JPH0277604A - Hologram distance measuring device - Google Patents

Hologram distance measuring device

Info

Publication number
JPH0277604A
JPH0277604A JP22911688A JP22911688A JPH0277604A JP H0277604 A JPH0277604 A JP H0277604A JP 22911688 A JP22911688 A JP 22911688A JP 22911688 A JP22911688 A JP 22911688A JP H0277604 A JPH0277604 A JP H0277604A
Authority
JP
Japan
Prior art keywords
light
measured
hologram
reflected
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22911688A
Other languages
Japanese (ja)
Other versions
JP2553662B2 (en
Inventor
Kanji Nishii
西井 完治
Kouji Katano
片野 光詞
Yasushi Atsuta
熱田 裕史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63229116A priority Critical patent/JP2553662B2/en
Publication of JPH0277604A publication Critical patent/JPH0277604A/en
Application granted granted Critical
Publication of JP2553662B2 publication Critical patent/JP2553662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure the displacement of an object to be measured with the accuracy of the wavelength order of light by providing the first beam splitting means, a non-parallel beam converting means and the first beam synthesizing means. CONSTITUTION:When an object 15 to be measured is present at a reference position Z=Zo, the object to be measured is irradiated with beam from the first laser 10 and the emitted beam from said object being almost parallel beam is split into transmitted beam and reflected beam by the first beam splitting means 11a. The reflected beam is allowed to be incident to a non-parallel beam converting means 12 while the beam path of said reflected beam is converted to an almost right angle by a beam path converting means 11b and, for example, the focus position of the lens behind said means 12 is adjusted to convert the emitted beam to diverging beam. This diverging beam is split into reflected beam and transmitted beam by the second beam splitting means 14 and the transmitted beam is applied to the object 15 to be measured and the reflected beam thereof is again reflected by the means 14 to be incident to the first beam synthesizing means 16 to transmit therethrough. Then, the pattern image of the interference fringe with reference beam at the measuring position of the object 15 to be measured is compared with that when the object 15 is present at the reference position to make it possible to measure the displacement of the object 15.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光を用いて物体の変位を非接触で測定する光
学的測距装置、特にホログラムを用い干渉縞パターンか
ら距離を測定するホログラム測距装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical distance measuring device that uses light to measure the displacement of an object in a non-contact manner, and particularly to a hologram distance measuring device that uses a hologram to measure distance from an interference fringe pattern. It is related to the device.

従来の技術 従来の光学的測距装置の構成を図面に基づいて以下に説
明する。第8図は従来の光学的測距装置のブロック図で
ある。1はレーザ、2は図中のX方向にビームを走査す
る第1の偏向ミラー、3は図中のY方向にビームを走査
する第2の偏向ミラー、4は被測定物体、5はその被測
定物体4からの反射光を集光する集光レンズ、6は集光
レンズの後方に配置されたラインセンサである。
2. Description of the Related Art The configuration of a conventional optical distance measuring device will be described below with reference to the drawings. FIG. 8 is a block diagram of a conventional optical distance measuring device. 1 is a laser, 2 is a first deflection mirror that scans the beam in the X direction in the figure, 3 is a second deflection mirror that scans the beam in the Y direction in the figure, 4 is the object to be measured, and 5 is the object to be measured. A condensing lens condenses the reflected light from the measurement object 4, and 6 is a line sensor placed behind the condensing lens.

次にこの従来例の光学的測距装置の原理を第9図を用い
て説明する。第9図においてSを集光レンズ5の中心、
Lをレーザ1からの出射ビ・−ムの中心、0を被測定物
体4上の点、θ及びφを各4点0からの反射ビーム、レ
ーザlからの出射ビームが基線LSと成す角度とし、D
を基線LSの長さと置けば点0までの距離りは式(1)
で表される。
Next, the principle of this conventional optical distance measuring device will be explained with reference to FIG. In FIG. 9, S is the center of the condenser lens 5,
Let L be the center of the emitted beam from laser 1, 0 be the point on the object to be measured 4, θ and φ be the reflected beams from each of the four points 0, and the angle that the emitted beam from laser l makes with the base line LS. ,D
If we set the length of the base line LS as the length of the base line LS, the distance to point 0 can be calculated using the formula (1)
It is expressed as

