JPH027704A - Plane antenna - Google Patents

Plane antenna

Info

Publication number
JPH027704A
JPH027704A JP15851788A JP15851788A JPH027704A JP H027704 A JPH027704 A JP H027704A JP 15851788 A JP15851788 A JP 15851788A JP 15851788 A JP15851788 A JP 15851788A JP H027704 A JPH027704 A JP H027704A
Authority
JP
Japan
Prior art keywords
ground conductor
antenna
antenna element
conductor plate
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15851788A
Other languages
Japanese (ja)
Inventor
Hirohiko Yamamoto
裕彦 山本
Masao Miyazaki
正夫 宮崎
Tomozo Ota
智三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP15851788A priority Critical patent/JPH027704A/en
Publication of JPH027704A publication Critical patent/JPH027704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the antenna efficiency by providing a feeder between two ground conductor plates so as to prevent the radiation loss due to undesired radiation from the feeder and to prevent the increase in the line loss. CONSTITUTION:A 1st ground conductor plate 3 is formed on the upper face different from the forming face of the antenna element 1 of the dielectric board 2 supporting the antenna element 1, the conductor is removed by a hole 3a with respect to the region of the antenna element 1 and the surrounding base is covered. Then a 2nd ground conductor plate 5 is arranged at an interval with respect to the dielectric board 2 with the 1st ground conductor plate 3 formed thereupon. The feeder 4 forms a microstrip line with the 1st ground conductor plates 3 while putting the dielectric base 2 between them and in this case, the 2nd ground conductor plate 5 acts like a shield plate. Thus, the antenna with a comparatively broad band characteristic, less feeder loss and a high efficiency is obtained.

Description

【発明の詳細な説明】 童栗上二丑几分! 本発明は、衛星放送受信等の用途に用いるマイクロ波帯
の平面アンチナに関する。
[Detailed description of the invention] Two chestnuts! The present invention relates to a microwave band flat antenna used for applications such as satellite broadcast reception.

従来■侠街 近年我が国では衛星放送が実用化され、又諸外国でもい
くつかの衛星放送が計画されている。これらの衛星放送
では、12GH2帯のSHF電波が主に使用される。こ
のSHF電波を受信する受信アンテナとしては、パラボ
ラアンテナ、平面アンテナ等の高利得なペンシルビーム
アンテナが実用化されている。中でも平面アンテナは薄
型、平板状であること、耐風性、耐雪性が良いこと、設
置が簡単であること等の理由により近年注目されている
Conventional ■ Chivalry Street In recent years, satellite broadcasting has been put into practical use in Japan, and several countries are also planning satellite broadcasting. These satellite broadcasts mainly use SHF radio waves in the 12GH2 band. As receiving antennas for receiving these SHF radio waves, high-gain pencil beam antennas such as parabolic antennas and planar antennas have been put into practical use. Among them, planar antennas have attracted attention in recent years because of their thinness, flat shape, good wind and snow resistance, and easy installation.

従来の平面アンテナの一例を第5図に示す。同図は従来
のバッチアンテナアレイの一部を示す図で、第5図中9
はアンテナ素子を、10は給電線路を、11は誘電体基
板を、12は地導体を示す。アンテナ素子9は誘電体基
板11及び地導体12とともにマイクロストリップアン
テナを構成する。尚マイクロストリップアンテナのアン
テナQ値は誘電体基板11の厚さによって変化する。給
電線路10は誘電体基板11.地導体12でマイクロス
トリップ線路を構成する。給電線路10はアンテナ素子
9に接続されているので、前記マイクロストリップアン
テナで受信された信号は前記マイクロストリップ線路に
伝えられ、マイクロストリップ線路から受信信号が取り
出される。
An example of a conventional planar antenna is shown in FIG. This figure shows a part of a conventional batch antenna array.
10 represents an antenna element, 10 represents a feed line, 11 represents a dielectric substrate, and 12 represents a ground conductor. Antenna element 9 constitutes a microstrip antenna together with dielectric substrate 11 and ground conductor 12. Note that the antenna Q value of the microstrip antenna changes depending on the thickness of the dielectric substrate 11. The feed line 10 is a dielectric substrate 11. The ground conductor 12 constitutes a microstrip line. Since the feed line 10 is connected to the antenna element 9, the signal received by the microstrip antenna is transmitted to the microstrip line, and the received signal is extracted from the microstrip line.

