JPH0276907A - Turn control device - Google Patents

Turn control device

Info

Publication number
JPH0276907A
JPH0276907A JP22573688A JP22573688A JPH0276907A JP H0276907 A JPH0276907 A JP H0276907A JP 22573688 A JP22573688 A JP 22573688A JP 22573688 A JP22573688 A JP 22573688A JP H0276907 A JPH0276907 A JP H0276907A
Authority
JP
Japan
Prior art keywords
valve
pressure
neutral
motor
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22573688A
Other languages
Japanese (ja)
Other versions
JP2549420B2 (en
Inventor
Yoshimi Saotome
吉美 早乙女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63225736A priority Critical patent/JP2549420B2/en
Publication of JPH0276907A publication Critical patent/JPH0276907A/en
Application granted granted Critical
Publication of JP2549420B2 publication Critical patent/JP2549420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/128Braking systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor

Abstract

PURPOSE:To control an acceleration/deceleration pressure reasonably by raising the set pressure of both electro-magnetic proportional pressure control valve to a high level in the case of a neutral brake mode of a direction control valve and dropping it to a low level in the case of its neutral free mode by respective signals of a detection means and a selection means. CONSTITUTION:A controller 16 judges the running status of a motor based on the detection signals from the rotational direction detection means 14 of a turning hydraulic motor 4 and the switching amount detection means 13 of a direction switching valve 3 and the selection signal from a mode selection means 15 and the set pressure of both electromagnetic proportional pressure control valves 11, 12 is raised to a high level when the direction control valve 3 is neutral in the neutral brake mode. While, the set pressure of both electro- magnetic proportional pressure control valves 11, 12 is dropped to a low level when the direction control valve 3 is neutral in the neutral free mode. Thus, the acceleration pressure and the deceleration pressure of the motor are controlled automatically and reasonably in response to respective modes, both acceleration and deceleration of turn can be performed smoothly and the controllability and workability can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油圧ショベルや油圧クレーン等の建設機械に
おける旋回制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a swing control device for construction machines such as hydraulic excavators and hydraulic cranes.

〔従来の技術〕[Conventional technology]

従来、油圧クレーンの旋回υ111(装置において、旋
回を円滑に行うために、たとえば特開昭53−2137
9号公報に示されるようにリモートコントロール弁(以
下、す[コン弁と称する)からの二次圧力により旋回油
圧モータの両側回路間に設けられたパイロット式可変リ
リーフ弁の設定圧を制御するようにしたものが知られて
いる。
Conventionally, in order to smoothly perform a turning υ111 of a hydraulic crane (for example, Japanese Patent Application Laid-Open No. 53-2137
As shown in Publication No. 9, the setting pressure of a pilot-type variable relief valve provided between circuits on both sides of a swing hydraulic motor is controlled by secondary pressure from a remote control valve (hereinafter referred to as a control valve). It is known what has been done.

(発明が解決しようとする課題) 上記従来の装置は、レバーの操作量に応じて出力される
リモコン弁からの二次圧力により、方向切換弁を切換え
るとともに、モータの流入側の可変リリーフ弁の設定圧
を制御してモータの加速圧力を制御するものであるが、
方向切換弁が中立オールポートオープンであり、レバー
を中立に戻したときに、モータの両側の回路を互いに連
通させるとともに、両可変リリーフ弁の設定圧をいずれ
ら低圧にしてモータを慣性により回転させるようにして
おり、いわゆる中立フリ一方式であるため、レバー中立
でモータを停止させることはできない。
(Problems to be Solved by the Invention) The above conventional device switches the directional control valve using the secondary pressure from the remote control valve that is output according to the amount of lever operation, and also switches the variable relief valve on the inflow side of the motor. It controls the acceleration pressure of the motor by controlling the set pressure.
The directional control valve is neutral and all ports open, and when the lever is returned to neutral, the circuits on both sides of the motor are communicated with each other, and the set pressure of both variable relief valves is set to the lower pressure, causing the motor to rotate due to inertia. Since this is a so-called neutral-neutral type, it is not possible to stop the motor with the lever in the neutral position.

なお、モータの減速停止時にはレバーを中立に戻した後
に、モータ回転方向と逆方向にいわゆる逆レバー操作し
、その逆レバー操作量に応じてモータ排出側の可変リリ
ーフ弁の設定圧を加速時と同じ制御パターンでυIaす
ることによりモータの減速圧力を制御している。
When the motor decelerates and stops, the lever is returned to neutral, and then the so-called reverse lever is operated in the opposite direction to the motor rotation direction, and the set pressure of the variable relief valve on the motor discharge side is adjusted according to the amount of the reverse lever operation. The deceleration pressure of the motor is controlled by υIa using the same control pattern.