h−ロtanetan・(tane+tan・)・・・
  式 (1)ここで角度θは集光レンズ5の光軸の向
きであり式(2)で与えられる tanθ=f/d     −−−式(2)f=集光レ
ンズ5の焦点距離 d:集光レンズ5の中心点と、ラインセンサ6上のビー
ム検出点の距離 従って、第1及び第2の偏向ミラー2.3によりX方向
及びY方向にレーザビームを走査し、ラインセンサ6上
に集光させラインセンサ6上のビーム検出点Sと出射ビ
ームの中心り及び被測定物体4上の点Oの間で式(1)
、式(2)を解くことにより被測定物体4の距離りを測
定できる。
h-Rotanetan・(tane+tan・)・・・
Formula (1) Here, the angle θ is the direction of the optical axis of the condenser lens 5, and is given by formula (2) tanθ=f/d---Formula (2) f=focal length d of the condenser lens 5: According to the distance between the center point of the condenser lens 5 and the beam detection point on the line sensor 6, the laser beam is scanned in the X direction and the Y direction by the first and second deflection mirrors 2.3, and the laser beam is scanned onto the line sensor 6. Between the beam detection point S on the condensed line sensor 6 and the center of the output beam and the point O on the object to be measured 4, formula (1) is used.
, the distance of the object to be measured 4 can be measured by solving equation (2).

発明が解決しようとする課題 しかしながら上記の様な構成では、式(1)、式(2)
から、測距精度はd即ち、集光レンズ5の中心点とライ
ンセンサ6上のビーム検出点の距離の検出精度で決まる
。ところが、ラインセンサ6上のビーム検出点の検出分
解能はラインセンサ6の構成セルの大きさで決り、測距
精度は数10μmのオーダとなってしまい、精密な組立
作業を行う組立ロボット等に用いるには精度が不充分で
あった。
Problems to be Solved by the Invention However, in the above configuration, equations (1) and (2)
Therefore, the distance measurement accuracy is determined by d, that is, the detection accuracy of the distance between the center point of the condenser lens 5 and the beam detection point on the line sensor 6. However, the detection resolution of the beam detection point on the line sensor 6 is determined by the size of the constituent cells of the line sensor 6, and the distance measurement accuracy is on the order of several tens of μm. The accuracy was insufficient.

本発明は、上記従来の光学的測距装置の課題を解決する
ことを目的とする。
An object of the present invention is to solve the problems of the conventional optical distance measuring devices described above.

課題を解決するための手段 本発明のホログラム測距装置は、光源から発せられたビ
ームを2つの光路に分割する第1のビーム分割手段と、
この2分割された光路の少な(とも一方に配置された非
平行光変換手段と、この非平行光変換手段により非平行
光化されたビームを透過及び反射し一方のビームを被測
定物体に照射する第2のビーム分割手段と、前記被測定
物体がらの反射光と、前記第1のビーム分割手段により
2分割されたもう一方のビームとを合波する第1のビー
ム合波手段と、この合波光を2分割する第3のビーム分
割手段と、この第3のビーム分割手段により分割された
一方の光路中に配置された前記合波光により形成される
干渉縞を記録する光空間変調素子と、この光空間変調素
子からの記録パターン読み出し光と前記第3のビーム分
割手段により分割された一方のビームを合波する第2の
ビーム合波手段と、前記光空間変調素子への記録光の入
射を遮断するビーム遮断手段とを備えた事を特徴とする
ものである。
Means for Solving the Problems The hologram ranging device of the present invention includes a first beam splitting unit that splits a beam emitted from a light source into two optical paths;
This two-divided optical path has a non-parallel light converting means placed on one side, and a beam made non-parallel by the non-parallel light converting means is transmitted and reflected, and one beam is irradiated onto the object to be measured. a second beam splitting means for combining the reflected light from the object to be measured and the other beam split into two by the first beam splitting means; a third beam splitting means for splitting the combined light into two; and an optical spatial modulation element for recording interference fringes formed by the combined light disposed in one of the optical paths split by the third beam splitting means. , a second beam combining means for combining the recording pattern reading light from the optical spatial modulation element and one of the beams split by the third beam splitting means; The invention is characterized by comprising a beam blocking means for blocking the incident light.

作用 本発明は、上記した構成により、ある基準位置において
、被測定物体に非平行光化された光を照射し、被測定物
体からの反射光と参照光との干渉縞を光空間変調素子に
記録し、この光空間変調素子に読みだし光を照射して得
られる基準干渉縞パターンと、この被測定物体が任意の
位置にある時に前記非平行光を照射し、被測定物体から
得られる反射光と参照光との、干渉縞を形成し、この干
渉縞パターンと基準干渉縞から、被測定物体の変位を測
定可能とすることで光の波長オーダの精度で被測定物体
の変位を測定可能としたものである。
According to the above-described configuration, the present invention irradiates the object to be measured with non-collimated light at a certain reference position, and generates interference fringes between the reflected light from the object to be measured and the reference light on the optical spatial modulation element. The reference interference fringe pattern obtained by recording and irradiating readout light onto this optical spatial modulation element, and the reflection obtained from the object to be measured by irradiating the non-parallel light when the object to be measured is at an arbitrary position. By forming interference fringes between the light and the reference light, and measuring the displacement of the object to be measured from this interference fringe pattern and the reference interference fringes, it is possible to measure the displacement of the object to be measured with an accuracy on the order of the wavelength of the light. That is.

