JPH0277126A - Dry etching - Google Patents

Dry etching

Info

Publication number
JPH0277126A
JPH0277126A JP19590388A JP19590388A JPH0277126A JP H0277126 A JPH0277126 A JP H0277126A JP 19590388 A JP19590388 A JP 19590388A JP 19590388 A JP19590388 A JP 19590388A JP H0277126 A JPH0277126 A JP H0277126A
Authority
JP
Japan
Prior art keywords
gas
etching
trench
flow rate
sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19590388A
Other languages
Japanese (ja)
Other versions
JP2679815B2 (en
Inventor
Keizo Hirose
圭三 広瀬
Toshiharu Nishimura
俊治 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP19590388A priority Critical patent/JP2679815B2/en
Publication of JPH0277126A publication Critical patent/JPH0277126A/en
Application granted granted Critical
Publication of JP2679815B2 publication Critical patent/JP2679815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable anisotropic etching of a desired trench form with a high aspect ratio, while high selection ratio and high etching rate are maintained, by intermittently adding a gas having a protecting film forming action, during a process wherein main etching gas is introduced and dry etching is executed in a plasma atmosphere. CONSTITUTION:A silicon semiconductor wafer 8 is carried onto a second electrode 3; etching reaction gas, e.g., SF6 gas with a flow rate of 60 SCCM, O2 gas with a flow rate of 40 SCCM and Kr gas with a flow rate of 100 SCCM are supplied in the above vessel 1; the inside of the hermetic vessel 1 is kept at a constant pressure, e.g., 0.6Torr; at this time, from a gas feeding pipe 7, gas having a protecting film forming action, e.g., SiCl4 gas with a flow rate of 1 SCCM is intermittently added, thereby protecting the side wall of the inside of trench. That is, the balance between the etching and the side wall protection can be maintained to the utmost, so that the trench form of trench etching can be controlled in a desirable superior form, without decreasing the etching rate.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ドライエツチング方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a dry etching method.

(従来の技術) 集積回路技術は、高集積化を常に追いかけ、既にIMの
メモリーが市販され、 開発では4M、 16Mが焦点
になっている。この超集積化を達成するための開発要素
のひとつにシリコントレンチエツチングが要求されてい
る。このシリコントレンチエツチングは、ICの集積度
の向上に伴い、素子分離、あるいはキャパシタ・セルの
2次元的面積を縮小させるのにぜひとも必要な技術とな
ってきた。このトレンチエツチングの一手段としてトラ
イオードエツチャーが注目されていることは当業者にお
いて周知である。例示すれば、特公昭57−44749
号公報などに記載されている。
(Conventional technology) Integrated circuit technology is constantly pursuing higher integration, and IM memory is already commercially available, with 4M and 16M being the focus of development. Silicon trench etching is required as one of the development elements to achieve this ultra-integration. As the degree of integration of ICs increases, silicon trench etching has become an indispensable technique for element isolation or for reducing the two-dimensional area of capacitor cells. It is well known to those skilled in the art that a triode etcher is attracting attention as a means of trench etching. For example, Tokuko Sho 57-44749
It is stated in the issue bulletin etc.

(発明が解決しようとする課題) しかしながら、高アスペクト比のトレンチエツチングを
実行すると、アンダーカットの発生や側壁の荒れ等の問
題があった。特に等方性の強いエツチングガスを主エッ
チャントとして用いると。
(Problems to be Solved by the Invention) However, when trench etching with a high aspect ratio is performed, there are problems such as occurrence of undercuts and roughness of side walls. Especially when a strongly isotropic etching gas is used as the main etchant.

マスク下部にアンダーカットの発生が顕著に見られた。Undercuts were clearly observed at the bottom of the mask.

このように形状に関しても、テーパ角の制御及びラウン
ドエツチング等の所望のトレンチ形状を満足させる必要
があった。
As described above, regarding the shape as well, it was necessary to satisfy the desired trench shape by controlling the taper angle and round etching.

本発明は、上記点に対処してなされたもので、高エツチ
ングレート及び高選択比を維持しつつ。
The present invention has been made to address the above points, and maintains a high etching rate and high selectivity.

且つ良好なトレンチエツチング形状を実行できるドライ
エツチング方法を提供するものである。
In addition, the present invention provides a dry etching method that allows a good trench etching shape to be achieved.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は、主エツチングガスを導入し、プラズマ雰囲
気中でのドライエツチングをする工程中、保護膜生成作
用のあるガスを間欠的に添加することを特徴とするもの
である。
(Means for Solving the Problems) This invention is characterized in that during the process of introducing a main etching gas and performing dry etching in a plasma atmosphere, a gas having the effect of forming a protective film is intermittently added. It is something.