ところで、旋回の制御システムには、レバーを中立に戻
したときに上記従来のようにモータを慣性により回転さ
せる中立フリ一方式以外に、レバーを中立に戻したとぎ
にモータの回転を停止させる中立ブレーキ方式があり、
作業内容等に応じて中立フリ一方式の方がよい場合と、
中立ブレーキ方式の方がよい場合とがある。したがって
、1台の機械でいずれかの方式を任意に選択できるよう
にするのが望ましい。
By the way, in addition to the above-mentioned neutral control system, which rotates the motor by inertia when the lever is returned to neutral, there is also a neutral control system, which stops the rotation of the motor when the lever is returned to neutral. There is a brake system,
Depending on the work content, there are cases where it is better to use the neutral neutral method, and
There are cases where a neutral braking method is better. Therefore, it is desirable to be able to arbitrarily select either method using one machine.

しかしながら、上記従来の制御装置では中立オールポー
トオーブンの方向切換弁を用いており、しかも、加速時
も逆レバーによる減速時も可変リリーフ弁の設定圧を同
じ制御パターンで制御するために、中立フリ一方式にの
み適用可能で、中立ブレーキ方式には適用できない。
However, the conventional control device described above uses a neutral all-port oven directional switching valve, and in order to control the set pressure of the variable relief valve with the same control pattern both during acceleration and deceleration using the reverse lever, the neutral Applicable only to one-sided brake system, not to neutral brake system.

本発明は、このような課題を解決するためになされたち
のであり、1台の機械で、作業内容等に応じて中立フリ
ーモードと中立ブレーキモードとを任意に選択でき、ま
た、各モードに応じてモータの加速圧力および減速圧力
を適正に制御できる旋回制御装置を提供することを目的
としている。
The present invention has been made to solve these problems, and allows one machine to arbitrarily select between neutral free mode and neutral brake mode depending on the work content, etc. It is an object of the present invention to provide a swing control device that can appropriately control acceleration pressure and deceleration pressure of a motor.

〔課題を解決するための手段〕[Means to solve the problem]

4上記目的達成のために本発明は、次のように構成して
いる。
4 In order to achieve the above object, the present invention is configured as follows.

(1)油圧ポンプの吐出油を方向切換弁を介して旋回油
圧モータに給排してモータの回転方向を制御する旋回制
御装置において、方向切換弁は中立PR接続のブリード
オフ通路を有する3位置切換弁で構成され、旋回油圧モ
ータの両側ポートと方向切換弁との間の両回路にそれぞ
れ電磁比例圧力制御弁が接続され、旋回油圧モータの回
転方向検山手段と、方向切換弁の切換量検出手段と、中
立ブレーキモードと中立フリーモードとを選択するモー
ド選択手段と、上記各検出手段および選択手段からの信
号に基づいて方向制御弁が中立で、中立ブレーキモード
のときに上記両電磁比例圧力制御弁の設定圧を高圧とし
、中立フリーモードのときに上記両電磁比例圧力制御弁
の設定圧を低圧とするコントローラとを備えていること
を特徴とする旋回制御装置。
(1) In a swing control device that controls the rotation direction of the motor by supplying and discharging oil discharged from a hydraulic pump to and from a swing hydraulic motor via a directional switching valve, the directional switching valve has three positions with a bleed-off passage connected to a neutral PR. It consists of a switching valve, and an electromagnetic proportional pressure control valve is connected to both circuits between both ports of the swing hydraulic motor and the directional switching valve. a detection means, a mode selection means for selecting between a neutral brake mode and a neutral free mode, and a mode selection means for selecting between the two electromagnetic proportional modes when the direction control valve is in neutral and in the neutral brake mode based on signals from each of the detection means and the selection means; A swing control device comprising: a controller that sets the set pressure of the pressure control valve to a high pressure, and sets the set pressure of both the electromagnetic proportional pressure control valves to a low pressure when in a neutral free mode.