実施例 以下に本発明をその実施例を示す図面に基づいて説明す
る。
EXAMPLES The present invention will be explained below based on drawings showing examples thereof.

第1図は、本発明のホログラム測距装置にかかる第1の
実施例の平面図である。10は第1のレーザでありその
出射光は略平行光である、llaは第1のレーザ10か
ら発せられたビームを2つの光路に分割する第1のビー
ム分割手段、llbは光路変換手段、12はこの2分割
された光路の一方に配置された非平行光変換手段であり
、2つのレンズから成る共焦点光学系である。これによ
りビームは発散あるいは収束光すなわち非平行光に変換
される。13は第1のビーム分割手段11により2分割
された、もう一方の光路中に配置されたビームエクスパ
ンダー、14はビーム平行光度調整手段12により非平
行光化されたビームを透過及び反射し、その、透過光を
被測定物体15に照射する第2のビーム分割手段、16
は被測定物体15からの反射光と、第1のビーム分割手
段11により2分割されたもう一方のビームとを合波す
る第1のビーム合波手段、17はこの合波光を2分割す
る第3のビーム分割手段、18は光空間変調素子であり
、第3のビーム分割手段17の透過光路中に配置されて
いる、19及び20は各々第3のビーム分割手段17に
より2分割された残る一方の光路の光路変換手段である
。21は光空間変調素子18の読み出し用の第2のレー
ザ、22は光空間変調素子18からの記録パターン読み
出し光と第3のビーム分割手段17により分割された一
方のビームを合波する第2のビーム合波手段、23はそ
の第2のビーム合波手段22により重畳された干渉縞パ
ターンを撮像するTV左カメラ24は光空間変調素子1
8への記録光の入射を遮断するビーム遮断手段である。
FIG. 1 is a plan view of a first embodiment of the holographic distance measuring device of the present invention. 10 is a first laser whose emitted light is substantially parallel light; lla is a first beam splitting means for splitting the beam emitted from the first laser 10 into two optical paths; llb is an optical path converting means; Reference numeral 12 denotes a non-parallel light converting means disposed on one side of this two-divided optical path, and is a confocal optical system consisting of two lenses. This converts the beam into diverging or converging light, ie, non-parallel light. 13 is a beam expander disposed in the other optical path divided into two by the first beam splitting means 11; 14 transmits and reflects the beam that has been made non-collimated by the beam parallel light intensity adjusting means 12; a second beam splitting means 16 for irradiating the transmitted light onto the object to be measured 15;
17 is a first beam combining means for combining the reflected light from the object to be measured 15 and the other beam divided into two by the first beam splitting means 11, and 17 is a first beam combining means for dividing the combined light into two. 3 is a beam splitting means, 18 is an optical spatial modulation element, which is arranged in the transmission optical path of the third beam splitting means 17, and 19 and 20 are each the remaining beam split into two by the third beam splitting means 17. This is an optical path converting means for one optical path. 21 is a second laser for reading out the optical spatial modulator 18; 22 is a second laser for combining the recording pattern reading light from the optical spatial modulating element 18 and one beam split by the third beam splitting means 17; The TV left camera 24 is the optical spatial modulation element 1.
This is a beam blocking means for blocking recording light from entering the recording beam 8.

以上の様に構成された本発明の第1の実施例の動作につ
いて第1図〜第5図を用いて説明する。
The operation of the first embodiment of the present invention constructed as described above will be explained using FIGS. 1 to 5.