(作 用) 保護膜生成作用のあるガスを間欠的に添加することによ
り、トレンチ内部の側壁が保護され、つまり、エツチン
グと側壁保護のバランスが最適に保つことができ、トレ
ンチエツチングのトレンチ形状を所望する良好な形状に
制御することが可能となる。
(Function) By intermittently adding a gas that has the effect of forming a protective film, the side walls inside the trench are protected.In other words, the balance between etching and side wall protection can be maintained optimally, and the trench shape of trench etching can be changed. It becomes possible to control the shape to a desired desired shape.

特に、保護膜生成作用のあるガスの効果が、超微小流量
の添加でもトレンチ形状に大きな影響を与える様な場合
等、 NFC(マスフローコントローラ)での流量制御
では、その超微小流量の為に不可能であり、上記間欠的
な添加により有効に行なうことができる。
In particular, in cases where the effect of a gas that has the effect of forming a protective film has a large effect on the trench shape even with the addition of an ultra-micro flow rate, flow rate control using NFC (mass flow controller) is difficult due to the ultra-micro flow rate. However, this can be effectively achieved by the above-mentioned intermittent addition.

また、従来のエツチングガス種に保護膜生成作用のある
ガスを常時添加した場合のトレンチテーバ角の変化、例
えば、正テーバのトレンチ形状が逆テーパになる等の不
都合が生じることはなく、保護膜生成作用のあるガスを
時間的な間欠添加を行うことで上記トレンチのテーパ角
の変化も防ぐことができる。
In addition, there is no change in the trench taper angle that occurs when a gas that has the effect of forming a protective film is constantly added to the conventional etching gas type, such as changes in the trench shape from a normal taper to a reverse taper. Changes in the taper angle of the trench can also be prevented by adding a gas that has a generating effect intermittently over time.

(実施例) 次に本発明方法をトライオードエツチャーによるドライ
エツチングに適用した一実施例を図面を参照して説明す
る。
(Example) Next, an example in which the method of the present invention is applied to dry etching using a triode etcher will be described with reference to the drawings.

気密容器(1)例えばAQ*の同心円容器が用いられる
。この容器■は、反応ガスに対して応答しないように表
面加工例えばアルミナ(A1220.)面に加工されて
いる。このような容器(1)内には、プラズマを発生す
るため3つの電極■■(イ)が対向配置される。すなわ
ち、上下方向には円板状筒−及び第二の電極■■が設け
られ、これらの電極板■(3)間には中間電極(イ)が
配置される。上記第−及び中間電極■0)はメツシュ構
造となっており、ガスが通過可能な構造となっている。
Airtight container (1) For example, an AQ* concentric container is used. The surface of this container (2) is processed, for example, into an alumina (A1220.) surface so that it does not respond to the reaction gas. In such a container (1), three electrodes (1) are placed facing each other in order to generate plasma. That is, a disc-shaped cylinder and a second electrode (2) are provided in the vertical direction, and an intermediate electrode (A) is arranged between these electrode plates (3). The above-mentioned third and intermediate electrodes (10) have a mesh structure, and are structured to allow gas to pass through.

これら各電極■■(イ)には気密容器ω外から動作電圧
が印加される如く構成されている。例えば第−及び第二
の電極■■と中間電極に)間には高周波電力例えば13
.56MHzが印加される。この高周波電力は、上記第
−及び第二の電極■■に夫々接続した高周波電源■0に
より供給される。さらに、これら各電極■■(イ)間に
エツチングに寄与するガス及び保護膜生成作用を有する
ガス等を供給するごとく、ガス導入パイプ■が上記容器
(1)に結合されている。また、このガス導入パイプ■
により供給されたガスはメツシュ構造の第−及び中間電
極■(へ)を通過し第二の電wA■上に設置した被処理
体例えば半導体ウェハ(へ)表面に供給可能とされてい
る。さらに、この容器■のガスを排気するため排気ダク
ト■が上記容器■に結合されてトライオードエツチャー
(10)が構成されている。
Each of these electrodes (1) is constructed so that an operating voltage is applied from outside the airtight container ω. For example, a high frequency power such as 13
.. 56MHz is applied. This high frequency power is supplied by a high frequency power source (20) connected to the first and second electrodes (2), respectively. Furthermore, a gas introduction pipe (2) is connected to the container (1) so as to supply a gas contributing to etching, a gas having a protective film forming action, etc. between each of these electrodes (1). Also, this gas introduction pipe■
The supplied gas can pass through the mesh-structured first and intermediate electrodes (2) and be supplied to the surface of an object to be processed, such as a semiconductor wafer, placed on the second electrode (WA). Further, an exhaust duct (2) is connected to the container (2) to exhaust gas from this container (2), thereby forming a triode etcher (10).

更に、上記ウェハ(8)の第二の電極■上への搬入、及
び上記電極■からの搬出時、上記電極■および上記中間
電極(イ)間の間隔を広くするように相対的に移動可能
な構造としてもよい、更に、上記ウェハ■と第二の電橋
■表面との密着率を高めるために、第二の電極■の表面
中心部が突出した状態の曲率を有する構造とし1周辺部
をリング状の抑圧機構でに方から押圧するようにしても
よい。
Further, when the wafer (8) is carried onto the second electrode (1) and taken out from the second electrode (2), it is relatively movable so as to widen the distance between the electrode (2) and the intermediate electrode (A). Furthermore, in order to increase the adhesion rate between the wafer (2) and the surface of the second electric bridge (2), the second electrode (4) may have a structure with a curvature in which the central part of the surface protrudes. Alternatively, a ring-shaped suppression mechanism may be used to press from the opposite direction.

次に、」―記1−ライオードエツチャーによるエツチン
グ方法を具体的に説明する。
Next, the etching method using a lieode etcher will be explained in detail.

被処理体例えばシリコン半導体ウェハ(8)を」ユ記第
二の電極■上に搬入し、予め定められた位置に設置する
。次に、ガス導入パイプ■から、エツチング反応ガス例
えばSFGガス流量60SCCM、 O□ガス流−11
t40sccM、及びKrガス流ffi 11005C
Cを上記容器(1)内に供給し、気密容器(1)内圧力
を一定圧力例えば0.6TORRに保つ。この時、供給
ガスは上記の様に第一の電極■を通過し更に、中間電極
に)を通過して第二の電極■上のウェハ(8)に供給さ
れ、排気ダクト■により排気される。またこの時、中間
電極(イ)に対し第−及び第二の電極■に3)に、夫々
13.56M11zの高周波電力例えば第一の電極■に
4001+1゜第二の電極■に200vを高周波電極0
0から印加する。この時、上記ガス導入パイプ■から、
保護膜生成作用のあるガス例えば5iCj!4ガス流量
I SCCMを間欠的に添加する。
An object to be processed, such as a silicon semiconductor wafer (8), is carried onto the second electrode (1) and placed at a predetermined position. Next, from the gas introduction pipe ■, an etching reaction gas such as SFG gas flow rate of 60SCCM, O□ gas flow -11
t40sccM, and Kr gas flowffi 11005C
C is supplied into the container (1), and the pressure inside the airtight container (1) is maintained at a constant pressure, for example, 0.6 TORR. At this time, the supply gas passes through the first electrode (2) and the intermediate electrode (2) as described above, is supplied to the wafer (8) on the second electrode (3), and is exhausted by the exhaust duct (3). . Also, at this time, a high frequency power of 13.56M11z is applied to the intermediate electrode (A) to the second electrode (3), and a high frequency power of 13.56M11z is applied to the high frequency electrode, for example, 4001 + 1° to the first electrode (2) and 200V to the second electrode (3). 0
Apply from 0. At this time, from the above gas introduction pipe ■,
Gases that have the effect of forming a protective film, such as 5iCj! 4 gas flow rate I SCCM is added intermittently.

この間欠操作の影響によるトレンチエツチング形状を第
2図に示す。(a)図は、保護膜生成作用のあるガス例
えば5iCLを添加しない場合を示している。つまり、
SF、、O□、 Krのみのガス種の場合を示し、(b
)図は、5iCff、を常時I SCCM添加した場合
。(c)図は、5iCQ41 SCCMを1 min添
加、及び1 min無添加の各々の操作を繰り返した場
合を示している6(d)図は、5iCJ!41 SCC
Mをl0sec添加、及び]0sec無添加の各々の操
作の繰り返しで、さらに(e)図では、同様に5iC1
241,SCCMを5 sec添加。
FIG. 2 shows the shape of the trench etched due to the effects of this intermittent operation. The figure (a) shows the case where a gas having the effect of forming a protective film, for example, 5iCL, is not added. In other words,
The case of only gas species SF, , O□, Kr is shown, (b
) The figure shows the case where 5iCff is constantly added to ISCCM. (c) Figure shows the case where the operation was repeated with 5iCQ41 SCCM added for 1 min and without addition for 1 min. 6 (d) Figure shows 5iCJ! 41 SCC
By repeating each operation of adding M for 10 sec and not adding M for 0 sec, in the figure (e), 5iC1
241, SCCM was added for 5 seconds.

及び5 sec無添加の各々の操作を繰り返した場合の
トレンチ形状の変化を示している。上記(a)図は、 
Sin、マスクの下にアンダーカットが生じている。 
この時、エツチングレートは、 1.Lm/minであ
った。また、(b)図の様に5jCQ、 I SCCM
を常時添加すると、(a)図の様なアンダーカットの発
生はなくなるもののトレンチ形状が(a)図の正テーパ
から逆テーパへと大きく変化してしまっている。
It shows the change in trench shape when each operation was repeated for 5 seconds without addition. The above figure (a) is
Sin, an undercut occurs under the mask.
At this time, the etching rate is: 1. It was Lm/min. Also, as shown in (b) 5jCQ, ISCCM
If , is constantly added, the undercut as shown in Figure (a) disappears, but the shape of the trench changes significantly from the normal taper shown in Figure (a) to the reverse taper.

次に、(c)図の様に5iCf24の間欠添加を行うと
、アンダーカットの発生は見られないが、(b)図と同
様、トレンチ形状に変化があり側壁が波うった状態にな
ってしまう。そこで、Sj、C4,の添加、無添加の時
間を短くすると、(d)図、最終的に(e)図の様な、
アンダーカットの発生がなく、適度な正テーパ、ラウン
ドエツチング等の良好なエツチング形状が得られている
。 また、(e)図におけるエツチングレートも(a)
図と同様に1.8μm/mjnであり、エツチングレー
トの低下は見られず高エツチングレートを維持できる。
Next, when 5iCf24 is added intermittently as shown in (c), no undercut is observed, but as in (b), the trench shape changes and the sidewalls become wavy. Put it away. Therefore, if we shorten the time of addition and non-addition of Sj, C4, we get the result shown in figure (d) and finally figure (e).
There is no undercut, and a good etched shape such as an appropriate positive taper and round etching is obtained. Also, the etching rate in figure (e) is also
As in the figure, the etching rate was 1.8 μm/mjn, and a high etching rate could be maintained without any decrease in the etching rate.

これらの図から判るように、保護膜生成作用のあるガス
を間欠的に添加することにより低温プラズマを用いた異
方性トレンチエツチングのトレンチ形状を改善すること
ができる。
As can be seen from these figures, the trench shape obtained by anisotropic trench etching using low-temperature plasma can be improved by intermittently adding a gas having the effect of forming a protective film.

上記実施例では、保護膜生成作用のあるガスの添加、無
添加の割合を1:1で行ったが、これに限定するもので
はなく、例えば2:1,3:1等各種プロセスに順応さ
せ、自由に最適値を決定できる。
In the above example, the ratio of addition and non-addition of the gas that has the effect of forming a protective film was 1:1, but the ratio is not limited to this, and may be adapted to various processes such as 2:1, 3:1, etc. , the optimal value can be determined freely.

さらに、上記実施例では、トライオードエツチャーにつ
いて説明したが、2極エツチヤーでもIECRエツチャ
ーでも何れにも適用することができる。
Further, in the above embodiments, a triode etcher has been described, but the present invention can be applied to either a two-pole etcher or an IECR etcher.

以上述べたようにこの実施例によれば、保護膜生成作用
のあるガスを間欠的に添加することにより、トレンチ内
部の側壁が保護され、つまり、エツチングと側壁保護の
バランスが最適に保つことができ、トレンチエツチング
のトレンチ形状をエノチングレ−1−を低下させずに、
所望する良好な形状に制御することが可能となる。
As described above, according to this embodiment, the side walls inside the trench are protected by intermittently adding a gas that has the effect of forming a protective film, which means that the balance between etching and side wall protection can be maintained optimally. It is possible to change the trench shape of trench etching without reducing the etching rate.
It becomes possible to control the shape to a desired desired shape.

特に、保護膜生成作用のあるガスの効果が、超微小流量
の添加でもトレンチ形状に大きな影響を与えるような場
合等、NFCでの流量制御では、その超微小流量のため
に不可能であり、上記間欠的な添加により有効に行なう
ことができる。
In particular, in cases where the effect of a gas that has the effect of forming a protective film has a large effect on the trench shape even with the addition of an ultra-micro flow rate, it is impossible to control the flow rate using NFC due to the ultra-micro flow rate. This can be effectively achieved by the above-mentioned intermittent addition.

