in an integrated manner.

ここで、回転部材40を構成するプラスチック磁石は、
通常射出成形か、圧縮成形により一体成形されるため、
極数を増加しても製造の手間が変わらない。したがって
、極数を増加して高精度の計量が可能となる。また、回
転部材40は、個々の磁石をリング状に配置して固定す
る従来の場合に比して大幅に製造工程の削減を図ること
ができ、また回転部材40を支持するシャフト41を予
め成形金型にインサートして、成形と同時に回転部材4
0に固定することも出来る。さらに、磁性粉末を焼結し
た磁石に比してもろくなく、取扱が簡単である。
Here, the plastic magnet that constitutes the rotating member 40 is
Usually molded in one piece by injection molding or compression molding,
Even if the number of poles is increased, the manufacturing effort remains the same. Therefore, it is possible to increase the number of poles and perform highly accurate measurement. In addition, the rotating member 40 can significantly reduce the manufacturing process compared to the conventional case in which individual magnets are arranged and fixed in a ring shape, and the shaft 41 that supports the rotating member 40 is formed in advance. Insert into the mold and rotate the rotating member 4 at the same time as molding.
It can also be fixed to 0. Furthermore, it is less brittle and easier to handle than magnets made of sintered magnetic powder.

また、回転部材40の表面に、エポキシ系樹脂被膜か、
静電塗装が施すことにより、被測定ガスに対する耐腐食
性を向上させることができる。
Further, the surface of the rotating member 40 may be coated with an epoxy resin or
By applying electrostatic coating, corrosion resistance against the gas to be measured can be improved.

さらに、プラスチック磁石のバインダーとして、例えば
熱可塑性樹脂ではポリアセタール等、また熱硬化性樹脂
ではエポキシ樹脂等、またゴムではスチレンブタジェン
ゴム等を使用した場合、長期間使用しても腐食されるお
それがなく、耐食性をさらに向上させることが出来る。
Furthermore, when using thermoplastic resins such as polyacetal, thermosetting resins such as epoxy resins, and rubbers such as styrene-butadiene rubber as binders for plastic magnets, there is a risk of corrosion even after long-term use. Therefore, corrosion resistance can be further improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明の請求項(1)のガスメー
タによれば、クランク部の回転運動が伝達される回転部
材を、N極とS極を交互に配置して一体成形したプラス
チック磁石で形成し、該回転部材の回転運動によりその
N極、S極と順次対向する位置に磁気感知素子を設けた
ので、ガス流量を高精度で計量することが出来、また製
造に手間がかからず、さらに容易に製造コストを低減す
ることが出来る。
As explained above, according to the gas meter of claim (1) of the present invention, the rotating member to which the rotational motion of the crank part is transmitted is formed of an integrally molded plastic magnet with N and S poles arranged alternately. However, since the magnetic sensing element is provided at a position facing the north pole and south pole of the rotating member in sequence due to the rotational movement of the rotating member, the gas flow rate can be measured with high precision, and the manufacturing process is not labor-intensive. Further, manufacturing costs can be easily reduced.

また、請求項(2) 、(3)記載のガスメータによれ
ば、上記効果の他に、長期間使用しても回転部材が被測
定ガスにより腐食されず、特に請求項(3)のガスメー
タでは耐食性が優れている。
Further, according to the gas meter according to claims (2) and (3), in addition to the above-mentioned effects, the rotating member is not corroded by the gas to be measured even after long-term use. Excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図(a)乃至(d)はこの発明に係るガ
スメータの一実施例を示すもので、第1図はこの発明に
係るガスメータを一部切欠して示した拡大正面図、第2
図は同上一部を切欠して示した側面図、第3図(a)乃
至(d)は回転部材と磁気感知素子との配置関係を示す
説明斜視図であり、また第4図は従来技術を示す一部切
欠して示した側面図である。 10・・・・・ガス計量部(下ケース)11・・・・・
計量膜(膜板) 25・・・・・クランク部 30・・・・・カウンタ部 40・・・・・回転部材 50・・・・・磁気感知素子 代理人  弁理士  三 好  保 男第4図 10・・・・・ガス計量部(下ケース)11・・・・・
計i膜(M板) 25・・・・・クランク部 30・・・・・カウンタ部 40・・・・・回転部材 50・・・・・磁気感知素子 第1図
1 to 3(a) to 3(d) show an embodiment of the gas meter according to the present invention, and FIG. 1 is an enlarged front view showing the gas meter according to the present invention with a portion cut away; Second
The figure is a partially cutaway side view of the same as above, FIGS. 3(a) to 3(d) are explanatory perspective views showing the arrangement relationship between the rotating member and the magnetic sensing element, and FIG. 4 is a conventional technique. FIG. 10... Gas measuring section (lower case) 11...
Measuring membrane (membrane plate) 25... Crank part 30... Counter part 40... Rotating member 50... Magnetic sensing element representative Patent attorney Yasuo Miyoshi Figure 4 10... Gas measuring section (lower case) 11...
Total i film (M plate) 25... Crank part 30... Counter part 40... Rotating member 50... Magnetic sensing element Fig. 1