先ず初めに、被測定物体15が第1図に示した基準位置
2=20に有る場合、第1のレーザ10からビームを照
射する。この出射光は略平行光でありかつ、第1のビー
ム分割手段11aで透過光と反射光に2分割される。こ
の反射光は光路変換手段11bにより光路を略直角に変
換し、非平行光変換手段12に入射させる、この非平行
変換手段12の例えば後側のレンズの焦点位置を調整す
ることで、第1のレーザ10の略平行光である出射光を
第1図に示した様に発散光に変換する。この発散光は第
2のビーム分割手段14により反射光と透過光に2分割
される。この透過光は基準位置に有る被測定物体15に
照射され、その反射光は再び第2のビーム分割手段14
により反射され第1のビーム合波手段16に入射し、こ
れを透過する。
First, when the object to be measured 15 is at the reference position 2=20 shown in FIG. 1, a beam is irradiated from the first laser 10. This emitted light is substantially parallel light, and is split into two by the first beam splitting means 11a into transmitted light and reflected light. The optical path of this reflected light is converted to a substantially right angle by the optical path conversion means 11b, and the optical path is made to enter the non-parallel light conversion means 12. By adjusting the focal position of, for example, a rear lens of the non-parallel light conversion means 12, The substantially parallel emitted light from the laser 10 is converted into diverging light as shown in FIG. This diverging light is split into two by the second beam splitting means 14 into reflected light and transmitted light. This transmitted light is irradiated onto the object to be measured 15 located at the reference position, and the reflected light is again sent to the second beam splitting means 14.
The beam is reflected by the beam, enters the first beam combining means 16, and is transmitted therethrough.

他方、第1のビーム分割手段11aで2分割されたもう
一方のビームは、ビームエクスパンダ−13により拡大
され第1のビーム合波手段16により反射される。
On the other hand, the other beam divided into two by the first beam splitting means 11a is expanded by the beam expander 13 and reflected by the first beam combining means 16.

従って、第1のビーム合波手段16により被測定物体1
5からの反射光が物体光となり、ビームエクスパンダ−
13を透過した光が参照先に相当して第3図に示した様
な同心円状の干渉縞が形成される。この干渉縞は拡散光
と平行光すなわち、球面波と平面波の波面の曲率差に起
因する1種のニュートンリングであり、その干渉縞ピッ
チは波長/2である。この干渉縞パターンは第3のビー
ムスプリッタ17により反射光と透過光に分離されが、
透過光はビーム遮断手段24に入射するが、この時はビ
ーム遮断手段24はオン状態となっており透過させるの
で、光は空間光変調素子18に入射する。
Therefore, the object to be measured 1 is
The reflected light from 5 becomes the object light, and the beam expander
The light transmitted through 13 corresponds to the reference target, and concentric interference fringes as shown in FIG. 3 are formed. This interference fringe is a type of Newton's ring caused by the difference in curvature between the wavefronts of diffused light and parallel light, that is, a spherical wave and a plane wave, and the pitch of the interference fringe is wavelength/2. This interference fringe pattern is separated into reflected light and transmitted light by the third beam splitter 17,
The transmitted light is incident on the beam blocking means 24, but at this time the beam blocking means 24 is in an on state and is transmitted, so that the light is incident on the spatial light modulation element 18.

この空間光変調素子18の構成を第4図に示す。30は
ネマチック液晶層、31は反射層、32はカバーガラス
、33は透明電極、34は光伝導体、35は遮光層、3
6は液晶配向膜でり透明電極33間には電圧が印加され
ている。干渉縞パターンが光伝導体34側から入射する
と、光が照射された部分は光伝導体34のイジビーダン
スが低下し、光が照射されていない部分と比較して高い
電圧が印加される。その結果、干渉縞パターンに相当す
る電圧パターンがネマチック液晶層30に印加されネマ
チック液晶層30の液晶分子の配向状態が、空間的に変
調されて基準位置2=20に於ける被測定物体15と参
照光が形成する干渉縞パターンが空間光変調素子18に
記録される。
The configuration of this spatial light modulator 18 is shown in FIG. 30 is a nematic liquid crystal layer, 31 is a reflective layer, 32 is a cover glass, 33 is a transparent electrode, 34 is a photoconductor, 35 is a light shielding layer, 3
6 is a liquid crystal alignment film, and a voltage is applied between transparent electrodes 33. When the interference fringe pattern enters from the photoconductor 34 side, the irradiation of the photoconductor 34 decreases in the portions irradiated with light, and a higher voltage is applied to the portions irradiated with light than in the portions not irradiated with light. As a result, a voltage pattern corresponding to the interference fringe pattern is applied to the nematic liquid crystal layer 30, and the alignment state of the liquid crystal molecules in the nematic liquid crystal layer 30 is spatially modulated, so that the measured object 15 at the reference position 2=20 The interference fringe pattern formed by the reference light is recorded on the spatial light modulation element 18.

