JPH0277570A - Method for preventing stress corrosion cracking of metal bolt - Google Patents
Method for preventing stress corrosion cracking of metal boltInfo
- Publication number
- JPH0277570A JPH0277570A JP22775588A JP22775588A JPH0277570A JP H0277570 A JPH0277570 A JP H0277570A JP 22775588 A JP22775588 A JP 22775588A JP 22775588 A JP22775588 A JP 22775588A JP H0277570 A JPH0277570 A JP H0277570A
- Authority
- JP
- Japan
- Prior art keywords
- metal bolt
- stress corrosion
- corrosion cracking
- metal
- cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 31
- 239000002184 metal Substances 0.000 title claims abstract description 31
- 238000005336 cracking Methods 0.000 title claims abstract description 22
- 238000005260 corrosion Methods 0.000 title claims abstract description 21
- 230000007797 corrosion Effects 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims description 10
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 150000002500 ions Chemical class 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 3
- 229910052697 platinum Inorganic materials 0.000 claims abstract 2
- 238000005468 ion implantation Methods 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910000990 Ni alloy Inorganic materials 0.000 abstract 2
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、例えば原子炉や化学プラントなどの構造物
の構築に固定部材として用いられている金属ボルトに応
力腐食割れが発生するのを防止する方法に関するもので
ある。[Detailed Description of the Invention] [Industrial Application Field] This invention prevents stress corrosion cracking from occurring in metal bolts used as fixing members in the construction of structures such as nuclear reactors and chemical plants. It's about how to do it.
一般に、上記の構造物の構築に用いられる金属ボルトに
は、高強度とすぐれた耐食性が要求されることから、こ
れらの特性を具備したS U S 304Lや316L
などのオーステナイト系ステンレス鋼製のものや、アロ
イ600やアロイX−750などのNll会合金製もの
などが用いられている。Generally, the metal bolts used to construct the above structures are required to have high strength and excellent corrosion resistance, so SUS 304L and 316L, which have these characteristics, are used.
Those made of austenitic stainless steel, such as those made of austenitic stainless steel, and those made of NII alloys, such as Alloy 600 and Alloy X-750, are used.
しかし、金属ボルトとして、上記の通り強度および耐食
性を有するNi基会合金製ものや、オーステナイト系ス
テンレス鋼製のものなどを用いても、上記の使用環境下
では、特にこれのネジ切り部に応力腐食割れが発生する
のを避けることができず、安全性および信頼性、さらに
取り換えのための操業停止に伴なう経済的損失の面から
、これの改善が強く望まれている。However, even if metal bolts made of Ni-based alloys or austenitic stainless steel, which have strength and corrosion resistance as mentioned above, are used, under the above usage environment, stress will be applied especially to the threaded part. The occurrence of corrosion cracking is unavoidable, and improvements in this problem are strongly desired from the standpoints of safety and reliability as well as economic losses associated with shutdowns for replacement.
そこで、本発明者等は、上述のような観点から、耐応力
腐食割れ性にすぐれた金属ボルトを開発すべく研究を行
なった結果、望ましくは高強度およびすぐれた耐食性を
有するNi基合金やオーステナイト系ステンレス鋼など
で製造された金属ボルトの特に応力腐食割れが発生し易
いネジ切り部表面に、通常のイオン注入装置を用い、望
ましくは窒素(N)、Ni 、Cr、Mo、Ta、およ
びptのうちの1種または2種以上のイオンを注入でも
金属ボルトのネジ切り部に割れが発生するのが皆無とな
るという知見を得たのである。Therefore, from the above-mentioned viewpoints, the present inventors conducted research to develop metal bolts with excellent stress corrosion cracking resistance, and found that Ni-based alloys and austenite, which preferably have high strength and excellent corrosion resistance, have been developed. Using a normal ion implantation device, preferably nitrogen (N), Ni, Cr, Mo, Ta, and PT are applied to the threaded surface of a metal bolt made of stainless steel, etc., where stress corrosion cracking is particularly likely to occur. They have found that even if one or more of these ions are implanted, no cracks will occur in the threaded portion of the metal bolt.