が ° しようとする  占 前記のような従来のパッチアンテナアレイは、良好な入
力VSWR(定在波比)が比較的狭帯域である。このよ
うな不都合に対して広帯域化を図るため、誘電体基板の
厚さを厚くしてアンテナのQ値を下げることも考えられ
るが、この場合にはマイクロストリップ線路での線路損
失が増え高効率にできないという問題点がある。
Conventional patch antenna arrays, such as those mentioned above, have good input VSWR (standing wave ratio) and a relatively narrow band. In order to overcome these disadvantages and achieve a wider band, it may be possible to increase the thickness of the dielectric substrate to lower the Q value of the antenna, but in this case, the line loss in the microstrip line increases and it becomes difficult to achieve high efficiency. The problem is that it cannot be done.

本発明は上記問題点に鑑みて成されたもので、簡単な構
造で高効率化を図り得る平面アンテナを提供することを
目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a planar antenna that has a simple structure and can achieve high efficiency.

占を ′ るための 本発明は、アンテナ素子及びこのアンテナ素子に接続さ
れた給電線路を形成した誘電体基板に、少なくともアン
テナ素子を形成した基板表面を除く周辺を被って第1の
地導体板を形成し、この第1の地導体板を形成した誘電
体基板に対して間隔を置いて第2の地導体板を配置して
平面アンテナを構成したものである。
In the present invention, a first ground conductor plate is provided on a dielectric substrate on which an antenna element and a feed line connected to the antenna element are formed, covering at least the periphery of the substrate except for the surface on which the antenna element is formed. A planar antenna is constructed by arranging a second ground conductor plate at a distance from the dielectric substrate on which the first ground conductor plate is formed.

立−■ 上述する構成により、誘電体基板から間隔を置いて配置
された第2の地導体板は、誘電体基板上のアンテナ素子
と共にマイクロストリップアンテナを形成し、またアン
テナ素子はアンテナ素子領域を除く周辺部に第1の地導
体板が位置するため、マイクロストリップアンテナとし
て電波を受信する。
With the above-described configuration, the second ground conductor plate spaced apart from the dielectric substrate forms a microstrip antenna together with the antenna element on the dielectric substrate, and the antenna element covers the antenna element area. Since the first ground conductor plate is located at the periphery, it receives radio waves as a microstrip antenna.

このようなアンテナ構造では、広帯域化のために誘電体
基板自体を厚くする必要がなく、また給電線路が2枚の
地導体板に挟まれているため、給電線路からの不要な放
射による放射損失を防ぎ、線路損失の増大を阻止してア
ンテナ効率を向上させる。又マイクロストリップアンテ
ナではアンテナ素子と第2の地導体板との間の比誘電率
が小さいほどアンテナのQ値は小さくなるが、本発明で
は空気層となるため、マイクロストリップアンテナのQ
値が小さくなり、広帯域なアンテナにすることができる
。又アンテナ素子と第2の地導体板の間隔ならびに給電
線路と第1の地導体板間の誘電体基板の厚みを別々に設
計できるため、マイクロストリップアンテナと給電線路
がそれぞれ最適になるようにアンテナ素子と第2の地導
体板の間隔、及び誘電体基板の厚みを選ぶことができる
With this type of antenna structure, there is no need to thicken the dielectric substrate itself in order to widen the band, and since the feed line is sandwiched between two ground conductor plates, radiation loss due to unnecessary radiation from the feed line is reduced. This prevents line losses from increasing and improves antenna efficiency. In addition, in a microstrip antenna, the Q value of the antenna decreases as the dielectric constant between the antenna element and the second ground conductor plate decreases, but in the present invention, since the air layer is formed, the Q value of the microstrip antenna
The value becomes smaller, and it is possible to create a broadband antenna. In addition, the distance between the antenna element and the second ground conductor plate and the thickness of the dielectric substrate between the feed line and the first ground conductor plate can be designed separately, so the antenna can be designed to optimize the microstrip antenna and the feed line, respectively. The distance between the element and the second ground conductor plate and the thickness of the dielectric substrate can be selected.

尖」L皿 以下本発明の実施例を詳細に説明する。Tsuke” L plate Examples of the present invention will be described in detail below.

第1図は本発明の一実施例を示す断面図で、1はアンテ
ナ素子となる導体を、2はアンテナ素子1を支持する誘
電体基板を示し、3は誘電体基板2の前記アンテナ素子
1の形成面とは異なる上側の面に形成し、且つアンテナ
素子lの領域に対しては孔3aによって導体を除去し、
周辺の基板部分を被って形成した第1の地導体板である
。4はアンテナ素子lに接続された給電線路となる導体
を、5は誘電体基板2の下側の第2の地導体板を、6は
第2の地導体板5を前記誘電体基板2から隔てるための
スペーサを示す。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, in which 1 represents a conductor serving as an antenna element, 2 represents a dielectric substrate supporting the antenna element 1, and 3 represents the antenna element 1 of the dielectric substrate 2. The conductor is formed on an upper surface different from the surface on which the antenna element is formed, and the conductor is removed from the hole 3a in the region of the antenna element l,
This is a first ground conductor plate formed to cover the peripheral board portion. 4 is a conductor that becomes a feed line connected to the antenna element l, 5 is a second ground conductor plate on the lower side of the dielectric substrate 2, and 6 is a conductor that connects the second ground conductor plate 5 from the dielectric substrate 2. A spacer for separation is shown.

前記アンテナ素子1、上側の第1の地導体板3、給電線
路4の各導体パターンは誘電体基板3の両面に形成した
銅箔にエツチング加工等を施こすことによって作製され
る。又スペーサ6は誘電体、若しくは導体材料が使用さ
れ、導体の場合はアンテナ素子1、給電線路4の電磁界
に大きな影響を与えない程度に、それらから離間した位
置に設けられる。スペーサ6が導体の場合、第2の地導
体板5と一体で作製することもできる。アンテナ素子1
の形状は、公知のマイクロストリップアンテナに用いら
れているアンテナ素子で、第2の地導体板5と不平衡型
共振回路を形成する。
The conductor patterns of the antenna element 1, the upper first ground conductor plate 3, and the feed line 4 are fabricated by etching copper foil formed on both sides of the dielectric substrate 3. Further, the spacer 6 is made of a dielectric or a conductive material, and in the case of a conductor, it is provided at a position away from the antenna element 1 and the feed line 4 to such an extent that it does not have a large effect on the electromagnetic field thereof. When the spacer 6 is a conductor, it can also be manufactured integrally with the second ground conductor plate 5. antenna element 1
The shape is an antenna element used in a known microstrip antenna, and forms an unbalanced resonant circuit with the second ground conductor plate 5.

厚さり、比誘電率ε、の誘電体基板の両面にアンテナ素
子と地導体板をそれぞれ配置したマイクロストリップア
ンテナのQは一般的に次式で表せる。
The Q of a microstrip antenna in which an antenna element and a ground conductor plate are respectively arranged on both sides of a dielectric substrate having a thickness and a relative dielectric constant ε can generally be expressed by the following equation.

ただしC6i自由空間中の光速 f1 ;共振周波数 本実施例の構造では、アンテナ素子1と第2の地導体板
5の間は空気層であり、上式のε、にあたる等価的な比
誘電率はlになる。一般に誘電体基板の比誘電率は2〜
10程度であるので、従来のマイクロストリップアンテ
ナに比べて空気層を挟んだ本実施例のマイクロストリッ
プアンテナはQが低い。すなわち広帯域なマイクロスト
リップアンテナとなる。ところで第1の地導体板3は上
述したように誘電体基板表面上でアンテナ素子1の領域
を除いた形状に設けられているためマイクロストリップ
アンテナの指向性に大きな影響を与えない。給電線路4
は、誘電体基板2を挟んで第1の地導体板3との間でマ
イクロストリップ線路を形成し、この時第2の地導体板
5は遮蔽板として機能する。又第2の地導体板5と給電
線路4の間の高さが誘電体基板2の厚さと同程度である
場合、給電線路4は第1の地導体板3.第2の地導体板
5の間でストリップライン線路を形成するとみなすこと
ができる。
However, C6i speed of light in free space f1; resonant frequency In the structure of this embodiment, there is an air layer between the antenna element 1 and the second ground conductor plate 5, and the equivalent dielectric constant corresponding to ε in the above equation is It becomes l. Generally, the dielectric constant of dielectric substrate is 2~
Since it is about 10, the microstrip antenna of this embodiment sandwiching an air layer has a lower Q than the conventional microstrip antenna. In other words, it becomes a broadband microstrip antenna. By the way, as described above, the first ground conductor plate 3 is provided in a shape excluding the area of the antenna element 1 on the surface of the dielectric substrate, so it does not have a large effect on the directivity of the microstrip antenna. Power feed line 4
forms a microstrip line with the first ground conductor plate 3 with the dielectric substrate 2 in between, and at this time the second ground conductor plate 5 functions as a shielding plate. Further, when the height between the second ground conductor plate 5 and the feed line 4 is approximately the same as the thickness of the dielectric substrate 2, the feed line 4 is connected to the first ground conductor plate 3. It can be considered that a stripline line is formed between the second ground conductor plates 5.

本実施例のような構成の給電線路を従来のマイクロスト
リップ線路と比較した場合、線路と地導体板間の比誘電
率が小さいため線路からの放射損失がなく線路損失が小
さくなる。衛星放送受信アンテナのように大面積のアレ
イとする場合、線路の曲がりやインピーダンス変換部等
の不連続部が避られす、この不連続部分からの放射損失
は特に大きくなるという問題があるが、前記実施例のよ
うな構成の給電線路は、線路損失の低減に有効である。
When a feed line configured as in this embodiment is compared with a conventional microstrip line, the relative dielectric constant between the line and the ground conductor plate is small, so there is no radiation loss from the line, and the line loss is small. When creating a large-area array like a satellite broadcasting antenna, discontinuities such as curved lines and impedance conversion sections are avoided, and there is a problem in that the radiation loss from these discontinuities becomes particularly large. The feed line configured as in the embodiment described above is effective in reducing line loss.

尚、第2図は誘電体基板2をアンテナ素子1側から見た
図である。図中第1の地導体板3に設けた孔3aの位置
を破線で示しである。第2図に示すようにアンテナ素子
1と給電線路4を同一平面で接続した構造では、第1の
地導体板3の孔3aを通過してきた電波は、アンテナ素
子】によって受信され、受信信号は給電線路4へ導かれ
、給電線路4の端から受信信号として取り出される。こ
の時、本実施例は前述のように広帯域なアンテナでかつ
低損失給電線路の構成となっているため効率的に受信信
号をとり出せる。
Note that FIG. 2 is a diagram of the dielectric substrate 2 viewed from the antenna element 1 side. In the figure, the position of the hole 3a provided in the first ground conductor plate 3 is indicated by a broken line. As shown in FIG. 2, in a structure in which the antenna element 1 and the feed line 4 are connected on the same plane, the radio waves passing through the hole 3a of the first ground conductor plate 3 are received by the antenna element, The signal is guided to the feed line 4 and taken out from the end of the feed line 4 as a received signal. At this time, since this embodiment uses a wideband antenna and has a low-loss feed line configuration as described above, the received signal can be extracted efficiently.

第3図は本発明の他の実施例を示す断面図で、図中第1
図と同一部分は同一符号で示す。本実施例は誘電体基板
2に対してアンテナ素子lを第1の地導体板3と同一面
上に形成し、給電線路4を誘電体基板2の反対側の面に
形成し、アンテナ素子1と給電線路4の間を基板2を貫
通する導体ビン又はスルーホール7で接続して構成する
FIG. 3 is a sectional view showing another embodiment of the present invention.
The same parts as in the figure are indicated by the same reference numerals. In this embodiment, the antenna element 1 is formed on the same surface as the first ground conductor plate 3 on the dielectric substrate 2, the feed line 4 is formed on the opposite surface of the dielectric substrate 2, and the antenna element 1 is formed on the same surface as the first ground conductor plate 3. and the feed line 4 are connected by a conductor bottle or through hole 7 penetrating the substrate 2.

本実施例の場合、アンテナ素子1と間隔を置いて配置さ
れた第2の地導体板5の間の等価的な比誘電率は、誘電
体基板2があるために1よりも大きな値となる。しかし
ながら、アンテナ素子1と第2の地導体板5の間の厚み
は第1図に示した構造と比較すると基板の厚さ分だけ厚
くなる。一般にアンテナ素子と地導体板間の距離が大き
くなるとQ値は下がる特性があり、本実施例のように比
誘電率が1より大きくなっても、距離が増えているため
アンテナとしてのQ値はそれほど高くはならない。また
アンテナ素子1の上面に誘電体がないために電波が誘電
体基板中を通過する際に生じる損失はない。
In the case of this embodiment, the equivalent dielectric constant between the antenna element 1 and the second ground conductor plate 5 arranged at a distance has a value larger than 1 due to the presence of the dielectric substrate 2. . However, the thickness between the antenna element 1 and the second ground conductor plate 5 is increased by the thickness of the substrate compared to the structure shown in FIG. In general, as the distance between the antenna element and the ground conductor plate increases, the Q value decreases, and even if the dielectric constant becomes greater than 1 as in this example, the Q value as an antenna decreases because the distance increases. It won't be that expensive. Furthermore, since there is no dielectric material on the top surface of the antenna element 1, there is no loss that occurs when radio waves pass through the dielectric substrate.

第4図は本発明の第3の実施例を示す図で、前記第1の
実施例と同一部分は同一符号を用いて示す。本実施例は
第1の地導体板3としてプレス加工等により形成された
導体板を用い、誘電体基板2と第1の地導体板3の間に
、地導体板3に設けた孔3aと同一位置に孔8aを作成
したスペーサ8を配置して構成する。
FIG. 4 is a diagram showing a third embodiment of the present invention, in which the same parts as in the first embodiment are designated by the same reference numerals. In this embodiment, a conductor plate formed by press working or the like is used as the first ground conductor plate 3, and a hole 3a provided in the ground conductor plate 3 is inserted between the dielectric substrate 2 and the first ground conductor plate 3. It is constructed by arranging spacers 8 with holes 8a formed at the same position.

本実施例の場合、誘電体基板2をフィルム状の薄いシー
トで形成してアンテナ素子1上部にくる誘電体の厚さを
薄くし、誘電体部分で電波が通過する際の損失を減らし
、かつ給電線路4と第1の地導体板3の間の厚さを線路
損失が最小となるように設定して更に高効率なアンテナ
とすることができる。
In the case of this embodiment, the dielectric substrate 2 is formed of a thin film-like sheet to reduce the thickness of the dielectric above the antenna element 1, thereby reducing loss when radio waves pass through the dielectric portion, and By setting the thickness between the feed line 4 and the first ground conductor plate 3 so that the line loss is minimized, a more efficient antenna can be obtained.