次に被測定物体15が第2図を用いて任意の測定位置Z
=Zlの位置に変位した場合について説明する。図中の
番号10〜24はすべて、第1図と同じものを示す。こ
の時も、被測定物体15が基準位置2=20に有った時
と同様に第1のビーム合波手段16により、非平行光変
換手段12を透過し発散光に変換されたビームの被測定
物体15からの反射光が物体光となり、ビームエクスパ
ングー13を透過した光が参照先に相当して同心円状の
干渉縞が形成される。
Next, the object to be measured 15 is moved to an arbitrary measurement position Z using FIG.
The case of displacement to the position =Zl will be explained. All numbers 10 to 24 in the figure indicate the same things as in FIG. 1. At this time, similarly to when the object to be measured 15 was at the reference position 2=20, the first beam combining means 16 receives the beam that has passed through the non-parallel light converting means 12 and was converted into divergent light. The reflected light from the measurement object 15 becomes object light, and the light transmitted through the beam expander 13 corresponds to the reference target, forming concentric interference fringes.

しかしながら、この任意の測定位置Z=Z+における発
散光の波面の曲率は基準位置Z=Zoにおける曲率とは
異なるすなわち、光路長が長い分だけZ=Zlの位置に
於ける波面の曲率は小さくなる。従って、第5図に示し
た様に干渉縞ピッチが広くなる。
However, the curvature of the wavefront of the diverging light at this arbitrary measurement position Z=Z+ is different from the curvature at the reference position Z=Zo, that is, the curvature of the wavefront at the position Z=Zl is smaller due to the longer optical path length. . Therefore, as shown in FIG. 5, the interference fringe pitch becomes wider.

この任意の測定位置Z=ZIに被測定物体15が有る場
合は、ビーム遮断手段24はオフ状態となっているので
第5図に示した干渉縞パターンは空間光変調素子18に
は書き込まれず、光路変換手段19.20により光路を
変換され、第2のビーム合波手段22に入射する。
When the object to be measured 15 is located at this arbitrary measurement position Z=ZI, the beam blocking means 24 is in the OFF state, so the interference fringe pattern shown in FIG. 5 is not written on the spatial light modulation element 18. The optical path of the beam is changed by the optical path converting means 19 and 20, and the beam enters the second beam combining means 22.

他方、第2のレーザ21により空間光変調素子18を照
射すると、空間光変調素子18は前述した様にネマチッ
ク液晶層30の液晶分子の配向状態が、空間的に変調さ
れて基準位置2=20に於ける被測定物体15と参照光
が形成する干渉縞パターンが記録されているので、第2
のレーザ21からの入射光の偏光状態が空間的に変調さ
れる。
On the other hand, when the spatial light modulator 18 is irradiated with the second laser 21, the alignment state of the liquid crystal molecules of the nematic liquid crystal layer 30 is spatially modulated, and the spatial light modulator 18 moves to the reference position 2=20 as described above. Since the interference fringe pattern formed by the object to be measured 15 and the reference beam is recorded, the second
The polarization state of the incident light from the laser 21 is spatially modulated.

従って、空間光変調素子18からの反射光を偏光ビーム
スプリッタ−(図示せず)を介して第2のビーム合波手
段22に入射する構成とすることで、あるいは第2のビ
ーム合波手段22そのものを偏光ビームスプリッタ−と
することで、この入射光の強度パターンを基準位置2=
20に於ける被測定物体15と参照光が形成する干渉縞
パターンとすることができる。
Therefore, by making the reflected light from the spatial light modulation element 18 incident on the second beam combining means 22 via a polarizing beam splitter (not shown), or by By using that as a polarizing beam splitter, the intensity pattern of this incident light can be adjusted to the reference position 2 =
It can be an interference fringe pattern formed by the object to be measured 15 at 20 and the reference light.

従ってTVカメラ23で撮像される画像は、被測定物体
15が基準位置2=20に、有る時の干渉縞パターンと
、測定位置Z=Zlに有る時の干渉縞パターンが重畳さ
れたものとなるので、この2つの干渉縞の比較から波長
/2の分解能で発散光の曲率変化すなわち、20とZl
の距離を測定できる。
Therefore, the image captured by the TV camera 23 is a superposition of the interference fringe pattern when the object to be measured 15 is at the reference position 2 = 20 and the interference fringe pattern when the object 15 is at the measurement position Z = Zl. Therefore, from the comparison of these two interference fringes, we can determine the curvature change of the diverging light with a resolution of wavelength/2, that is, 20 and Zl
Can measure distance.

すなわち、本実施例によれば発散光を物体光とし平行光
を参照光とする干渉縞を、被測定物体がある基準位置有
る時にまず空間光変調素子に記録しこの干渉縞パターン
と、m定物体が任意の測定位置に有る時の干渉縞パター
ンを重畳して比較することで、波長/2の分解能で精度
よく被測定物体の変位を測定できる。
That is, according to this embodiment, interference fringes with divergent light as object light and parallel light as reference light are first recorded on the spatial light modulator when the object to be measured is at a reference position, and this interference fringe pattern and m constant are recorded. By superimposing and comparing the interference fringe patterns when the object is at an arbitrary measurement position, the displacement of the object to be measured can be accurately measured with a resolution of wavelength/2.