この発明は、上記知見にもとづいてなされたものであっ
て、金属ボルトの少なくともネジ切り部表面(全面であ
ってもよい)にイオン注入処理を施すことにより金属ボ
ルトに応力腐食割れが発生するのを防止する方法に特徴
を何するものである。This invention was made based on the above knowledge, and it is possible to prevent stress corrosion cracking from occurring in a metal bolt by applying ion implantation treatment to at least the surface (or the entire surface) of the threaded part of the metal bolt. What are the characteristics of how to prevent this?
〔実 施 例〕
つぎに、この発明の方法を実施例により具体的に説明す
る。[Examples] Next, the method of the present invention will be specifically explained using examples.
いずれもネジ切り部面径:lOmmX全体長さ=60順
×ネジ切り部長さ:50m++sの寸法を有し、重量%
で、Ni −15%Cr −7%Fe−0,7%Ag−
2.5%T1−1%Nb+Taの組成を有する75ON
i基合金、Ni−19%Cr −3%Mo −19%F
c−0,5%1ll−0,9%Ti −5,1%Nb+
Taの組成を有する718N1基合金、Fc −8,5
%Ni−19%Crの組成を有する304ステンレス鋼
、およびFe −32%Nl −21%Cr −0,4
%AN −0,4%T1の組成を有する800ステンレ
ス鋼で製造された4種の金属ボルトを用意し、これらの
金属ボルトの全面に、通常のイオン注入装置を用い、そ
れぞれ第1表に示される条件で1段あるいは2段以上の
イオン注入処理を施すことにより本発明法1〜17を実
施した。Both have dimensions of threaded part surface diameter: lOmm x overall length = 60 order x threaded part length: 50m++s, weight%
So, Ni-15%Cr-7%Fe-0.7%Ag-
75ON with a composition of 2.5%T1-1%Nb+Ta
i-based alloy, Ni-19%Cr-3%Mo-19%F
c-0,5%1ll-0,9%Ti-5,1%Nb+
718N1-based alloy with a composition of Ta, Fc-8,5
304 stainless steel with a composition of %Ni-19%Cr, and Fe-32%Nl-21%Cr-0,4
Four types of metal bolts made of 800 stainless steel having a composition of %AN-0.4%T1 were prepared, and the entire surfaces of these metal bolts were implanted using a normal ion implantation device as shown in Table 1. Methods 1 to 17 of the present invention were carried out by carrying out one or more stages of ion implantation under the following conditions.
ついて、本発明法1〜I7て処理された金属ボルト、並
びに比較の目的でイオン注入処理を行なわない金属ボル
トについて、応力腐食割れ試験を行なった。Accordingly, stress corrosion cracking tests were conducted on metal bolts treated by methods 1 to I7 of the present invention, and for comparison purposes, metal bolts that were not subjected to ion implantation treatment.
応力14食割れ試験は、第1図に概略正面図で示される
ように、金属ボルトSに、いずれもオーステナイト系ス
テンレス鋼製の2個のリング材1゜1を間隙形成材2を
介して挿通し、これをワッシャ3を介してナツト4で0
.8kg−mの力で締め付け、この状態で圧力容器内に
装入し、脱気を施さない温度;290℃の高温高圧水中
に、ステンレス鋼製の金属ボルトについては200時間
、またNi基合金製のものについては400時間浸漬保
持の条件で行ない、試験後の金属ボルトのネジ切り部に
おける割れ発生の有無を観察した。この結果を第1表に
示した。In the stress 14 corrosion cracking test, two ring materials 1°1, both made of austenitic stainless steel, are inserted into a metal bolt S through a gap forming material 2, as shown in the schematic front view in Fig. 1. Then, tighten this with nut 4 through washer 3.
.. Tighten with a force of 8 kg-m, charge it into a pressure vessel in this state, and hold it in high-temperature, high-pressure water at a temperature of 290°C for 200 hours for stainless steel metal bolts, or Ni-base alloy metal bolts. The test was carried out under the condition of being immersed for 400 hours, and the presence or absence of cracking in the threaded portion of the metal bolt after the test was observed. The results are shown in Table 1.
第1表に示される結果から、本発明法1〜17によって
処理された金属ボルトは、いずれも割れ発生がなく、す
ぐれた耐応力腐食割れ性を示すのに対して、イオン注入
処理を行なわない金属ボルトには、すべてに応力腐食割
れか発生していることが明らかである。From the results shown in Table 1, the metal bolts treated by methods 1 to 17 of the present invention are free from cracking and exhibit excellent stress corrosion cracking resistance, whereas those without ion implantation treatment It is clear that stress corrosion cracking has occurred in all metal bolts.
上述のように、この発明の方法によれば、少なくともネ
ジ切り部表面にイオン注入処理を施すだけの簡単な操作
で、金属ボルト、特に望ましくはオーステナイト系ステ
ンレス鋼あるいはNi基合金製の金属ボルトの耐応力腐
食割れ性を著しく向上させることができ、したがって、
これを応力腐食環境にさらされる原子炉や化学プラント
などの構造物の固定部材として用いた場合、きわめて長
期に亘って割れが発生するのを防止することができるこ
とから、安全性、信頼性、および経済性の面で有用な効
果が得られるようになるのである。As described above, according to the method of the present invention, metal bolts, particularly metal bolts preferably made of austenitic stainless steel or Ni-based alloy, can be manufactured by simply performing ion implantation treatment on the surface of the threaded portion. Stress corrosion cracking resistance can be significantly improved, and therefore,
When this material is used as a fixing member for structures such as nuclear reactors and chemical plants that are exposed to stress corrosion environments, it can prevent cracking over an extremely long period of time, improving safety, reliability, and In this way, useful effects can be obtained in terms of economic efficiency.
第1図は金属ボルトの応力腐食割れ試験態様を示す概略
正面図である。
S・・・金属ボルト 1・・・リング材2・・
・間隙形成材 3・・・ワッシャ4・・・ナツ
トFIG. 1 is a schematic front view showing a stress corrosion cracking test mode of a metal bolt. S...Metal bolt 1...Ring material 2...
・Gap forming material 3...Washer 4...Nut
Claims (2)
注入処理を施すことを特徴とする金属ボルトの応力腐食
割れ防止方法。(1) A method for preventing stress corrosion cracking of a metal bolt, which comprises performing ion implantation treatment on at least the surface of the threaded portion of the metal bolt.
テナイト系ステンレス鋼製であることを特徴とする特許
請求の範囲第(1)項記載の金属ボルトの応力腐食割れ
防止方法。(3)上記イオンが、窒素、Ni、Cr、M
o、Ta、およびPtのうちの1種または2種以上で構
成されることを特徴とする特許請求の範囲第(1)項ま
たは第(2)項記載の金属ボルトの応力腐食割れ防止方
法。(2) The method for preventing stress corrosion cracking of a metal bolt according to claim (1), wherein the metal bolt is made of a Ni-based alloy or austenitic stainless steel. (3) The above ions are nitrogen, Ni, Cr, M
The method for preventing stress corrosion cracking of metal bolts according to claim 1 or 2, characterized in that the method is made of one or more of O, Ta, and Pt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63227755A JP2560794B2 (en) | 1988-09-12 | 1988-09-12 | How to prevent stress corrosion cracking of metal bolts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63227755A JP2560794B2 (en) | 1988-09-12 | 1988-09-12 | How to prevent stress corrosion cracking of metal bolts |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0277570A true JPH0277570A (en) | 1990-03-16 |
JP2560794B2 JP2560794B2 (en) | 1996-12-04 |
Family
ID=16865868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63227755A Expired - Lifetime JP2560794B2 (en) | 1988-09-12 | 1988-09-12 | How to prevent stress corrosion cracking of metal bolts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2560794B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05339705A (en) * | 1992-06-05 | 1993-12-21 | Hitachi Ltd | Method for preventing crevice corrosion of metallic member and metallic member resistant to crevice corrosion |
JP2008087552A (en) * | 2006-09-29 | 2008-04-17 | Honda Motor Co Ltd | Article storing structure of small boat |
WO2015029790A1 (en) | 2013-09-02 | 2015-03-05 | Jnc株式会社 | Method for producing porous cellulose particles, and porous cellulose particles |
WO2023042267A1 (en) * | 2021-09-14 | 2023-03-23 | 株式会社 東芝 | Fastening member |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279675A (en) * | 1985-06-04 | 1986-12-10 | Hitachi Ltd | Zr-based alloy base material and its production |
JPS6319714A (en) * | 1986-07-12 | 1988-01-27 | 住友電気工業株式会社 | Manufacture of conductor for covered wire |
-
1988
- 1988-09-12 JP JP63227755A patent/JP2560794B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279675A (en) * | 1985-06-04 | 1986-12-10 | Hitachi Ltd | Zr-based alloy base material and its production |
JPS6319714A (en) * | 1986-07-12 | 1988-01-27 | 住友電気工業株式会社 | Manufacture of conductor for covered wire |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05339705A (en) * | 1992-06-05 | 1993-12-21 | Hitachi Ltd | Method for preventing crevice corrosion of metallic member and metallic member resistant to crevice corrosion |
JP2008087552A (en) * | 2006-09-29 | 2008-04-17 | Honda Motor Co Ltd | Article storing structure of small boat |
WO2015029790A1 (en) | 2013-09-02 | 2015-03-05 | Jnc株式会社 | Method for producing porous cellulose particles, and porous cellulose particles |
WO2023042267A1 (en) * | 2021-09-14 | 2023-03-23 | 株式会社 東芝 | Fastening member |
Also Published As
Publication number | Publication date |
---|---|
JP2560794B2 (en) | 1996-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2766422B2 (en) | Method for reducing corrosion of components exposed to hot water | |
Kumar et al. | Influence of hydrogen on mechanical properties and fracture of tempered 13 wt% Cr martensitic stainless steel | |
JW et al. | Effect of nitride (Cr2N) precipitation on the mechanical, corrosion, and wear properties of austenitic stainless steel | |
Vogt et al. | Effective stresses and microstructure in cyclically deformed 316L austenitic stainless steel: effect of temperature and nitrogen content | |
Copson et al. | Effect of some environmental conditions on stress corrosion behavior of Ni-Cr-Fe alloys in pressurized water | |
Nilsson | The influence of nitrogen on high temperature low cycle fatigue behaviour of austenitic stainless steels | |
Yu et al. | Role of dynamic strain aging in the tensile property, cyclic deformation and fatigue behavior of Z2CND18. 12N stainless steel between 293 K and 723 K | |
JPH0277570A (en) | Method for preventing stress corrosion cracking of metal bolt | |
Andrieu et al. | Effect of environment and microstructure on the high temperature behavior of alloy 718 | |
Cao et al. | Stress corrosion cracking of austenitic alloys in supercritical water | |
Congleton et al. | Stress corrosion cracking of steel in high temperature water | |
Andrieu et al. | Influence of compositional modifications on thermal stability of alloy 718 | |
Raja et al. | Effect of Applied Potentialson Room Temperature Stress Corrosion Cracking of Austenitic Stainless Steel Weldments | |
Guerre et al. | SCC growth behavior of austenitic stainless steels in PWR primary water conditions | |
Chopra et al. | Influence of a flowing lithium environment on the fatigue and tensile properties of type 316 stainless steel | |
Mishra et al. | A comparative study of creep rupture behaviour of modified 316L (N) base metal and 316L (N) 16-8-2 weldment in air and liquid sodium environments | |
JP3064562B2 (en) | Crevice corrosion resistant surface-modified Ti or Ti-based alloy member | |
TAKAKU et al. | Effects of cyclic tensile loading on stress corrosion cracking susceptibility for sensitized Type 304 stainless steel in 290 C high purity water | |
Kohler et al. | Time-Temperature-Sensitization and Time-Temperature-Precipitation Behavior of Alloy 625 (UNS N06625) | |
Mills et al. | Effect of irradiation on the stress corrosion cracking behavior of Alloy X-750 and Alloy 625 | |
Janoušek | Environmentally assisted cracking of 316L austenitic stainless steel in a hydrogenated steam environment | |
Totsuka et al. | The Effect of Strain Rate on PWSCC Fracture Mode of Alloy 600 (UNS N06600) and 304 Austenitic Stainless Steel (UNS S30400) | |
JP3146687B2 (en) | High corrosion resistant surface modified Ti or Ti-based alloy member | |
Zheng et al. | Corrosion fatigue of 316L stainless steel in hot LiOH solution | |
Shim et al. | Continuity of Environmentally Assisted Fatigue and Stress Corrosion Cracking Based on Short Crack Growth Behavior of 316 Stainless Steel in Simulated PWR Primary Water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 12 |