溌」Fと丸及 以上説明したように本発明の平面アンテナは、アンテナ
素子として比較的広帯域特性をもたせながら給電線路損
失の少い高効率なアンテナとすることができる。従って
本発明のアンテナを多数平面状に配列してアレイアンテ
ナとすれば、高効率な衛星放送受信アンテナが実現でき
る。
As explained above, the planar antenna of the present invention can be a highly efficient antenna with low feed line loss while having relatively wide band characteristics as an antenna element. Therefore, if a large number of antennas according to the present invention are arranged in a plane to form an array antenna, a highly efficient satellite broadcast receiving antenna can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は同実
施例における誘電体基板に作られた導体パターンの平面
図、第3図は本発明の他の実施例を示す断面図、第4図
は本発明の更に他の実施例を示す断面図、第5図は従来
例を示す斜視図である。 1−アンテナ素子。 2・・−誘電体基板。 3−・第1の地導体板。 4−給電線路。 5−・第2の地導体板。 6・・−スペーサ。 7・−導体ピン。 8・−・スペーサ。 出 代 願人 シャープ株式会社 埋入
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a plan view of a conductor pattern made on a dielectric substrate in the same embodiment, and FIG. 3 is a cross-sectional view showing another embodiment of the present invention. 4 are sectional views showing still another embodiment of the present invention, and FIG. 5 is a perspective view showing a conventional example. 1-Antenna element. 2...-dielectric substrate. 3--First ground conductor plate. 4-Feed line. 5--Second ground conductor plate. 6...-Spacer. 7.-Conductor pin. 8.--Spacer. Embedded by applicant Sharp Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)誘電体基板の一方の面に形成したアンテナ素子と
、前記誘電体基板面の前記アンテナ素子領域を除く周辺
部を被って形成された第1の地導体板と、前記誘電体基
板上に形成されアンテナ素子に接続された給電線路と、
前記誘電体基板に対して間隔を隔てて配置された第2の
地導体板とからなることを特徴とする平面アンテナ。
(1) An antenna element formed on one surface of a dielectric substrate, a first ground conductor plate formed to cover a peripheral portion of the dielectric substrate surface excluding the antenna element area, and a first ground conductor plate formed on the dielectric substrate surface. a feed line formed in the antenna element and connected to the antenna element;
A planar antenna comprising: a second ground conductor plate disposed at a distance from the dielectric substrate.
JP15851788A 1988-06-27 1988-06-27 Plane antenna Pending JPH027704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15851788A JPH027704A (en) 1988-06-27 1988-06-27 Plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15851788A JPH027704A (en) 1988-06-27 1988-06-27 Plane antenna

Publications (1)

Publication Number Publication Date
JPH027704A true JPH027704A (en) 1990-01-11

Family

ID=15673473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15851788A Pending JPH027704A (en) 1988-06-27 1988-06-27 Plane antenna

Country Status (1)

Country Link
JP (1) JPH027704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219723A (en) * 2012-04-12 2013-10-24 Hitachi Cable Ltd Antenna device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219723A (en) * 2012-04-12 2013-10-24 Hitachi Cable Ltd Antenna device

Similar Documents

Publication Publication Date Title
US4864314A (en) Dual band antennas with microstrip array mounted atop a slot array
US5187490A (en) Stripline patch antenna with slot plate
US9590314B2 (en) Circularly polarized connected-slot antenna
CN1886865B (en) Modified printed dipole antennas for wireless multi-band communication systems
AU742085B2 (en) Microstrip array antenna
US6407717B2 (en) Printed circuit board-configured dipole array having matched impedance-coupled microstrip feed and parasitic elements for reducing sidelobes
US6285326B1 (en) Patch antenna
US20120098706A1 (en) Antenna Module and Antenna Unit Thereof
US20060033666A1 (en) Antenna assembly having parasitic element for encreasing antenna gain
US20150084814A1 (en) Phased array antenna
US6144344A (en) Antenna apparatus for base station
JP2846081B2 (en) Triplate type planar antenna
US6583766B1 (en) Suppression of mutual coupling in an array of planar antenna elements
US6195062B1 (en) Printed circuit board-configured dipole array having matched impedance-coupled microstrip feed and parasitic elements for reducing sidelobes
US4656482A (en) Wideband wing-conformal phased-array antenna having dielectric-loaded log-periodic electrically-small, folded monopole elements
KR100683005B1 (en) Microstrip stack patch antenna using multi-layered metallic disk and a planar array antenna using it
US8878742B1 (en) Dipole with an unbalanced microstrip feed
CN109462028A (en) A kind of radio-frequency micro electromechanical microstrip antenna
KR970004148A (en) Planar and non-planar double sea-patch antennas with different aperture shapes
JP2944505B2 (en) Microstrip antenna
CN210443662U (en) Novel K-band high-gain metamaterial microstrip antenna
CN110534882B (en) Double-frequency antenna
US20220102841A1 (en) Antenna assembly and electronic device
EP0414266B1 (en) Stripline patch antenna with slot plate
JPH027704A (en) Plane antenna