次に、本発明の第2の実施例について第6図を用いて説
明する。第6図は本発明の第2の実施例の可変非平行光
変換手段40の構成図である。40aは第1の凸レンズ
、40bは第2の凸レンズ、40cは第2の凸レンズ4
0bの焦点位置可変手段であり例えば、モータとギア列
から構成されている。以上の様に構成された可変非平行
光変換手段40を第1図及び第2図に示したホログラム
測距装置に用いいれば、物体光の非平行光度すなわち波
面の曲率を任意に設定できるので、被測定物体の位置が
基準位置および測定位置において参照光との間で形成さ
れる干渉縞のピッチおよび稿本数を、所望の測定距離範
囲言い換えれば物体光の曲率の変化範囲に対して最適な
値に設定することができ、例えば組立ロボットの視覚装
置として用いる場合、作業内容に応じてダイナミックレ
ンジと精度の選択が可能となる。
Next, a second embodiment of the present invention will be described using FIG. 6. FIG. 6 is a block diagram of a variable non-parallel light converting means 40 according to a second embodiment of the present invention. 40a is the first convex lens, 40b is the second convex lens, and 40c is the second convex lens 4.
0b, and is composed of, for example, a motor and a gear train. If the variable non-parallel light converting means 40 configured as described above is used in the hologram ranging device shown in FIGS. 1 and 2, the non-parallel luminous intensity of the object light, that is, the curvature of the wavefront can be set arbitrarily. , the pitch and number of interference fringes formed between the position of the measured object and the reference light at the reference position and the measurement position are determined to be optimal for the desired measurement distance range, in other words, the range of change in the curvature of the object light. For example, when used as a visual device for an assembly robot, the dynamic range and accuracy can be selected depending on the work content.

次に、本発明の第3の実施例について第7図を用いて説
明する。50は焦点距離が異なる2つのレンズからなる
共焦点光学系であり50aは焦点距離がflである第1
の凸レンズ、50bは焦点距離がf2である第2の凸レ
ンズであ°す、これら2つのレンズは共焦点光学系を構
成している。
Next, a third embodiment of the present invention will be described using FIG. 7. 50 is a confocal optical system consisting of two lenses with different focal lengths, and 50a is a first lens with a focal length fl.
, and 50b is a second convex lens having a focal length of f2. These two lenses constitute a confocal optical system.

この共焦点光学系50を第1図および第2図に示したホ
ログラム測距装置の第1のビーム合波手段16と第3の
ビーム分割手段17の間に配置する。この共焦点光学系
50を介することで、物体光の波面の曲率の被測定物体
15の距離位置による変化率は、第1及び第2の凸レン
ズの焦点距離の比すなわち(f2/fl)の2乗倍され
る。
This confocal optical system 50 is disposed between the first beam combining means 16 and the third beam splitting means 17 of the hologram ranging device shown in FIGS. 1 and 2. By passing through this confocal optical system 50, the rate of change of the curvature of the wavefront of the object light depending on the distance position of the object to be measured 15 is determined by the ratio of the focal lengths of the first and second convex lenses, that is, 2 of (f2/fl). Multiplyed.

従って、たとえばfl=10−■、f2=1001に設
定すれば、物体光の波面の曲率の被測定物体15の距離
位置による変化率は、1/100に低減できる。すなわ
ち、共焦点光学系50を介することで、被測定物体の距
離による干渉縞のピッチ、稿本数の変化を増減できるの
で、本発明の第2の実施例と゛同様の効果を得ることが
できる。
Therefore, by setting fl=10-■ and f2=1001, for example, the rate of change in the curvature of the wavefront of the object light depending on the distance position of the object to be measured 15 can be reduced to 1/100. That is, by using the confocal optical system 50, it is possible to increase or decrease the pitch of interference fringes and the number of documents depending on the distance to the object to be measured, so it is possible to obtain the same effect as the second embodiment of the present invention.