Claims (3)

【特許請求の範囲】[Claims] (1)計量部内の計量膜に起因する往復運動をクランク
部で回転運動に変換し、その回転運動でカウンタ部を作
動してガス流量を積算表示するガスメータにおいて、 前記クランク部の回転運動が伝達される回転部材を、N
極とS極を交互に配置して一体成形したプラスチック磁
石で形成し、該回転部材の回転運動によりそのN極、S
極と順次対向する位置に磁気感知素子を設け、この磁気
感知素子の信号を前記カウンタ部に送出してカウンタ部
を作動させるように構成したことを特徴とするガスメー
タ。
(1) In a gas meter in which the reciprocating motion caused by a metering membrane in the metering section is converted into rotational motion by a crank section, and the rotational motion operates a counter section to display the integrated gas flow rate, the rotational motion of the crank section is transmitted. The rotating member to be rotated is N
It is made of an integrally molded plastic magnet with alternating poles and S poles, and the N and S poles are changed by the rotational movement of the rotating member.
A gas meter characterized in that a magnetic sensing element is provided at a position facing the pole in sequence, and a signal from the magnetic sensing element is sent to the counter section to operate the counter section.
(2)Baフェライト、Brフェライト等のフェライト
系、Sm_1Co_5、Sm_2Co_17、Nd−F
e−B、R−Co(R=Y、Ce、Pr、Pt、Li)
等の希土類系またはアルニコ系等の磁性粉末をフィラー
とし、ポリアミド、ポリアセタール、ポリエチレン、ポ
リプロピレン、ポリフェニレンサルファイド、フッ素樹
脂等の熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、
エリア樹脂等の熱硬化性樹脂または天然ゴム、シリコン
ゴム、アクリロニトリル・プタジエンゴム等のゴムをバ
インダーとしたプラスチック磁石により、またはそのプ
ラスチック磁石の表面に、エポキシ系樹脂被膜を施すか
、あるいは静電塗装を施して前記回転部材を形成したこ
とを特徴とする請求項(1)記載のガスメータ。
(2) Ferrite type such as Ba ferrite and Br ferrite, Sm_1Co_5, Sm_2Co_17, Nd-F
e-B, R-Co (R=Y, Ce, Pr, Pt, Li)
Use rare earth-based or alnico-based magnetic powders as fillers, and use thermoplastic resins such as polyamide, polyacetal, polyethylene, polypropylene, polyphenylene sulfide, fluororesins, epoxy resins, phenolic resins, etc.
Epoxy resin coating or electrostatic coating is applied to the surface of the plastic magnet using a thermosetting resin such as area resin or rubber such as natural rubber, silicone rubber, or acrylonitrile/putadiene rubber as a binder. 2. The gas meter according to claim 1, wherein the rotating member is formed by applying a heat treatment.
(3)前記プラスチック磁石を形成するバインダーが、
被測定ガスに対して耐食性の優れた材料からなることを
特徴とした請求項(2)記載のガスメータ。
(3) The binder forming the plastic magnet is
3. The gas meter according to claim 2, wherein the gas meter is made of a material having excellent corrosion resistance against the gas to be measured.
JP63228521A 1988-09-14 1988-09-14 Gas meter Pending JPH0277621A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63228521A JPH0277621A (en) 1988-09-14 1988-09-14 Gas meter
GB8920754A GB2223593B (en) 1988-09-14 1989-09-13 Gas meter
DE19893930798 DE3930798C2 (en) 1988-09-14 1989-09-14 Gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63228521A JPH0277621A (en) 1988-09-14 1988-09-14 Gas meter

Publications (1)

Publication Number Publication Date
JPH0277621A true JPH0277621A (en) 1990-03-16

Family

ID=16877725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63228521A Pending JPH0277621A (en) 1988-09-14 1988-09-14 Gas meter

Country Status (3)

Country Link
JP (1) JPH0277621A (en)
DE (1) DE3930798C2 (en)
GB (1) GB2223593B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272930U (en) * 1988-11-25 1990-06-04
JP2002181605A (en) * 2000-12-13 2002-06-26 Kimmon Mfg Co Ltd Gas meter
JP2002202170A (en) * 2001-01-05 2002-07-19 Kimmon Mfg Co Ltd Gas meter
KR20020084706A (en) * 2001-05-02 2002-11-11 청주도시가스주식회사 Measuring meter of gas
CN108731765A (en) * 2018-06-01 2018-11-02 陕西九杰智能仪表有限公司 A kind of bidirectional self-locking Hall pulse collection method
JP2020101439A (en) * 2018-12-21 2020-07-02 株式会社竹中製作所 Gas meter and manufacturing method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311398C2 (en) * 1993-04-07 2000-12-28 Kobold Klaus Impeller for flow meters
US5530298A (en) * 1993-09-03 1996-06-25 Dresser Industries, Inc. Solid-state pulse generator
US5433118A (en) * 1993-12-10 1995-07-18 Contadores De Agua De Zaragoza Magnetic turbine rotor for low flow fluid meter
DE4412045A1 (en) * 1994-04-08 1995-10-12 Digmesa Ag Measuring device for installation in lines for liquids, especially water
FR2718526B1 (en) * 1994-04-11 1997-06-06 Landis & Gyr Tech Innovat Water meter.
AUPO511397A0 (en) 1997-02-14 1997-04-11 Resmed Limited An apparatus for varying the flow area of a conduit
AUPO742297A0 (en) 1997-06-18 1997-07-10 Resmed Limited An apparatus for supplying breathable gas
GB2336272A (en) * 1998-04-08 1999-10-13 Smoothing Investment Limited Remote reading of utility meters
GB9920241D0 (en) * 1999-08-27 1999-10-27 Breed Automotive Tech Multi pole activation magnetic rotary sensing device
GB2390682B (en) * 2000-09-18 2004-10-27 Smoothing Invest Ltd Method and apparatus for remote reading of utility meters
DE102005015530A1 (en) * 2005-04-04 2006-10-05 Leo Kübler GmbH Thermometer-Aräometerfabrik Supervision of fermentation in a fermenting container, comprises determining quantity of gas escaping from the container and measuring optically a stroke frequency of a moving cover of fermenting bung
FR2921481B1 (en) * 2007-09-24 2009-11-27 Skf Ab ROTATION DETECTION DEVICE AND INSTRUMENTAL BEARING EQUIPPED WITH SUCH A DEVICE
EP2133666A1 (en) * 2008-06-09 2009-12-16 George Wilson Industries Limited Diaphragm flow meter with rotating magnets
DE102008043613B4 (en) * 2008-11-10 2011-02-24 BSH Bosch und Siemens Hausgeräte GmbH Electric household appliance with at least one liquid feed
JP6197226B2 (en) 2014-03-03 2017-09-20 内山工業株式会社 Magnetic rubber composition, magnetic rubber molded product obtained by crosslinking the same, and magnetic encoder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595828A (en) * 1979-01-16 1980-07-21 Nec Corp Gas meter
JPS5717818A (en) * 1980-07-04 1982-01-29 Yamatake Honeywell Co Ltd Flow rate detector
JPS5720611A (en) * 1980-07-11 1982-02-03 Yamatake Honeywell Co Ltd Flow rate and temperature sensor for fluid
JPS61147111A (en) * 1984-12-20 1986-07-04 Tokico Ltd Production of rotating body for rotation detection
JPS61213724A (en) * 1985-03-20 1986-09-22 Tokico Ltd Rotor for detecting rotation
JPS6263819A (en) * 1985-09-13 1987-03-20 Nitto Seiko Co Ltd Signal take-out device in flowmeter
JPS62153713A (en) * 1985-12-27 1987-07-08 Ricoh Elemex Corp Gas flow amount detection structure of gas meter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT164781B (en) * 1948-03-24 1949-12-10 Cfcmug Meter for flowing media without a stuffing box
GB1183503A (en) * 1967-06-16 1970-03-11 Kent Ltd G Improvements in or relating to the measurement of fluid flow
US3912283A (en) * 1974-09-10 1975-10-14 Rca Corp Turntable speed lock system
DE2835214A1 (en) * 1978-08-11 1980-02-21 Flux Geraete Gmbh Flowmeter divided into two chambers - has magnetic coupling with driving part exposed to liq. and protected by coating against corrosion
DE3047701A1 (en) * 1980-12-18 1982-07-15 Magnetfabrik Bonn Gmbh Vorm. Gewerkschaft Windhorst, 5300 Bonn METHOD FOR PRODUCING ANISOTROPAL PERMANENT MAGNETS AND TUBULAR PERMANENT MAGNETS PRODUCED THEREFORE
DE3113234A1 (en) * 1981-04-02 1982-10-21 Vdo Adolf Schindling Ag, 6000 Frankfurt PERMANENT MAGNETIC BODY MADE OF PLASTIC-BONDED MAGNETIC MATERIAL, METHOD FOR THE PRODUCTION THEREOF AND VERBY CURRENT TACHOMETER WITH SUCH A PERMANENT MAGNETIC BODY
JPS5898904A (en) * 1981-12-09 1983-06-13 Dai Ichi Seiko Co Ltd Permanent magnet molded article
DE8422074U1 (en) * 1984-07-20 1984-10-31 Siemens AG, 1000 Berlin und 8000 München PERMANENT MAGNETIC CLUTCH
JPS61112310A (en) * 1984-11-07 1986-05-30 Sumitomo Bakelite Co Ltd Manufacture of permanent magnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595828A (en) * 1979-01-16 1980-07-21 Nec Corp Gas meter
JPS5717818A (en) * 1980-07-04 1982-01-29 Yamatake Honeywell Co Ltd Flow rate detector
JPS5720611A (en) * 1980-07-11 1982-02-03 Yamatake Honeywell Co Ltd Flow rate and temperature sensor for fluid
JPS61147111A (en) * 1984-12-20 1986-07-04 Tokico Ltd Production of rotating body for rotation detection
JPS61213724A (en) * 1985-03-20 1986-09-22 Tokico Ltd Rotor for detecting rotation
JPS6263819A (en) * 1985-09-13 1987-03-20 Nitto Seiko Co Ltd Signal take-out device in flowmeter
JPS62153713A (en) * 1985-12-27 1987-07-08 Ricoh Elemex Corp Gas flow amount detection structure of gas meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272930U (en) * 1988-11-25 1990-06-04
JP2002181605A (en) * 2000-12-13 2002-06-26 Kimmon Mfg Co Ltd Gas meter
JP2002202170A (en) * 2001-01-05 2002-07-19 Kimmon Mfg Co Ltd Gas meter
KR20020084706A (en) * 2001-05-02 2002-11-11 청주도시가스주식회사 Measuring meter of gas
CN108731765A (en) * 2018-06-01 2018-11-02 陕西九杰智能仪表有限公司 A kind of bidirectional self-locking Hall pulse collection method
JP2020101439A (en) * 2018-12-21 2020-07-02 株式会社竹中製作所 Gas meter and manufacturing method thereof

Also Published As

Publication number Publication date
DE3930798A1 (en) 1990-03-22
GB8920754D0 (en) 1989-10-25
GB2223593B (en) 1992-10-14
GB2223593A (en) 1990-04-11
DE3930798C2 (en) 1994-09-15

Similar Documents

Publication Publication Date Title
JPH0277621A (en) Gas meter
US7523660B2 (en) Oval gear meter
US7088096B2 (en) Combination hall effect position sensor and switch
US6124709A (en) Magnetic position sensor having a variable width magnet mounted into a rotating disk and a hall effect sensor
US5861745A (en) Measuring device for contactless determination of relative angular position with an improved linear range
US6211668B1 (en) Magnetic position sensor having opposed tapered magnets
US20100213927A1 (en) Absolute magnetic position encoder
US20130241539A1 (en) Rotary Position Sensor
US4489616A (en) Digital fluid flow meter
US4897914A (en) Method of making a magnetic-encoding device having hall effect devices
US6693421B2 (en) Position sensor assembly utilizing magnetic field variations
JPH11211410A (en) Non-contact position sensor
JPH0670574B2 (en) Flowmeter
JP2002071431A (en) Liquid level sensor
JP3101534B2 (en) Flow meter rotation detector
JPH042914A (en) Angle sensor
JPS55135711A (en) Flow meter using composite magnetic material for sensor
JP2000221069A (en) Flow rate detection device
JPS62153713A (en) Gas flow amount detection structure of gas meter
GB2234824A (en) "Turbine of flowmeter"
JP2781203B2 (en) Positive flow meter
JP3251852B2 (en) Flowmeter
JPS6222814Y2 (en)
JPS58172512A (en) Detecting device for position of rotation
JPS58127125A (en) Flowmeter