JPH0277015A - Process for controlling orientation of liquid crystal - Google Patents

Process for controlling orientation of liquid crystal

Info

Publication number
JPH0277015A
JPH0277015A JP22911788A JP22911788A JPH0277015A JP H0277015 A JPH0277015 A JP H0277015A JP 22911788 A JP22911788 A JP 22911788A JP 22911788 A JP22911788 A JP 22911788A JP H0277015 A JPH0277015 A JP H0277015A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
alignment
polystyrene
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22911788A
Other languages
Japanese (ja)
Inventor
Hirobumi Wakemoto
博文 分元
Keizo Nakajima
啓造 中島
Narihiro Sato
成広 佐藤
Shoichi Ishihara
將市 石原
Yoshihiro Matsuo
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22911788A priority Critical patent/JPH0277015A/en
Publication of JPH0277015A publication Critical patent/JPH0277015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To make an orientation state of liquid crystals variable by using an amorphous film of polystyrenic polymer as a liquid crystal oriented film. CONSTITUTION:An amorphous film of a polystyrenic polymer is used. Although polystyrenic polymers are generally amorphous, those having stereoregularity such as isotactic polystyrene are crystalline. In the crystalline polystyrene film, the liquid crystal orientation are not changed at <=m.p., and are oriented orthogonally in a rubbing direction, but the liquid crystal orientation state can not be changed as the amorphous film since its orientation characteristic is eliminated at >=m.p. then, the amorphous film of the polystyrenic polymer is used necessarily. Accordingly, the orientation state of liquid crystals is varied by changing conditions of temp., etc. using an amorphous polystyrene polymer film as a liquid crystal oriented film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液晶表示素子等に利用される液晶の配向制御の
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for controlling the alignment of liquid crystals used in liquid crystal display devices and the like.

従来の技術 電気光学効果を利用した液晶表示素子への利用をはじめ
、液晶の機能性を有効に引き出そうとする場合、液晶を
ある特定の配向状態にする必要がある。
2. Description of the Related Art In order to effectively bring out the functionality of liquid crystals, including use in liquid crystal display devices that utilize electro-optical effects, it is necessary to align liquid crystals in a certain specific state.

そのための液晶の配向制御の方法としては、従来よりい
くつかの方法が知られている。いくつかの例を以下に示
す。ガラス基板などの表面をダイヤモンドペースト等で
擦って表面に微細な溝形状を形成すると液晶が溝に沿っ
て平行配向する。810などを斜方蒸着して形成した形
状異方性をもつ表面でも、その形状に対応して液晶が特
定配向する。また延伸処理したポリエチレンテレフタレ
ートフィルムなどの延伸高分子フィルム表面では液晶が
延伸方向に配向する。基板表面に形成したポリイミドや
ポリビニルアルコールなどの表面を柔らかい布などで一
方向に擦るラビング処理によっても液晶はラビング方向
に配向する。さらに長鎖アルキル基をもつシランカップ
リング剤や両親媒性物質を塗布した表面では液晶が垂直
配向することが知られている。これらの配向制御方法の
中で、現在ポリイミドのラビング法が最も広く実用され
ている。
Several methods are conventionally known as methods for controlling the alignment of liquid crystals for this purpose. Some examples are shown below. When the surface of a glass substrate or the like is rubbed with diamond paste or the like to form fine grooves on the surface, liquid crystals are aligned in parallel along the grooves. Even on a surface with shape anisotropy formed by oblique vapor deposition of 810 or the like, liquid crystals are oriented in a specific manner corresponding to the shape. Furthermore, on the surface of a stretched polymer film such as a stretched polyethylene terephthalate film, liquid crystals are oriented in the stretching direction. A rubbing process in which the surface of polyimide, polyvinyl alcohol, or the like formed on the substrate surface is rubbed in one direction with a soft cloth, etc., also aligns the liquid crystal in the rubbing direction. Furthermore, it is known that liquid crystals are vertically aligned on surfaces coated with silane coupling agents or amphiphilic substances having long-chain alkyl groups. Among these orientation control methods, the polyimide rubbing method is currently the most widely used.

発明が解決しようとする課題 このように種々の液晶配向方法があるが、いずれの方法
でも液晶の配向状態はその配向処理に特有なある状態に
決ってしまい変化させることはできない。つまりポリイ
ミドのラビング膜、ポリエチレンテレフタレートの延伸
フィルムでは、ラビング方向または延伸方向へ液晶が配
向し、他の方向に液晶を並べることはできない。斜方蒸
着法等のその他の配向方法でもこれは同様であり、1つ
の配向状態しか得られない。本発明は、同一の配向処理
によって2つあるいはそれ以上の液晶配向状態を実現し
ようとするものである。
Problems to be Solved by the Invention As described above, there are various liquid crystal alignment methods, but in any of these methods, the alignment state of the liquid crystal is fixed to a certain state unique to the alignment treatment and cannot be changed. In other words, in the case of polyimide rubbing films and polyethylene terephthalate stretched films, the liquid crystals are oriented in the rubbing direction or the stretching direction, and cannot be aligned in other directions. This is also the case with other orientation methods such as oblique evaporation, and only one orientation state can be obtained. The present invention attempts to realize two or more liquid crystal alignment states through the same alignment treatment.

課題を解決するための手段 液晶配向膜としてポリスチレン系高分子の非晶質膜を用
いて液晶の配向制御を行なう。
Means for Solving the Problem An amorphous film of polystyrene polymer is used as a liquid crystal alignment film to control the alignment of liquid crystals.

作用 一般にポリイミドやポリビニルアルコール等の有機高分
子ラビング膜を用いた場合、液晶はその表面でラビング
方向に配向する。この原因としては延伸フィルムの場合
と同様、ラビング時のせん断応力によってラビング方向
に配向した葛分子主鎖に沿って液晶が並ぶことによると
考えられている。高分子鎖に沿って液晶が並ぶ詳しいメ
カニズムについては、現在のところ解明されていない。
Function Generally, when an organic polymer rubbing film such as polyimide or polyvinyl alcohol is used, liquid crystals are oriented on the surface in the rubbing direction. The reason for this is thought to be that, as in the case of stretched films, the liquid crystals are aligned along the main chains of kudzu molecules oriented in the rubbing direction due to shear stress during rubbing. The detailed mechanism by which liquid crystals line up along polymer chains has not yet been elucidated.

我々はポリスチレン系の高分子膜においては、他の高分
子膜の場合と異なり、ラビング方向ではなく、ラビング
と直交方向に液晶が配向することを見いだした。ポリス
チレン系高分子のラビング膜においても、FT−IRや
複屈折性の測定から高分子主鎖がラビング方印に配向し
ていることは明かである。液晶がラビング方向即ち主鎖
配向方向に垂直に配向するのは、おそらく主鎖から横方
向に伸びた(Ill鎖フェニル基の配向膜によるものと
考えられる。非品性のポリスチレン系高分子においては
、ガラス転移温度以上では主鎖の熱運動が活発になり、
非品性固体から液体状態に転移する。
We found that in polystyrene-based polymer films, unlike in other polymer films, liquid crystals are oriented not in the rubbing direction but in a direction perpendicular to the rubbing. Even in a rubbed polystyrene polymer film, it is clear from FT-IR and birefringence measurements that the polymer main chain is oriented in the rubbing direction. The reason why the liquid crystal is aligned perpendicular to the rubbing direction, that is, the main chain alignment direction, is probably due to the alignment film of phenyl groups in the Ill chain extending laterally from the main chain. , above the glass transition temperature, the thermal motion of the main chain becomes active,
Transition from an incorrigible solid to a liquid state.

ラビング処理した膜をこの温度以上にすると主鎖配向が
乱れて液晶配向性がなくなる。非品性のポリスチレン系
高分子においては、ガラス転移温度より低温側でもう一
つ別の転移が起こる。これは凍結されていた側鎖フェニ
ル基の熱運動が始まる温度で、β転移温度とよばれてい
る。β転移温度より低温側では液晶は側鎖フェニル基の
配向方向に並ぶが、高温側では側鎖運動の活発化に伴い
側鎖配向が乱れ、しだいに主鎖の配向方向すなわちラビ
ング方向に沿って並ぶようになる。このような特性を利
用して、液晶配向膜として非品性のポリスチレン系高分
子を用いると、温度等の条件を変えることによって液晶
の配向状態を変化させることができる。
If the temperature of the rubbed film is increased above this temperature, the main chain alignment will be disturbed and the liquid crystal orientation will be lost. In non-quality polystyrene polymers, another transition occurs at a temperature lower than the glass transition temperature. This is the temperature at which thermal movement of the frozen side chain phenyl group begins, and is called the β transition temperature. At temperatures lower than the β-transition temperature, liquid crystals align in the orientation direction of the side chain phenyl groups, but at higher temperatures, the side chain orientation becomes disordered as the side chain movement becomes more active, and the liquid crystals gradually align along the main chain orientation direction, that is, the rubbing direction. They start lining up. By utilizing such characteristics and using a non-quality polystyrene polymer as a liquid crystal alignment film, the alignment state of the liquid crystal can be changed by changing conditions such as temperature.

実施例 本発明の液晶配向制御方法においては、ポリスチレン系
高分子の非晶質膜を用いることを特徴としている。ポリ
スチレン系高分子は一般に非品性であるが、イソタクト
ポリスチレンのように立体規則性を宵するものは、結晶
性をもつようになる。
Embodiment The liquid crystal alignment control method of the present invention is characterized in that an amorphous film of polystyrene polymer is used. Polystyrene polymers are generally immaculate, but those that exhibit stereoregularity, such as isotact polystyrene, become crystalline.

結晶性ポリスチレン膜においては、その融点以下の温度
では液晶配向性が変化せずラビング方向に直交に配向す
るが、融点以上の温度では配向性が消失するため、非品
性膜のように液晶配向状態を変化させることができない
。したがって本発明にはポリスチレン系高分子の非晶質
膜を用いる必要がある。
In crystalline polystyrene films, the liquid crystal orientation does not change at temperatures below the melting point and is oriented perpendicular to the rubbing direction, but at temperatures above the melting point, the orientation disappears, so the liquid crystal orientation does not change as in non-quality films. Unable to change state. Therefore, in the present invention, it is necessary to use an amorphous film of polystyrene polymer.

ところで一般に高分子においては、完全結晶、完全非晶
質というものは存在せず、部分的に結晶領域を有するの
が普通である。本発明においてはポリスチレン系高分子
の膜が部分的に結晶領域をもっていても、非晶領域が液
晶配向において支配的であればよい。つまり本発明にお
ける非品性膜とは、液晶配向において非品性領域が支配
的な影響をもつ膜である。
By the way, in general, polymers do not have a completely crystalline or completely amorphous state, but usually have a partially crystalline region. In the present invention, even if the polystyrene polymer film partially has crystalline regions, it is sufficient that the amorphous regions are dominant in liquid crystal alignment. In other words, the non-quality film in the present invention is a film in which the non-quality region has a dominant influence on liquid crystal alignment.

本発明に用いるポリスチレン系の高分子としては、ポリ
スチレンの他、側鎖フェニル基にアルキル基、アリール
基、アルコキシ基、アリールオキシ基、アルキルチオ基
、アリールチオ基、ハロゲン、ニトロ基、アミノ基、ア
ルキルアミノ基、ジアルキルアミ7基、ヒドロキシ基、
カルボキシル基、COR,C00R(Rはアルキル基)
等の置換基が1個またはそれ以上置換したもの、あるい
はポリ(α−メチルスチレン)のように主鎖の炭素につ
いた水素原子がアルキル基などで置換されていても、前
述の意味で非品性であればよい。側鎖フェニル基にニト
ロ基等の置換基をもつポリスチレン誘導体では膜に水平
な面内での配向方位だけでなく、垂直方向即ち液晶のプ
レチルト角も制御できる。また、液晶が側鎖基を有する
高分子膜の表面において高分子主鎖方向以外の方向に配
向し、かつその高分子が非品性であれば、同様な液晶配
向制御が可能であることが予想される。
In addition to polystyrene, the polystyrene-based polymer used in the present invention includes side chain phenyl groups, alkyl groups, aryl groups, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, halogens, nitro groups, amino groups, and alkylamino groups. group, dialkylamide 7 group, hydroxy group,
Carboxyl group, COR, C00R (R is an alkyl group)
Products with one or more substituents, such as poly(α-methylstyrene), or where the hydrogen atom attached to the carbon in the main chain is substituted with an alkyl group, etc., are considered non-quality products in the above sense. It is fine as long as it is gender. With polystyrene derivatives having a substituent such as a nitro group on the side chain phenyl group, it is possible to control not only the alignment direction in a plane parallel to the film but also the vertical direction, that is, the pretilt angle of the liquid crystal. Furthermore, if the liquid crystal is oriented in a direction other than the main chain direction of the polymer on the surface of the polymer film having side chain groups, and the polymer is of poor quality, similar liquid crystal alignment control is possible. is expected.

以下に具体的な実施例を用いて本発明の説明を行なう。The present invention will be explained below using specific examples.

実施例1 ガラス基板上にポリスチレンのトルエン溶液をスピンコ
ード法によって塗布しN  10o℃で30分間アニー
ルして膜厚500Aの非品性ポリスチレン膜を形成した
。膜の表面をナイロン不織布でラビング処理し、ラビン
グ方向が反平行になるように10μmのスペーサを介し
て貼合わせ、セルを形成した。
Example 1 A toluene solution of polystyrene was applied onto a glass substrate by a spin code method and annealed at 10° C. for 30 minutes to form a non-quality polystyrene film with a thickness of 500 Å. The surface of the membrane was rubbed with a nylon nonwoven fabric, and the membranes were pasted together with a 10 μm spacer in between so that the rubbing direction was antiparallel to form a cell.

このようにして形成したセルに種々の温度で液晶を注入
し、室温で液晶の配向状態を調べた。液晶としではメル
ク社製の混合液晶ZLI−1565(透明点85°C)
にアントラキノン系の二色(生色素を添加したものを用
いた。各温度で液晶を注入したセルに可視偏光を入射し
、セルに平行な面内で偏光軸を回転させ吸光度が最大と
なる角度、即ち液晶の配向方位を決定した。
Liquid crystal was injected into the cells thus formed at various temperatures, and the alignment state of the liquid crystal was examined at room temperature. The liquid crystal used is Merck's mixed liquid crystal ZLI-1565 (clearing point 85°C).
Anthraquinone dichroic (with raw pigment added) was used. Visible polarized light was incident on a cell injected with liquid crystal at each temperature, and the polarization axis was rotated in a plane parallel to the cell to determine the angle at which the absorbance was maximum. That is, the alignment direction of the liquid crystal was determined.

液晶注入温度と液晶の配向方向がラビング方向と成す角
度の関係を表1に示した。表1より低温側で液晶を注入
した場合、液晶はラビング方向に直交配向性を示し、高
温側ではラビング方向に平行配向となる。そしてこれら
の中間の温度領域では回者の中間的な方位に配向した。
Table 1 shows the relationship between the liquid crystal injection temperature and the angle between the alignment direction of the liquid crystal and the rubbing direction. According to Table 1, when liquid crystal is injected at a lower temperature side, the liquid crystal exhibits an orientation perpendicular to the rubbing direction, and at a higher temperature side, it becomes oriented parallel to the rubbing direction. In the temperature range between these two, the orientation was intermediate between the two directions.

このように非品性ポリスチレン配向膜を用いると液晶注
入温度によって液晶の配向状態を変化させることができ
る。
When a non-quality polystyrene alignment film is used in this way, the alignment state of the liquid crystal can be changed depending on the liquid crystal injection temperature.

表   1 実施例2 ガラス基板上にポリ(α−メチルスチレン)のトルエン
溶液をスピンコード法によって塗布し、150℃で30
分間アニールして膜厚500Aの非品性ポリ(α−メチ
ルスチレン)膜を形成した。膜の表面をナイロン不織布
でラビング処理し、ラビング方向が反平行になるように
10μmのスペーサを介して貼合わせ、セルを形成した
。このようにして形成したセルに種々の温度で液晶を注
入し、液晶の配向状態を調べた。液晶としてはメルク社
製のa合液晶ZLI−1565にアントラキノン系の二
色性色素を添加したものを用いた。
Table 1 Example 2 A toluene solution of poly(α-methylstyrene) was coated on a glass substrate by a spin code method and heated at 150°C for 30 minutes.
Annealing was performed for a minute to form a non-quality poly(α-methylstyrene) film having a thickness of 500 Å. The surface of the membrane was rubbed with a nylon nonwoven fabric, and the membranes were pasted together with a 10 μm spacer in between so that the rubbing direction was antiparallel to form a cell. Liquid crystal was injected into the cells thus formed at various temperatures, and the alignment state of the liquid crystal was investigated. As the liquid crystal, an a-mix liquid crystal ZLI-1565 manufactured by Merck & Co., Ltd. to which an anthraquinone dichroic dye was added was used.

表2に実施例1と同様にして調べた液晶注入温度と液晶
の配向方向がラビング方向と成す角度の関係示した。こ
のように非品性ポリ(α−メチルスチレン)膜を用いて
も、非品性ポリスチレン膜と同様、液晶注入温度によっ
て液晶配向状態を変化させることが可能である。そして
ポリ(α−メチルスチレン)膜の場合、ポリスチレン膜
に比べて膜の転移温度が高いことを反映して配向状態が
変化する温度が高温側ヘシフトしている。
Table 2 shows the relationship between the liquid crystal injection temperature and the angle between the liquid crystal alignment direction and the rubbing direction, which were investigated in the same manner as in Example 1. Even if a non-quality poly(α-methylstyrene) film is used in this way, it is possible to change the liquid crystal alignment state by changing the liquid crystal injection temperature, as in the case of a non-quality polystyrene film. In the case of a poly(α-methylstyrene) film, the temperature at which the orientation state changes shifts toward a higher temperature side, reflecting the fact that the film has a higher transition temperature than a polystyrene film.

表   2 実施例3 ガラス基板上にポリ(α−メチルスチレン)のトルエン
溶液をスピンコード法によって塗布し、150℃で30
分間アニールして膜厚500Aの非晶性ポリ(α−メチ
ルスチレン)膜を形成した。膜の表面をナイロン不織布
でラビング処理し、ラビング方向が反平行になるように
10μmのスペーサを介して貼合わせ、セルを形成した
。このようにして形成したセルに種々の温度で液晶を注
入し、液晶の配向状態を調べた。液晶としては、5′−
ペンチル−5−シアノビフェニル(透明点35℃)に同
じくアントラキノン系の二色性色素を添加したものを用
いた。
Table 2 Example 3 A toluene solution of poly(α-methylstyrene) was coated on a glass substrate by a spin code method and heated at 150°C for 30 minutes.
An amorphous poly(α-methylstyrene) film having a thickness of 500 Å was formed by annealing for 1 minute. The surface of the membrane was rubbed with a nylon nonwoven fabric, and the membranes were pasted together with a 10 μm spacer in between so that the rubbing direction was antiparallel to form a cell. Liquid crystal was injected into the cells thus formed at various temperatures, and the alignment state of the liquid crystal was investigated. As a liquid crystal, 5'-
Pentyl-5-cyanobiphenyl (clearing point: 35°C) with an anthraquinone dichroic dye added thereto was used.

表3に実施例1と同様にして調べた液晶注入温度と液晶
の配向方向がラビング方向と成す角度の関係水した。表
3より実施例2と同様、液晶の注入温度によって液晶配
向状態が変化することがわかるが、配向状態が変化する
温度が低(なっている。これは用いた液晶の透明点の違
いによるものであり、透明点の高い液晶はど配向状態が
変化する温度が高くなる傾向がみられた。
Table 3 shows the relationship between the liquid crystal injection temperature and the angle between the liquid crystal alignment direction and the rubbing direction, which were investigated in the same manner as in Example 1. Table 3 shows that, as in Example 2, the liquid crystal alignment state changes depending on the liquid crystal injection temperature, but the temperature at which the alignment state changes is low. This is due to the difference in the clearing point of the liquid crystal used. The temperature at which the alignment state changes tends to be higher for liquid crystals with higher clearing points.

表   3 比較例1 ガラス基板上に100OA厚のポリイミド膜を形成し、
実施例と同様にラビング処理を行いセルを組み立てた。
Table 3 Comparative Example 1 A polyimide film with a thickness of 100 OA was formed on a glass substrate,
A cell was assembled by performing rubbing treatment in the same manner as in the example.

このセルに室温から150°Cまで種々の温度でメルク
社製の混合液晶ZLI−1585にアントラキノン系の
二色性色素を添加したものを注入した。
Mixed liquid crystal ZLI-1585 manufactured by Merck & Co., Ltd. to which an anthraquinone dichroic dye was added was injected into this cell at various temperatures from room temperature to 150°C.

実施例と同様に室温で配向状態を調べたところ、どの温
度で注入した場合も液晶はラビングと平行方向に配向し
た。このようにポリイミド膜では、配向状態を変化させ
ることはできない。
When the alignment state was examined at room temperature in the same manner as in the example, it was found that the liquid crystal was aligned in a direction parallel to the rubbing direction no matter what temperature it was injected. In this way, the orientation state of the polyimide film cannot be changed.

比較例2 ガラス基板上にイソタクトポリスチレン溶液をスピンコ
ード法により塗布し、150℃でアニールして500A
厚の結晶性ポリスチレン球を形成し、実施例と同様にラ
ビング処理を行いセルを組み立てた。
Comparative Example 2 An isotact polystyrene solution was applied on a glass substrate by a spin cord method, annealed at 150°C, and 500A
A thick crystalline polystyrene sphere was formed, and a cell was assembled by performing a rubbing treatment in the same manner as in the example.

このセルに室温から120°Cまで種々の温度でメルク
社製の混合液晶ZLI−1585にアントラキノン系の
二色性色素を添加したものを注入した。実施例と同様に
室温で配向状態を調べたところ、どの温度で注入した場
合も液晶はラビングと平行方向に配向した。このように
結晶性ポリスチレン膜では、配向状態を変化させること
はできない。
Mixed liquid crystal ZLI-1585 manufactured by Merck & Co., Ltd. with an anthraquinone dichroic dye added thereto was injected into this cell at various temperatures from room temperature to 120°C. When the alignment state was examined at room temperature in the same manner as in the example, it was found that the liquid crystal was aligned in a direction parallel to the rubbing direction no matter what temperature it was injected. In this way, the orientation state of the crystalline polystyrene film cannot be changed.

発明の効果 本発明は非品性のポリスチレン系高分子の膜を用いて液
晶の配向制御を行なうものであり、同一の配向処理で用
いる液晶、温度などの条件を変えることによって液晶の
配向状態を変化させることができる。
Effects of the Invention The present invention controls the alignment of liquid crystal using a film made of inferior polystyrene polymer, and the alignment state of the liquid crystal can be controlled by changing the liquid crystal used in the same alignment process, temperature, and other conditions. It can be changed.