発明の効果 本発明のホログラム測距装置は、光源から発せられたビ
ームを2つの光路に分割する第1のビーム分割手段と、
この2分割された光路の少な(とも一方に配置された非
平行光変換手段と、被測定物体が基準位置に有る時の干
渉縞を記録する光空間変調素子と、この光空間変調素子
からの5記録パターン読み出し光と、被測定物体が任意
の測定位置に有る時の干渉縞を合波する合波手段とを備
えることで、被測定物体の変位により非平行光である物
体光の波面の曲率が変化することから、非測定物体の測
定位置における参照光との干渉縞のパターン像と、被測
定物体が基準位置に有る時の干渉縞パターンと比較する
ことで、光の波長オーダの精度で被測定物体の変位を測
定可能としたホログラム測距装置である。
Effects of the Invention The hologram ranging device of the present invention includes a first beam splitting means that splits a beam emitted from a light source into two optical paths;
This two-divided optical path has a non-parallel light conversion means placed on one side, an optical spatial modulation element that records interference fringes when the object to be measured is at the reference position, and 5 recording pattern readout light and a combining means for combining the interference fringes when the object to be measured is at an arbitrary measurement position, the wavefront of the object light, which is non-parallel light, is Since the curvature changes, by comparing the pattern image of interference fringes with the reference light at the measuring position of the non-measuring object and the interference fringe pattern when the measured object is at the reference position, accuracy on the order of the wavelength of light can be obtained. This is a hologram ranging device that can measure the displacement of an object to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるホログラム測距装置の第1の実
施例の平面図、第2図、第3図、第4図、第5図はそれ
ぞれ本発明の第1の実施例の動作を説明するための図、
第6図は本発明にかかるホログラム測距装置の第2の実
施例の可変非平行光変換手段の平面図、第7図は本発明
の第3の実施例の共焦点光学系の平面図、第8図は従来
例の光学測距装置のブロック図、第9図は同装置の原理
説明図である。 10・・・第1のレーザ、12・・・非平行光変換手段
、15・・・被測定物体、18・・・空間光変調素子、
21・・・第2のレーザ、23・・・TV左カメラ24
・・・ビーム遮断手段、40・・・可変非平行光変換手
段、50・・°・共焦点光学系。 代理人の氏名 弁理士 粟野重孝 ほか1名第2図 第3図 第4図 30才マツチック液晶層 第6図 第 8図 第9図
FIG. 1 is a plan view of a first embodiment of a hologram distance measuring device according to the present invention, and FIGS. 2, 3, 4, and 5 each illustrate the operation of the first embodiment of the present invention. Diagram for explanation,
FIG. 6 is a plan view of the variable non-parallel light conversion means of the second embodiment of the holographic distance measuring device according to the present invention, and FIG. 7 is a plan view of the confocal optical system of the third embodiment of the present invention. FIG. 8 is a block diagram of a conventional optical distance measuring device, and FIG. 9 is a diagram explaining the principle of the device. DESCRIPTION OF SYMBOLS 10... First laser, 12... Non-parallel light conversion means, 15... Measured object, 18... Spatial light modulation element,
21...Second laser, 23...TV left camera 24
... Beam blocking means, 40... Variable non-parallel light conversion means, 50...° Confocal optical system. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 2 Figure 3 Figure 4 30 years old Matsutik LCD layer Figure 6 Figure 8 Figure 9

Claims (4)