(2)上記(1)の構成において、コントローラは、上
記旋回油圧モータの回転方向検出手段ならびに方向切換
弁の切換量検出手段からの検出信号およびモード選択手
段からの選択信号に基づいてモータの運転状態を判別し
、中立ブレーキモードで、方向制御弁が中立のときに上
記両電磁比例圧力制御弁の設定圧を高圧とし、旋回加速
時に方向切換弁の中立から旋回位置側への弁切換間が大
きくなる程モータ流入側の電磁比例圧力制御弁の設定圧
を高くし、旋回減速時に上記弁切換間が小さくなる程モ
ータ排出側の電磁比例圧力制御弁の設定圧を高くする制
御信号を出力し、中立フリーモードで、方向制御弁が中
立のときに上記両電磁比例圧力i、lJ all弁の設
定圧を低圧とし、旋回加速時に上記弁切換陽が大きくな
る程モータ流入側の電磁比例圧力制御弁の設定圧を高く
し、旋回減速時に方向切換弁のモータ回転方向とは逆方
向への弁切換間が大きくなる程モータ排出側の電磁比例
圧力制御弁の設定圧を高くする制御信号を出力する制御
手段を備えていることを特徴とする旋回制御装置。
(2) In the configuration of (1) above, the controller operates the motor based on the detection signal from the rotation direction detection means of the swing hydraulic motor and the switching amount detection means of the directional switching valve, and the selection signal from the mode selection means. In the neutral brake mode, when the directional control valve is in neutral, the set pressure of both electromagnetic proportional pressure control valves is set to high pressure, and when the directional control valve is in the neutral position, the time between valve switching from neutral to the swiveling position is increased during turning acceleration. As the value increases, the set pressure of the electromagnetic proportional pressure control valve on the motor inflow side is increased, and a control signal is output that increases the set pressure of the electromagnetic proportional pressure control valve on the motor discharge side as the valve switching interval becomes smaller during swing deceleration. In the neutral free mode, when the direction control valve is neutral, the set pressure of both the electromagnetic proportional pressure i, lJ all valves is set to a low pressure, and the electromagnetic proportional pressure control on the motor inflow side increases as the valve switching value increases during turning acceleration. Outputs a control signal that increases the set pressure of the valve and increases the set pressure of the electromagnetic proportional pressure control valve on the motor discharge side as the time between the directional control valve switching in the direction opposite to the motor rotation direction increases during swing deceleration. A swing control device characterized by comprising a control means for controlling.

、(3)上記(1)の構成において、旋回油圧モータの
両側ポートと方向切換弁との間の両回路にそれぞれ可変
リリーフ弁親弁が接続され、各親弁の圧力iiIJwJ
部に電磁比例圧力制御弁からなる共通の子弁が接続され
、コントローラは、旋回油圧モータの回転方向検出手段
と、方向切換弁の切換量検出手段と、モード選択手段と
からの各信号に基づいてモータの運転状態を判別し、中
立ブレーキモードで、方向制御弁が中立のときに上記子
弁の設定圧を高圧とし、旋回加速時に方向切換弁の中立
から旋回位置側への弁切換間が大きくなる程子弁の設定
圧を高くし、旋回減速時に上記弁切換昌が小さくなる程
子弁の設定圧を高くする制御信号を出力し、中立フリー
モードで、方向制御弁が中立のときに上記子弁の設定圧
を低圧とし、旋回加速時に上記弁切換間が大きくなる程
子弁の設定圧を高くし、旋回減速時に上記弁切換間が小
さくなる程子弁の設定圧を低くする制御信号を出力する
υ制御手段を備えていることを特徴とする旋回制御装置
, (3) In the configuration of (1) above, variable relief valve parent valves are connected to both circuits between both ports of the swing hydraulic motor and the directional control valve, and the pressure of each parent valve is
A common slave valve consisting of an electromagnetic proportional pressure control valve is connected to the section, and the controller operates based on signals from the rotation direction detection means of the swing hydraulic motor, the switching amount detection means of the directional switching valve, and the mode selection means. In the neutral brake mode, when the directional control valve is in neutral, the setting pressure of the slave valve is set to high pressure, and when the directional control valve is in the neutral position, the setting pressure of the slave valve is set to high pressure, and the time between the valve switching from the neutral to the swivel position of the directional control valve is set to high when the directional control valve is in the neutral position. Outputs a control signal that increases the set pressure of the directional control valve that increases, and outputs a control signal that increases the set pressure of the directional control valve that decreases during swing deceleration, and in neutral free mode, when the directional control valve is in neutral. A control signal is output that sets the set pressure of the valve to a low pressure, increases the set pressure of the droplet valve as the valve switching interval increases during swing acceleration, and lowers the set pressure of the droplet valve as the valve switching interval becomes smaller during swing deceleration. A swing control device characterized by comprising υ control means.

〔作 用〕[For production]

上記の構成により、1台の機械で、作業内容等に応じて
中立フリーモードと中立ブレーキモードとを任意に選択
でき、また、各モードに応じてモータの加速圧力および
減速圧力を適正に制御できることになる。
With the above configuration, one machine can arbitrarily select neutral free mode and neutral brake mode depending on the work content, etc., and can appropriately control motor acceleration pressure and deceleration pressure according to each mode. become.

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示す油圧回路図であり、
この図において、1は油圧ポンプ、2はメインリリーフ
弁、3は方向切換弁、4は旋回油圧モータ、5はモータ
4によって回転駆動される建設機械の上部旋回体を示す
。方向切換弁3は中立PR接続のブリードオフ通路を有
する3位置切換弁であり、この弁3の切換えによりモー
タ4の両側回路6.7に対する圧油の給排が制御され、
モータ4の回転が制御される。8.9はキャビテーショ
ン防止用チエツク弁、10はタンクを示す。
FIG. 1 is a hydraulic circuit diagram showing a first embodiment of the present invention,
In this figure, 1 is a hydraulic pump, 2 is a main relief valve, 3 is a directional control valve, 4 is a swing hydraulic motor, and 5 is an upper rotating body of a construction machine that is rotationally driven by the motor 4. The directional switching valve 3 is a three-position switching valve having a bleed-off passage with a neutral PR connection, and switching of this valve 3 controls the supply and discharge of pressure oil to and from the circuits 6 and 7 on both sides of the motor 4.
The rotation of the motor 4 is controlled. 8.9 is a check valve for preventing cavitation, and 10 is a tank.

この油圧回路において、モータ4の両側ポートと方向切
換弁3との間の回路6,7にそれぞれ電磁比例圧力制御
弁とじ丸で電磁比例リリーフ弁(電磁比例減圧弁でもよ
い)11.12が接続されている。方向切換弁3にはそ
の切換量検出手段として、スプールストローク(レバー
操作角でもよい)を検出するセンサ13が付設され、モ
ータ4には回転方向センサ14が付設されている。15
はモード選択手段で、中立ブレーキモードか中立フリー
モードかを選択する。コントローラ16はモード選択手
段15からの選択信号と、上記各センサ13.14から
の検出信号とに基づいて電磁比例リリーフ弁11.12
に設定圧制御信号を出力する。
In this hydraulic circuit, electromagnetic proportional relief valves (or electromagnetic proportional pressure reducing valves) 11 and 12 are connected to the circuits 6 and 7 between the ports on both sides of the motor 4 and the directional control valve 3, respectively, at the closing circles of the electromagnetic proportional pressure control valves. has been done. The directional switching valve 3 is provided with a sensor 13 for detecting a spool stroke (or a lever operation angle) as switching amount detection means, and the motor 4 is provided with a rotation direction sensor 14. 15
is a mode selection means for selecting either neutral brake mode or neutral free mode. The controller 16 selects the electromagnetic proportional relief valves 11.12 based on the selection signal from the mode selection means 15 and the detection signals from the respective sensors 13.14.
Outputs the set pressure control signal to.

次に、旋回の制御について説明する。Next, turning control will be explained.

■−■ 中立ブレーキモード まず、モード選択手段15により中立ブレーキモードを
選択し、操作レバーを押し側に操作して方向切換弁3を
押し側(図の右位置側)に切換えると、ポンプ1の吐出
油が回路6を経てモータ4に供給され、回路6の圧力が
上昇してモータ4が正転加速され、旋回体5が右方向に
旋回加速され、モータ4からの排出油が回路7および方
向切換弁3を経てタンク10に戻される。
■-■ Neutral brake mode First, select the neutral brake mode using the mode selection means 15, and operate the operation lever to the push side to switch the directional control valve 3 to the push side (right position side in the figure). The discharged oil is supplied to the motor 4 via the circuit 6, the pressure in the circuit 6 increases, the motor 4 is accelerated in forward rotation, the revolving body 5 is accelerated in the right direction, and the discharged oil from the motor 4 is supplied to the circuit 7 and It is returned to the tank 10 via the directional control valve 3.

この旋回加速時において、方向切換弁3のスプールスト
ロークがセンサ13により検出されるとともに、モータ
4の回転方向(正転)がセンサ14により検出され、そ
れらの検出信号と上記選択手段15による選択信号とが
コントローラ16に入力され、第2図のフローチセート
に示す制御が行われる。
During this turning acceleration, the spool stroke of the directional control valve 3 is detected by the sensor 13, and the rotation direction (normal rotation) of the motor 4 is detected by the sensor 14, and these detection signals and the selection signal by the selection means 15 are detected by the sensor 14. is input to the controller 16, and the control shown in the flowchart of FIG. 2 is performed.

1なわち第2図において、プログラムがスタートすると
、ステップS1でストロークセンサ13による検出値が
読み込まれ、ステップS2で回転方向セン+j14によ
り検出されたモータ4の回転方向(正転)が読み込まれ
、ステップS3で方向切換弁3のスプールが中立か否か
が判別される。
1, that is, in FIG. 2, when the program starts, the detected value by the stroke sensor 13 is read in step S1, the rotation direction (normal rotation) of the motor 4 detected by the rotation direction sensor +j14 is read in step S2, In step S3, it is determined whether the spool of the directional control valve 3 is neutral.

このときスプールは押し側にあるので、ステップS3で
l N OL”、ステップ$4で’ Y E S ”と
なり、ステップS5のモータ5が正転かで’ Y E 
S ”となり、さらに、ステップSθの中立ブレーキモ
ードかで“’ Y E S ”となり、ステップS7に
進む。
At this time, the spool is on the push side, so in step S3 it becomes "l N OL", in step $4 it becomes "Y E S", and in step S5 it becomes "Y E S" depending on whether the motor 5 rotates in the forward direction.
Then, in the neutral brake mode at step Sθ, the state becomes "'Y E S", and the process proceeds to step S7.

そして、モータ4の流入側のリリーフ弁11に第3図の
実線イに示す加速パターンの制御信号が出力されるとと
もに、モータ排出側のリリーフ弁12に同図実線口に示
す減速パターンの制御信号が出力され、方向切換弁3の
スプールストロークに応じて、上記リリーフ弁11の設
定圧が加速パターンに沿って低圧から高圧(たとえば3
0へ・190Kg/cd)の範囲で制御されるとともに
、リリーフ弁12の設定圧が減速パターンに沿って高圧
から低圧(たとえば190〜3(1/cat)の範囲で
制御される。
Then, a control signal with an acceleration pattern shown in solid line A in FIG. 3 is output to the relief valve 11 on the inflow side of the motor 4, and a control signal with a deceleration pattern shown in the solid line in the figure is output to the relief valve 12 on the motor discharge side. is output, and depending on the spool stroke of the directional control valve 3, the set pressure of the relief valve 11 changes from low pressure to high pressure (for example, 3
0 to 190 kg/cd), and the set pressure of the relief valve 12 is controlled in a range from high pressure to low pressure (for example, 190 to 3 (1/cat)) along the deceleration pattern.

この場合、方向切換弁3はブリードオフ通路を有し、中
立でポンプ1の吐出流量の全組をタンク10にブリード
オフし、スプールストロークが大きくなるに従ってポン
プ1からタンク1oへのブリードオフ流量を絞りながら
回路6への流入流量を次第に大きくするものであり、こ
の方向切換弁3の流量制御によって一義的に決まる圧力
は中立でOで、ポンプ吐出流量によって多少異なるが一
般にスプールストロークが小さい範囲では低圧域で緩い
カーブでυJIIIされ、スプールストロークの大きい
範囲では急カーブで高圧となる。このために方向切換弁
3による流量制御だけでモータ4の流入側の圧力(加速
圧力)を制御すれば、低圧域での制御性はよいが、高圧
域での制御性が悪くなる。
In this case, the directional valve 3 has a bleed-off passage, which in neutral bleeds off the entire set of the discharge flow rate of the pump 1 to the tank 10, and as the spool stroke increases, the bleed-off flow rate from the pump 1 to the tank 1o is reduced. The flow rate flowing into the circuit 6 is gradually increased while throttling.The pressure uniquely determined by the flow rate control of the directional control valve 3 is O at neutral, and although it varies somewhat depending on the pump discharge flow rate, it is generally within the range where the spool stroke is small. In the low pressure range, the curve is gentle and υJIII, and in the large spool stroke range, the pressure is high with a sharp curve. For this reason, if the pressure (acceleration pressure) on the inflow side of the motor 4 is controlled only by controlling the flow rate using the directional switching valve 3, controllability in the low pressure region is good, but controllability in the high pressure region becomes poor.

しかしながら、上記のように制iすることによってモー
タ4の加速圧力は、方向切換弁3のRffi&lI t
llによって決まる圧力と、上記リリーフ弁11の設定
圧のうち、低圧側の圧力によってυ1@されることにな
り、スプールストロークが小さい範囲(低圧域)では方
向切換弁3の流醋制tll(圧力制WIl)が優先され
、スプールストロークが大きい範囲(高圧域)ではリリ
ーフ弁11の設定圧による制御が優先され、スプールス
トロークの全域にわたって滑らかに制御され、制御性が
大幅に向上され、モータ4はスムーズに加速される。
However, by controlling i as described above, the acceleration pressure of the motor 4 is reduced by Rffi & lI t of the directional control valve 3.
Of the pressure determined by ll and the pressure on the low pressure side of the set pressure of the relief valve 11, it is υ1@, and in a range where the spool stroke is small (low pressure region), the flow control tll (pressure In the range where the spool stroke is large (high pressure range), priority is given to control by the set pressure of the relief valve 11, and control is performed smoothly over the entire spool stroke, greatly improving controllability, and the motor 4 is Accelerates smoothly.

その慢、方向切換弁3を中立方向に戻すと、方向切換弁
3のモータ4からタンク10への通路間口面積が絞られ
るのに対し、モータ4は慣性により正転するために、モ
ータ排出側の回路7の圧力が次第に上昇し、その圧力(
減速圧力)でモータ4が減速される。このとき方向切換
弁3の戻し操作途中ではスプールストロークは依然とし
て押し側にあり(ステップS4で’YES”)、モータ
4は慣性により正転しているので(ステップS5で”Y
ES”)、上記ステップS1〜S7によりモータ4の排
出側のリリーフ弁12の設定圧が上記減速パターン(第
3図実線口)に沿って制御され、このti制御により方
向切換弁3を中立に戻す程、モータ4の減速圧力が次第
に高くなり、モータ4が効率よく減速される。
However, when the directional control valve 3 is returned to the neutral direction, the opening area of the passage from the motor 4 of the directional control valve 3 to the tank 10 is narrowed, but since the motor 4 rotates forward due to inertia, the motor discharge side The pressure in circuit 7 gradually increases, and the pressure (
The motor 4 is decelerated by the deceleration pressure). At this time, during the return operation of the directional control valve 3, the spool stroke is still on the push side ('YES' in step S4), and the motor 4 is rotating forward due to inertia ('Y' in step S5).
ES"), the set pressure of the relief valve 12 on the discharge side of the motor 4 is controlled according to the deceleration pattern (solid line in Figure 3) through steps S1 to S7, and the directional control valve 3 is set to neutral by this ti control. As it is returned, the deceleration pressure of the motor 4 gradually increases, and the motor 4 is decelerated more efficiently.

なお、上記旋回の加速および減速時において、レバーを
中立よりも押し側で押し引き操作しても、レバーが押し
側にある限り、また、モータ4が正転している限り、モ
ータ流入側のリリーフ弁11は加速パターン(同上実線
イ)に沿って制御され、モータ排出側のリリーフ弁12
は減速パターン(同上実線口)に沿って制御され、モー
タ4の加速圧力および減速圧力がスプールストロークに
応じて適正に制御され、加速ならびに減速がスムーズに
行われる。
In addition, during acceleration and deceleration of the above-mentioned turning, even if the lever is pushed or pulled to the push side rather than neutral, as long as the lever is on the push side and as long as the motor 4 is rotating forward, the motor inflow side will The relief valve 11 is controlled according to the acceleration pattern (solid line A), and the relief valve 12 on the motor discharge side
is controlled according to a deceleration pattern (shown by the solid line above), and the acceleration pressure and deceleration pressure of the motor 4 are appropriately controlled according to the spool stroke, so that acceleration and deceleration are performed smoothly.

上記旋回減速後に方向切換弁3を中立位置に停止させる
と、ポンプ1からモータ4への圧油の供給が停止され、
モータ4からタンク10への排出油もブロックされ、モ
ータ排出側の回路7の圧力が急上昇する。このときステ
ップS3で“YES”゛となり、また、中立ブレーキモ
ードであるのでステップS8でYES″となってステッ
プS9に進む。そして、モータ排出側であったリリーフ
弁12の設定圧が高圧(たとえば190Kg/ci)に
制御されるとともに、モータ流入側であったリリーフ弁
11の設定圧も高圧(たとえば190附/d)に制御さ
れ、モータ4が高圧で制動される。
When the directional control valve 3 is stopped at the neutral position after the swing deceleration, the supply of pressure oil from the pump 1 to the motor 4 is stopped.
The oil discharged from the motor 4 to the tank 10 is also blocked, and the pressure in the circuit 7 on the motor discharge side increases rapidly. At this time, the answer is "YES" in step S3, and since the mode is the neutral brake mode, the answer is "YES" in step S8, and the process proceeds to step S9.Then, the set pressure of the relief valve 12, which was on the motor discharge side, is set to high pressure (for example, At the same time, the set pressure of the relief valve 11 on the motor inflow side is also controlled to a high pressure (for example, 190 Kg/d), and the motor 4 is braked at high pressure.

さらに、上記旋回の減速、停止時に、方向切換弁3を押
し側から中立を越えて引き側に逆レバー操作した場合、
モータ4の排出側の回路7にポンプ1の吐出油が流入さ
れ、流入側の回路6がタンク10に連通される。このと
きステップS4でlI N Oleとなり、また、方向
切換弁3が引き側に操作されたの対しモータ4は慣性に
より正転しているので、ステップSw+で“N O”と
なり、さらに、中立ブレーキモードであるのでステップ
$11で“Y E S ”となり、ステップS12に進
む。そして、モータ排出側のリリーフ弁12の設定圧を
高圧に保持したまま(同上破線ハ)で、モータ流入側の
リリーフ弁11の設定圧が減速パターン(同上実線口)
に沿って次第に低圧になるように制御される。これによ
り逆レバー操作しても減速圧力が低下することはなく、
高圧のままであり、かつ、回路7にはモータ4の排出油
とポンプ1からの圧油が流入し、モータ4が速やかに制
動される。
Furthermore, when decelerating or stopping the above-mentioned turning, if the reverse lever is operated on the direction switching valve 3 from the push side to the pull side beyond the neutral position,
Discharge oil from the pump 1 flows into a circuit 7 on the discharge side of the motor 4, and a circuit 6 on the inflow side is communicated with the tank 10. At this time, in step S4, the state becomes "I N Ole", and while the directional control valve 3 was operated to the pull side, the motor 4 is rotating forward due to inertia, so it becomes "N O" in step Sw+, and furthermore, the neutral brake is activated. mode, the result is "YES" at step $11, and the process advances to step S12. Then, while the set pressure of the relief valve 12 on the motor discharge side is maintained at a high pressure (dotted line c in the above), the set pressure of the relief valve 11 on the motor inflow side decelerates in a deceleration pattern (solid line in the above).
The pressure is controlled so that the pressure gradually decreases along the line. This prevents the deceleration pressure from decreasing even if the reverse lever is operated.
The pressure remains high, and the discharged oil from the motor 4 and the pressure oil from the pump 1 flow into the circuit 7, and the motor 4 is quickly braked.

なお、この中立ブレーキモードにおいて、方向切換弁3
が中立のときは、両リリーフ弁11,12の設定圧をい
ずれも高圧に制御するのに対し、旋回加速時にはモータ
流入側のリリーフ弁11の設定圧を低圧から制御開始す
ることになるが、その制御初期°のスプールストローク
の小さい範囲では前述したように方向切換弁3による制
御が優先され、スプールストロークの大きい範囲でリリ
ーフ弁11による制御が優先されるので、ハンチング等
が生じるおそれはなく、旋回制御に支障をきたすおそれ
はない。
In addition, in this neutral brake mode, the directional control valve 3
When is neutral, the set pressures of both relief valves 11 and 12 are controlled to a high pressure, whereas during turning acceleration, control of the set pressure of the relief valve 11 on the motor inflow side starts from a low pressure. As mentioned above, in the small range of the spool stroke at the initial stage of the control, the control by the directional control valve 3 is given priority, and in the large range of the spool stroke, the control by the relief valve 11 is given priority, so there is no risk of hunting etc. There is no risk of hindrance to turning control.

また、モータ4を制動した後、方向切換弁3を中立位置
に保持しておけば、両回路6.7がブロックされるとと
もに、上記ステップS1→S2→S3→S4→S8→S
9により両リリーフ弁11゜12の設定圧がいずれも高
圧に保持されるので、モータ4の停止状態が確実に保持
され、上部旋回体5が風圧等によって勝手に旋回するお
それはない。また、傾斜地であっても上部旋回体5が下
り板方向に勝手に旋回するおそれもなく、安全性が向上
される。
Furthermore, if the directional control valve 3 is held in the neutral position after braking the motor 4, both circuits 6.7 are blocked and the steps S1→S2→S3→S4→S8→S
Since the set pressures of both the relief valves 11 and 12 are maintained at a high pressure by the valves 9, the stopped state of the motor 4 is reliably maintained, and there is no fear that the upper rotating body 5 will rotate freely due to wind pressure or the like. Moreover, even on a slope, there is no fear that the upper rotating body 5 will rotate freely in the direction of the descending board, and safety is improved.