また、従来のエツチングガス種に、保護膜生成作用のあ
るガスを常時添加した場合のトレンチテーパ角の変化、
例えば正テーパのトレンチ形状が逆テーパになる等の不
都合が生じることはなく、保護膜生成作用のあるガスを
時間的な間欠添加を行なうことで上記トレンチのテーパ
角の変化も防ぐことができる。
In addition, the change in trench taper angle when a gas with a protective film-forming effect is constantly added to the conventional etching gas type,
For example, inconveniences such as a normally tapered trench shape becoming a reverse taper do not occur, and changes in the taper angle of the trench can also be prevented by temporally adding a gas that has the effect of forming a protective film.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、高選択比。 As explained above, according to the present invention, high selectivity can be achieved.

高エツチングレートを維持しつつ、アスペクト比の高い
所望するトレンチ形状の異方性エツチングを行なうこと
ができる。
It is possible to perform anisotropic etching of a desired trench shape with a high aspect ratio while maintaining a high etching rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を説明するためのトレン
チエツチャー構成図、第2図は第1図方法によるトレン
チエツチングの溝形状を説明するための図である。 1・・・容器、      2,3.4・・・電極、5
.6・・・高周波電源、7・・ガス導入パイプ。 特許出願人 東京エレクトロン株式会社(a)    
     (b) (C)         (d)        (e
)第2図 IR6−
FIG. 1 is a structural diagram of a trench etching machine for explaining one embodiment of the method of the present invention, and FIG. 2 is a diagram for explaining the groove shape of trench etching according to the method of FIG. 1... Container, 2, 3.4... Electrode, 5
.. 6...High frequency power supply, 7...Gas introduction pipe. Patent applicant Tokyo Electron Ltd. (a)
(b) (C) (d) (e
) Figure 2 IR6-

Claims (1)

【特許請求の範囲】[Claims] 主エッチングガスを導入し、プラズマ雰囲気中でのドラ
イエッチングをする工程中、保護膜生成作用のあるガス
を間欠的に添加することを特徴とするドライエッチング
方法。
A dry etching method characterized by introducing a main etching gas and intermittently adding a gas having a protective film forming effect during the process of dry etching in a plasma atmosphere.
JP19590388A 1988-06-24 1988-08-04 Dry etching method Expired - Lifetime JP2679815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19590388A JP2679815B2 (en) 1988-06-24 1988-08-04 Dry etching method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-157577 1988-06-24
JP15757788 1988-06-24
JP19590388A JP2679815B2 (en) 1988-06-24 1988-08-04 Dry etching method

Publications (2)

Publication Number Publication Date
JPH0277126A true JPH0277126A (en) 1990-03-16
JP2679815B2 JP2679815B2 (en) 1997-11-19

Family

ID=26484978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19590388A Expired - Lifetime JP2679815B2 (en) 1988-06-24 1988-08-04 Dry etching method

Country Status (1)

Country Link
JP (1) JP2679815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816674A1 (en) * 2006-02-01 2007-08-08 Alcatel Lucent Anisotropic etching method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816674A1 (en) * 2006-02-01 2007-08-08 Alcatel Lucent Anisotropic etching method
WO2007088302A1 (en) * 2006-02-01 2007-08-09 Alcatel Lucent Anisotropic etching process

Also Published As

Publication number Publication date
JP2679815B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
KR102046193B1 (en) Plasma etching method and plasma etching apparatus
US9177823B2 (en) Plasma etching method and plasma etching apparatus
US11462412B2 (en) Etching method
US20180197720A1 (en) Plasma processing method and plasma processing apparatus
KR20090093875A (en) Plasma etching method, plasma etching apparatus and computer-readable storage medium
KR20060028660A (en) Dry-etching method
US4341616A (en) Dry etching device
JP2022544673A (en) Multi-state RF pulsing to control mask shape and destroy selectivity versus process margin trade-offs
JPH0277126A (en) Dry etching
JP2002198356A (en) Plasma treatment apparatus
JPH0277123A (en) Dry etching
JPS63239948A (en) Dry etching apparatus
JPS62224687A (en) Etching method
JPH08124913A (en) Etching system
JP2603989B2 (en) Method for manufacturing semiconductor device
JPH0714769A (en) Semiconductor production device
JP4436463B2 (en) Etching chamber apparatus having three independent control electrodes
JPH0223619A (en) Manufacture of semiconductor device
JP2024001464A (en) Etching method and plasma processing apparatus
JPH05234953A (en) System and method for etching conductive thin film
JPS61264730A (en) Etching method of aluminum
JPH0362518A (en) Etching process
JPH0680643B2 (en) Etching method of silicon oxide film
JPH06177075A (en) Etching method
JPS62222640A (en) Dry etching unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12