【特許請求の範囲】[Claims] (1)ある基準位置において、被測定物体に非平行光を
照射し、前記被測定物体からの反射光と参照光とで形成
される干渉縞を記録したホログラムから再生された干渉
縞パターンと、任意の位置で前記被測定物体に前記非平
行光を照射し、前記被測定物体からの反射光と前記参照
光とで形成される干渉縞とを重畳することにより前記被
測定物体の変位を測定可能としたことを特徴とするホロ
グラム測距装置。
(1) An interference fringe pattern reproduced from a hologram in which non-parallel light is irradiated onto an object to be measured at a certain reference position and interference fringes formed by the reflected light from the object to be measured and a reference beam are recorded; The displacement of the object to be measured is measured by irradiating the object to be measured with the non-parallel light at an arbitrary position and superimposing interference fringes formed by the reflected light from the object to be measured and the reference light. A hologram ranging device that is characterized by the following:
(2)光源と、この光源から発せられたビームを2つの
光路に分割する第1のビーム分割手段と、この2分割さ
れた光路の少なくとも一方に配置されたビーム平行光度
調整手段と、この非平行光変換手段により非平行光化さ
れたビームを透過及び反射し一方のビームを被測定物体
に照射する第2のビーム分割手段と、前記被測定物体か
らの反射光と、前記第1のビーム分割手段により2分割
されたもう一方のビームとを合波する第1のビーム合波
手段と、この合波光を2分割する第3のビーム分割手段
と、この第3のビーム分割手段により分割された一方の
光路中に前記合波光により形成される干渉縞を記録する
光空間変調素子と、この光空間変調素子からの記録パタ
ーン読み出し光と前記第3のビーム分割手段により分割
された一方のビームを合波する第2のビーム合波手段と
、前記光空間変調素子への記録光の入射を遮断するビー
ム遮断手段とを備えた事を特徴とする請求項1記載のホ
ログラム測距装置。
(2) a light source, a first beam splitting means for splitting the beam emitted from the light source into two optical paths, a beam parallel luminous intensity adjusting means disposed on at least one of the two split optical paths, and a second beam splitting means that transmits and reflects the beam that has been made into a non-collimated beam by the parallel light conversion means and irradiates one of the beams onto the object to be measured, the reflected light from the object to be measured, and the first beam; A first beam multiplexer that combines the other beam split into two by the splitter, a third beam splitter that splits the combined light into two, and a beam split by the third beam splitter. an optical spatial modulation element for recording interference fringes formed by the combined light in one optical path; and one beam split by the recording pattern readout light from the optical spatial modulation element and the third beam splitting means. 2. The hologram distance measuring device according to claim 1, further comprising a second beam combining means for combining the two beams, and a beam blocking means for blocking the recording light from entering the optical spatial modulation element.
(3)非平行光変換手段を2つのレンズから成る共焦点
光学系で構成し、少なくともひとつのレンズに可動手段
を設け、ビームの平行光度を可変としたことを特徴とす
る請求項2記載のホログラム測距装置。
(3) The non-parallel light converting means is constituted by a confocal optical system consisting of two lenses, and at least one lens is provided with a movable means to make the parallel light intensity of the beam variable. Hologram ranging device.
(4)第1のビーム合波手段と、この合波光を2分割す
る第3のビーム分割手段配置との間に、焦点距離が異な
る2つのレンズからなる共焦点光学系を配置したことを
特徴とする請求項2又は3記載のホログラム測距装置。
(4) A confocal optical system consisting of two lenses with different focal lengths is arranged between the first beam combining means and the third beam splitting means for dividing the combined light into two. The hologram distance measuring device according to claim 2 or 3.
JP63229116A 1988-09-13 1988-09-13 Hologram range finder Expired - Fee Related JP2553662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229116A JP2553662B2 (en) 1988-09-13 1988-09-13 Hologram range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229116A JP2553662B2 (en) 1988-09-13 1988-09-13 Hologram range finder

Publications (2)

Publication Number Publication Date
JPH0277604A true JPH0277604A (en) 1990-03-16
JP2553662B2 JP2553662B2 (en) 1996-11-13

Family

ID=16886997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229116A Expired - Fee Related JP2553662B2 (en) 1988-09-13 1988-09-13 Hologram range finder

Country Status (1)

Country Link
JP (1) JP2553662B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099122A (en) * 2014-11-18 2016-05-30 株式会社ミツトヨ Non-contact positioning method and non-contact positioning device
CN112611548A (en) * 2021-01-07 2021-04-06 昆明理工大学 Lens focal length measuring device and method based on digital holography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099122A (en) * 2014-11-18 2016-05-30 株式会社ミツトヨ Non-contact positioning method and non-contact positioning device
CN112611548A (en) * 2021-01-07 2021-04-06 昆明理工大学 Lens focal length measuring device and method based on digital holography

Also Published As

Publication number Publication date
JP2553662B2 (en) 1996-11-13

Similar Documents

Publication Publication Date Title
US5933236A (en) Phase shifting interferometer
US7072042B2 (en) Apparatus for and method of measurement of aspheric surfaces using hologram and concave surface
US5042950A (en) Apparatus and method for laser beam diagnosis
JPH073344B2 (en) Encoder
JPH02228505A (en) Interferometer
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JP2553662B2 (en) Hologram range finder
US4105335A (en) Interferometric optical phase discrimination apparatus
JPS6024401B2 (en) How to measure the physical constants of a measured object
JP4357002B2 (en) Method and apparatus for measuring the direction of an object
JPS60253945A (en) Shape measuring instrument
Horton Design of a white light radial shear interferometer for segmented mirror control
JPH08193805A (en) Interferometer and method for using it
JP2000097657A (en) Interferometer
JP3010088B2 (en) Hologram interferometer
JP3010085B2 (en) Hologram interferometer
JP3067041B2 (en) Hologram interferometer
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JPH0619255B2 (en) Interferometer and interferometer for aspherical surface measurement by optical spatial light modulator using liquid crystal
JPH0210208A (en) Minute angle measuring apparatus
JPS62124405A (en) Thermal dilatometer
JPS63218827A (en) Light spectrum detector
JP2621792B2 (en) Method and apparatus for measuring spatial coherence
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JP3170893B2 (en) Adjustment method of spatial light modulator evaluation apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees