JPH0277177A - Contact structure of oxide superconductor wiring and production thereof - Google Patents

Contact structure of oxide superconductor wiring and production thereof

Info

Publication number
JPH0277177A
JPH0277177A JP63230331A JP23033188A JPH0277177A JP H0277177 A JPH0277177 A JP H0277177A JP 63230331 A JP63230331 A JP 63230331A JP 23033188 A JP23033188 A JP 23033188A JP H0277177 A JPH0277177 A JP H0277177A
Authority
JP
Japan
Prior art keywords
wiring
oxide superconductor
plane
contact
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63230331A
Other languages
Japanese (ja)
Inventor
Ichiro Ishida
一郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63230331A priority Critical patent/JPH0277177A/en
Publication of JPH0277177A publication Critical patent/JPH0277177A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the superconduction critical current density in an electrical contact even if maximum crystal orientation of superconduction critical current is set in the plane of interconnection, by cutting the wiring to make inclined faces in relation to the plane (ab) so that these inclined faces are in contact with another wiring. CONSTITUTION:YBa2Cu3O6.9 having perovskite structure for example is extended in the plane (ab) so that an oxide superconducting wiring 1 having thickness of 500nm for example is provided. Superconduction critical current density in the plane (ab) is 4X10<4>A/cm<2> (77K). Inclined profiles 3 making an angle thetaof 60 deg. in relation to the plane (ab) are provided in a part of the oxide superconducting wiring, and an upper wiring of aluminum 4 with a thickness of 500nm for example is provided on these inclined profiles. Consequently, even at 77K, current of 4X10<4>A/cm<2> can be conducted by the superconductor wiring without voltage drop.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物超伝導体配線内に設けられた電気的コン
タクト部の構造とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of an electrical contact provided in an oxide superconductor wiring and a method for manufacturing the same.

(従来の技術) 従来の酸化物超伝導体配線と電気的コンタクトをとる技
術が例えばアプライドフィジックスレター(Appl、
 Phys、 Lett、 )52巻5月23日号(1
988)に述べられている。これは酸化物超伝導体の表
面に別の配線が接触する構造である。このコンタクト部
を形成するために酸化物超伝導体の表面に別の配線をス
パッタ堆積していた。この場合ペロブスカイト結晶構造
を有する酸化物超伝導体の超伝導臨界電流密度の大きさ
は結晶方位に大きく依存するので、配線面内における超
伝導臨界電流を最大にするために配線方向はab面内に
設定されていた。
(Prior art) Conventional technology for making electrical contact with oxide superconductor wiring is, for example, Applied Physics Letters (Appl,
Phys, Lett, ) Volume 52, May 23 issue (1
988). This is a structure in which another wiring is in contact with the surface of the oxide superconductor. In order to form this contact portion, another wiring was deposited by sputtering on the surface of the oxide superconductor. In this case, the magnitude of the superconducting critical current density of an oxide superconductor with a perovskite crystal structure largely depends on the crystal orientation, so in order to maximize the superconducting critical current in the wiring plane, the wiring direction is in the a-b plane. It was set to .

(発明が解決しようとする課題) しかし配線方向をab面内に設定された酸化物超伝導体
と電気的コンタクトをとる場合従来は超伝導体の表面に
そのまま他の配線を接触させていた。するとab面より
臨界電流密度の低いC軸方向で電気的コンタクト部を形
成しなければならないという欠点が生じていた。この欠
点は例えばコンタクト部の面積を縮小するのに限界がで
てくるといった悪影響を生んでいた。
(Problems to be Solved by the Invention) However, when electrical contact is made with an oxide superconductor whose wiring direction is set in the a-b plane, conventionally, another wiring is brought into contact with the surface of the superconductor. This results in a drawback that the electrical contact portion must be formed in the C-axis direction, where the critical current density is lower than that in the AB plane. This drawback has had an adverse effect, for example, in that there is a limit to reducing the area of the contact portion.

本発明の目的は配線面内に超伝導臨界電流の最大結晶方
位を設定しても電気的コンタクト部の超伝導臨界電流密
度が向上する酸化物超伝導体配線コンタクト構造とその
製造方法を提供する事にある。
An object of the present invention is to provide an oxide superconductor wiring contact structure and a method for manufacturing the same, in which the superconducting critical current density of the electrical contact portion is improved even if the maximum crystal orientation of the superconducting critical current is set within the wiring plane. It's true.

(課題を解決するための手段) 本発明の酸化物超伝導体配線コンタクト構造は、ab面
に対して斜面に切断された面で他の配線と接触した事を
特徴とし、このコンタクト部を製造する方法は、酸化物
超伝導体配線の一部を等方性エツチングし、酸化物超伝
導体配線内に、配線面に対して斜めに切断された面を形
成する工程と、この斜めに切断された面に他の配線を接
触させる工程とを有する事を特徴とする。
(Means for Solving the Problems) The oxide superconductor wiring contact structure of the present invention is characterized in that it contacts other wiring with a surface cut at an inclined plane with respect to the a-b plane. The method involves isotropically etching a part of the oxide superconductor wiring to form a surface in the oxide superconductor wiring that is cut diagonally with respect to the wiring surface; The method is characterized by comprising a step of bringing another wiring into contact with the surface that has been removed.

(作用) ある外部磁場の影響下におけるab面内での超伝導臨界
電流密度をP、C面内での超伝導臨界電流密度をQとす
る。酸化物超伝導体ではP>Qである事が知られている
。配線部の断面積をRとすれば抵抗Oで配線に流す事の
できる最大超伝導電流はPRであり配線表面に設けたコ
ンタクト部の面積S1はPR/Qとなる。すなわちS1
/R=P/Q>1゜しかし配線面に対して傾斜角θを有
する面でコンタクトを形成した場合、コンタクト部の配
線面への投影面積S2はR/lanθとなる。θは相手
側の配線材料で規定されるが、等方性の材料でPより大
きな電流密度をとればすなわち、従来は電流密度の異方
性のために限界があったコンタクト領域面積を低減でき
る。本発明の酸化物超伝導体配線コンタクト構造を実現
するために、酸化物超伝導体配線内にコンタクト部とな
る部分をエツチングマスクを用°いた等方性エツチング
法で設ける。その結果酸化物超伝導体配線の上表面はエ
ツチングマスク端部から後退し、配線面に対して傾斜角
θに切断された配線の断面形状が実現できる。この断面
に他の配線を接触させるとコンタクト領域面積は酸化物
超伝導体配線の超伝導臨界電流密度の異方性の影響を受
けなくなる。
(Function) Let P be the superconducting critical current density in the a-b plane under the influence of a certain external magnetic field, and let Q be the superconducting critical current density in the C-plane. It is known that P>Q in oxide superconductors. If the cross-sectional area of the wiring portion is R, the maximum superconducting current that can be passed through the wiring with a resistance O is PR, and the area S1 of the contact portion provided on the surface of the wiring is PR/Q. That is, S1
/R=P/Q>1° However, when a contact is formed on a surface having an inclination angle θ with respect to the wiring surface, the projected area S2 of the contact portion onto the wiring surface becomes R/lan θ. θ is determined by the wiring material of the other side, but if the current density is larger than P using an isotropic material, it is possible to reduce the area of the contact area, which was previously limited due to the anisotropy of the current density. . In order to realize the oxide superconductor wiring contact structure of the present invention, a portion that will become a contact portion is provided in the oxide superconductor wiring by an isotropic etching method using an etching mask. As a result, the upper surface of the oxide superconductor wiring recedes from the edge of the etching mask, and a cross-sectional shape of the wiring cut at an inclination angle θ to the wiring surface can be realized. When another wiring is brought into contact with this cross section, the area of the contact region is no longer affected by the anisotropy of the superconducting critical current density of the oxide superconductor wiring.

(実施例) 第1図は本発明の詳細な説明するための酸化物超伝導体
配線コンタクト構造の断面図である。例えばペロブスカ
イト構造を有するYBa2Cu306.gがab面内に
延びて例えば厚さ500nmの酸化物超伝導配線1が配
置された。ab面内での超伝導臨界電流密度は4 X 
10’A/cm2(77k)である。酸化物超伝導配線
の一部に、傾斜角θ=600の傾斜断面3を配置し、こ
の断面を介して例えば膜厚500nmのアルミ上部配線
4を設けた。その結果77に下においても超伝導体配線
内で4X10’A/cm2の電流を電圧降下なく流す事
が可能であった。
(Example) FIG. 1 is a cross-sectional view of an oxide superconductor wiring contact structure for explaining the present invention in detail. For example, YBa2Cu306, which has a perovskite structure. An oxide superconducting wiring 1 with a thickness of, for example, 500 nm was arranged so that g extends in the a-b plane. The superconducting critical current density in the ab plane is 4
10'A/cm2 (77k). An inclined cross section 3 with an inclination angle θ=600 was arranged in a part of the oxide superconducting wiring, and an aluminum upper wiring 4 having a film thickness of 500 nm, for example, was provided through this cross section. As a result, it was possible to flow a current of 4×10'A/cm2 within the superconductor wiring without voltage drop even under 77.

従来技術によれば酸化物超伝導配線表面に本発明よりも
約10倍のコンタクト領域を設ける必要がある。
According to the prior art, it is necessary to provide about 10 times as much contact area on the surface of the oxide superconducting wiring as compared to the present invention.

第2図は本発明の酸化物超伝導体配線コンタクト構造の
製造方法を示す工程断面図である。例えばSrT’10
3(100)基板21上に基板温度400°C下でYB
a2Cu306Jを真空蒸着し、厚さ500nmの酸化
物超伝導配線22を形成した。成膜後02処理を90°
Cで022X10−3Torrで1時間行いYBa2C
u306.8を形成した。続けて5rTiOaを約30
0nmの厚さに成膜し、層間絶縁膜23を形成した。次
に例えばポジ型の7オトレジストを用いてレジストマス
ク24を形成し、露光現象処理によりコンタクト領域2
5を規定した(第2図(a))。次に反応性イオンエツ
チング法を用いて、例えばCCl2F4ガス15Pa電
力密度0.16W/amz下のプラズマ放電中で層間絶
縁膜23と酸化膜超伝導配線22を連続して等方的にエ
ツチングした。その結果コンタクト領域25に傾斜角θ
=約60°の傾斜断面26が形成された(第2図(b)
)。その後レジストマスク24を除去し、例えばアルミ
ニウムの上部配線27を厚さ500nmスパッタ蒸着し
た(第2図(C))。その結果酸化物超伝導配線22と
上部配線27は酸化物超伝導配線22のab面に対する
傾斜面接触し、77に下においても超伝導配線内のコン
タクト近傍でも電圧降下なく、ab面内の超伝導臨界電
流を流す事ができた。すなわちペロブスカイト構造の酸
化物超伝導体配線のC軸方向の臨界電流密度を越える電
流をコンタクト領域の超伝導体内に電圧降下なしで流す
事が可能となり、コンタクト領域の面積の低減が図れた
FIG. 2 is a process cross-sectional view showing a method of manufacturing an oxide superconductor wiring contact structure of the present invention. For example, SrT'10
3 (100) YB on the substrate 21 at a substrate temperature of 400°C.
A2Cu306J was vacuum deposited to form an oxide superconducting wiring 22 with a thickness of 500 nm. 02 treatment after film formation at 90°
YBa2C for 1 hour at 022X10-3 Torr
u306.8 was formed. Continue to add about 30 5rTiOa
A film was deposited to a thickness of 0 nm to form an interlayer insulating film 23. Next, a resist mask 24 is formed using, for example, a positive type 7 photoresist, and the contact area 24 is formed by an exposure process.
5 (Fig. 2(a)). Next, using a reactive ion etching method, the interlayer insulating film 23 and the oxide film superconducting wiring 22 were successively and isotropically etched in plasma discharge under, for example, CCl2F4 gas of 15 Pa and power density of 0.16 W/amz. As a result, the contact area 25 has an inclination angle θ
= An inclined cross section 26 of approximately 60° was formed (Fig. 2(b)
). Thereafter, the resist mask 24 was removed, and an upper wiring 27 made of, for example, aluminum was sputter-deposited to a thickness of 500 nm (FIG. 2(C)). As a result, the oxide superconducting wiring 22 and the upper wiring 27 are in contact with the inclined surface with respect to the ab plane of the oxide superconducting wiring 22, and there is no voltage drop below the oxide superconducting wiring 77 or near the contact in the superconducting wiring, and the superconducting wiring in the ab plane A conduction critical current was able to flow. That is, it became possible to flow a current exceeding the critical current density in the C-axis direction of the perovskite-structured oxide superconductor wiring into the superconductor in the contact region without any voltage drop, and the area of the contact region could be reduced.

この実例ではYBaCuOについて述べたが、本発明は
これに限らず他のY系、LaBaCuO等のLa系、B
15rCaCuO等のBi系、TlBaCaCuO等の
T1系などの酸化物超伝導体にも適用できる。また上述
の実施例のYBaCuOはペロブスカイト構造であるが
、結晶方向によって臨界電流密度に差がある構造であれ
ば本発明を適用できる。
In this example, YBaCuO was described, but the present invention is not limited to this, and the present invention is applicable to other Y-based systems, La-based systems such as LaBaCuO, B-based systems, etc.
It can also be applied to oxide superconductors such as Bi-based such as 15rCaCuO and T1-based such as TlBaCaCuO. Further, although YBaCuO in the above embodiment has a perovskite structure, the present invention can be applied to any structure in which the critical current density differs depending on the crystal direction.

(発明の効果) 請求項1の発明の構造によればab面内に延びた酸化物
超伝導体配線のコンタクト部において、C軸方向の超伝
導臨界電流密度に制限を受けない超伝導体配線のコンタ
クト構造が提供される。
(Effect of the invention) According to the structure of the invention of claim 1, in the contact portion of the oxide superconductor wiring extending in the a-b plane, the superconductor wiring is not limited by the superconducting critical current density in the C-axis direction. contact structures are provided.

請求項2の発明の製造方法によれば、ab面内に延びた
酸化物超伝導体配線のコンタクト部形成において酸化物
超伝導配線内にab面に対して傾斜した断面構造を等方
性エツチングにより形成する事によりC軸方向の超伝導
臨界電流密度に制限を受けない超伝導体配線のコンタク
ト構造の製造方法が提供される。
According to the manufacturing method of the invention of claim 2, in forming the contact portion of the oxide superconductor wiring extending in the AB plane, isotropically etching a cross-sectional structure inclined with respect to the AB plane in the oxide superconducting wiring. A method for manufacturing a contact structure of a superconductor wiring is provided which is not limited by the superconducting critical current density in the C-axis direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構造の実施例を示すための酸化物超伝
導体配線コンタクト構造の断面図である。 第2図(a)〜(e)は本発明の製造方法の実施例を示
すための酸化物超伝導体配線コンタクト構造の製造工程
の断面図である。 図において1,22は酸化物超伝導配線、2,23は層
間絶縁膜、3,26は傾斜断面、4,27は上部配線、
21は基板、24はレジストマスク、25はコンタクト
領域である。
FIG. 1 is a cross-sectional view of an oxide superconductor wiring contact structure to illustrate an embodiment of the structure of the present invention. FIGS. 2(a) to 2(e) are cross-sectional views of the manufacturing process of an oxide superconductor wiring contact structure to show an embodiment of the manufacturing method of the present invention. In the figure, 1 and 22 are oxide superconducting wirings, 2 and 23 are interlayer insulating films, 3 and 26 are inclined cross sections, 4 and 27 are upper wirings,
21 is a substrate, 24 is a resist mask, and 25 is a contact region.

Claims (1)

【特許請求の範囲】 1)a、b面内に延びた酸化物超伝導体配線内に設けら
れた電気的コンタクト部において、a、b面に対して斜
めに切断された面で他の配線と接触した事を特徴とする
酸化物超伝導体配線コンタクト構造。 2)a、b面内に延びた酸化物超伝導体配線に電気的コ
ンタクト部を形成する方法において、酸化物超伝導体配
線の一部を等方性エッチングし、酸化物超伝導体配線内
に、配線面に対して斜めに切断された面を形成する工程
とこの斜めに切断された面に他の配線を接触させる工程
と、を有する事を特徴とする酸化物超伝導体配線コンタ
クト部の製造方法。
[Scope of Claims] 1) In an electrical contact portion provided in an oxide superconductor wiring extending in the a and b planes, other wirings are connected to each other on a plane cut obliquely to the a and b planes. An oxide superconductor wiring contact structure characterized by being in contact with. 2) In a method of forming an electrical contact part in an oxide superconductor wiring extending in planes a and b, a part of the oxide superconductor wiring is isotropically etched, and the inside of the oxide superconductor wiring is An oxide superconductor wiring contact portion comprising the steps of: forming a surface cut diagonally with respect to the wiring surface; and bringing another wiring into contact with the diagonally cut surface. manufacturing method.
JP63230331A 1988-09-13 1988-09-13 Contact structure of oxide superconductor wiring and production thereof Pending JPH0277177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63230331A JPH0277177A (en) 1988-09-13 1988-09-13 Contact structure of oxide superconductor wiring and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63230331A JPH0277177A (en) 1988-09-13 1988-09-13 Contact structure of oxide superconductor wiring and production thereof

Publications (1)

Publication Number Publication Date
JPH0277177A true JPH0277177A (en) 1990-03-16

Family

ID=16906163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63230331A Pending JPH0277177A (en) 1988-09-13 1988-09-13 Contact structure of oxide superconductor wiring and production thereof

Country Status (1)

Country Link
JP (1) JPH0277177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346277A (en) * 1991-05-24 1992-12-02 Nec Corp Layer superconductor circuit and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64780A (en) * 1987-06-23 1989-01-05 Matsushita Electric Ind Co Ltd Connection device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64780A (en) * 1987-06-23 1989-01-05 Matsushita Electric Ind Co Ltd Connection device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346277A (en) * 1991-05-24 1992-12-02 Nec Corp Layer superconductor circuit and manufacture thereof

Similar Documents

Publication Publication Date Title
US5236896A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
US5466664A (en) Method for manufacturing a superconducting device having a thin superconducting channel formed of oxide superconductor material
JPH05335638A (en) Josephson junction structure body and manufacture thereof
US5840204A (en) Method for patterning a layer on oxide superconductor thin film and superconducting device manufactured thereby
EP0477103B1 (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
JPH0277177A (en) Contact structure of oxide superconductor wiring and production thereof
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JP2827572B2 (en) Layered superconductor circuit and manufacturing method thereof
EP0488837B1 (en) Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
JPH0714079B2 (en) Oxide superconducting three-terminal device
JP2000091652A (en) Superconducting element and manufacture thereof
JPH04268774A (en) Josephson junction
JP3075788B2 (en) Manufacturing method of weakly coupled superconducting thin film
JP3270317B2 (en) Method for manufacturing superconducting device
JP2874680B2 (en) Etching method of oxide superconducting thin film
JPH06350147A (en) Superconducting circuit
JP2730360B2 (en) Fabrication method of tunnel type Josephson junction device
JP3249370B2 (en) Superconducting device
JP2963012B2 (en) Superconducting transistor
JP2000286472A (en) Josephson junction element
Sato et al. Fabrication of all YBaCuO trilayer Josephson junctions with YBaCuO wiring layer
JPH05251773A (en) Josephson element and manufacture thereof
JPH05327047A (en) Josephson element and manufacture thereof
JPH04329878A (en) Surface treatment of oxide high-temperature superconductor