Claims (3)

【特許請求の範囲】[Claims] (1)液晶配向膜としてポリスチレン系高分子の非晶質
膜を用いることを特徴とする液晶の配向制御方法。
(1) A method for controlling liquid crystal alignment, characterized by using an amorphous film of polystyrene polymer as a liquid crystal alignment film.
(2)液晶の注入温度を変化させることによって液晶の
配向状態を制御することを特徴とする特許請求の範囲第
1項に記載の液晶の配向制御方法。
(2) The method for controlling the alignment of liquid crystal according to claim 1, wherein the alignment state of the liquid crystal is controlled by changing the injection temperature of the liquid crystal.
(3)液晶配向処理がラビング法によって施されている
ことを特徴とする特許請求の範囲第1項に記載の液晶の
配向制御方法。
(3) The liquid crystal alignment control method according to claim 1, wherein the liquid crystal alignment treatment is performed by a rubbing method.
JP22911788A 1988-09-13 1988-09-13 Process for controlling orientation of liquid crystal Pending JPH0277015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22911788A JPH0277015A (en) 1988-09-13 1988-09-13 Process for controlling orientation of liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22911788A JPH0277015A (en) 1988-09-13 1988-09-13 Process for controlling orientation of liquid crystal

Publications (1)

Publication Number Publication Date
JPH0277015A true JPH0277015A (en) 1990-03-16

Family

ID=16887014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22911788A Pending JPH0277015A (en) 1988-09-13 1988-09-13 Process for controlling orientation of liquid crystal

Country Status (1)

Country Link
JP (1) JPH0277015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162204A1 (en) * 2010-06-22 2011-12-29 富士フイルム株式会社 Optical film, manufacturing method therefor, and polarizing plate, image display device, and 3d image display system using said optical film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162204A1 (en) * 2010-06-22 2011-12-29 富士フイルム株式会社 Optical film, manufacturing method therefor, and polarizing plate, image display device, and 3d image display system using said optical film
JP2012008170A (en) * 2010-06-22 2012-01-12 Fujifilm Corp Optical film, method for manufacturing the same, and polarizing plate, image display device and three-dimensional image display system using the optical film

Similar Documents

Publication Publication Date Title
JP2640083B2 (en) Optical compensation sheet and liquid crystal display device using the same
JP2565644B2 (en) Optical anisotropic element and manufacturing method thereof
EP0402103B2 (en) Method for orienting a liquid crystal polymer
KR19980057674A (en) Composition for forming an alignment film, an alignment film formed therefrom and a liquid crystal display device comprising the alignment film
US5330803A (en) Liquid crystal device
US5571580A (en) Liquid crystal device
US5464668A (en) Liquid crystal device
US5250330A (en) Liquid crystal device
KR0147847B1 (en) Ferroelectric liquid crystal element
JPH0277015A (en) Process for controlling orientation of liquid crystal
JPH0416919A (en) Optical phase plate
JP3936434B2 (en) Optical element manufacturing method
JPH07306421A (en) Ferroelectric liquid crystal element
JP2007055193A (en) Method for manufacturing optical film
JPH0466488B2 (en)
JPH04243228A (en) Liquid crystal element
JP2585835B2 (en) Liquid crystal display device
JPH0325418A (en) Liquid crystal element
JPH0457020A (en) Ferroelectric liquid crystal element and antiferroelectric liquid crystal element
JP2733875B2 (en) Liquid crystal element
JP3091091B2 (en) Liquid crystal display device
JPH05216036A (en) Liquid crystal element
JPH05216037A (en) Liquid crystal element
JP2556585B2 (en) Liquid crystal element
JPH0261616A (en) Liquid crystal display element