上記中立ブレーキモードで、方向切換弁3を引き側に切
換えると、ポンプの吐出油が回路7を経てモータ4に流
入し、モータ4が逆転されるとともに、旋回体5が左方
向に旋回され、モータ4からの吐出し油が回路6および
方向切換弁3を経てタンク10に戻される。この旋回加
速および減速時にはリリーフ弁12がモータ流入側、リ
リーフ弁11がモータ排出側となり、第2図のフローチ
ャートでステップS1→S2→S3→S4→S1゜→S
tI→S%と進み、モータ流入側のリリーフ弁12の設
定圧が加速パターン(同上実線ホ)に沿って制御される
とともに、モータ排出側のリリーフ弁11の設定圧が減
速パターン(同上実線口)に沿って制御され、以下、上
記と同様の作用によりモータ4がスムーズに加速ならび
に減速される。
When the directional control valve 3 is switched to the pull side in the neutral brake mode, the oil discharged from the pump flows into the motor 4 through the circuit 7, the motor 4 is reversed, and the rotating body 5 is rotated to the left. Oil discharged from the motor 4 is returned to the tank 10 via the circuit 6 and the directional control valve 3. During this turning acceleration and deceleration, the relief valve 12 becomes the motor inflow side and the relief valve 11 becomes the motor discharge side, and in the flowchart of Fig. 2, steps S1→S2→S3→S4→S1°→S
tI→S%, the set pressure of the relief valve 12 on the motor inflow side is controlled according to the acceleration pattern (solid line H), and the set pressure of the relief valve 11 on the motor discharge side is controlled according to the deceleration pattern (solid line H). ), and thereafter the motor 4 is smoothly accelerated and decelerated by the same action as above.

その後、方向切換弁3を中立に戻せば、ステップS3→
S8→S9と進み、両リリーフ弁11゜12の設定圧が
いずれも高圧となり、旋回体5が中立で確実に保持され
る。さらに、逆レバー操作した場合は、ステップS4→
S5→S15→5111と進み、モータ排出側のリリー
フ弁11の設定圧が高圧に保持されたままで(同上破線
へ)、モータ流入側のリリーフ弁12の設定圧が減速パ
ターン(同上実線口)に沿って制御され、旋回の減速停
止が速やかに行われる。
After that, if the directional control valve 3 is returned to neutral, step S3→
The process progresses from S8 to S9, and the set pressures of both relief valves 11 and 12 become high pressures, and the rotating body 5 is reliably held in neutral. Furthermore, if the reverse lever is operated, step S4→
Proceeding from S5 → S15 → 5111, the set pressure of the relief valve 11 on the motor discharge side remains at a high pressure (toward the broken line as above), and the set pressure of the relief valve 12 on the motor inflow side changes to the deceleration pattern (as indicated by the solid line as above). The rotation is controlled to decelerate and stop quickly.

■−■ 中立フリーモード モード選択手段15により中立フリーモードを選択し、
方向切換弁3の操作レバーを押し側に操作してモータ4
を正転させ、旋回体5を右方向に旋回させる場合、ステ
ップ81〜S6までは上記ニー■の中立ブレーキモード
での旋回加速時と同様に処理されるが、ステップS6で
’ N O”となり、ステップSνに進む。そして、モ
ータ流入側のリリーフ弁11の設定圧が加速パターン(
同上実線イ)に沿って制御されるのに対し、モータ排出
側のリリーフ弁12の設定圧は低圧のまま(同上破線ト
)に保持される。したがって、モータ4の加速圧力は、
と記ニー■の場合と同様に方向切換弁3の流量制御によ
ってi、II 111される圧力と、上記リリーフ弁1
1の設定圧とのうち、低圧側の圧力によって決まり、ス
プールストロークが小さい範囲(低圧域)では方向切換
弁3による流ω制@(圧力制御)が優先され、スプール
ストロークが大きい範囲(高圧域)ではリリーフ弁11
の設定圧により制御が優先され、モータ4はスムーズに
加速される。
■−■ Neutral free mode is selected by the neutral free mode mode selection means 15,
Operate the operating lever of the directional control valve 3 to the push side to turn the motor 4
When rotating the rotating body 5 in the right direction, steps 81 to S6 are processed in the same way as when accelerating the turning in the neutral brake mode of the knee ■ above, but in step S6, the result is 'NO'. , the process advances to step Sν.Then, the set pressure of the relief valve 11 on the motor inflow side changes to the acceleration pattern (
While the pressure is controlled along the solid line A), the set pressure of the relief valve 12 on the motor discharge side is maintained at a low pressure (broken line G). Therefore, the acceleration pressure of the motor 4 is
As in case ①, the pressure i, II 111 caused by the flow rate control of the directional control valve 3,
It is determined by the pressure on the low pressure side of the set pressure of 1, and in the range where the spool stroke is small (low pressure range), flow control @ (pressure control) by the directional control valve 3 is given priority, and in the range where the spool stroke is large (high pressure range) ), relief valve 11
Control is prioritized based on the set pressure, and the motor 4 is smoothly accelerated.

ただし、この中立フリーモードでは、方向切換片3が押
し側にある限り、減速側のリリーフ弁12の設定圧が低
圧のまま(同上破線ト)であるので、方向切換弁3を中
立方向に戻し操作しても減速圧力は低圧であり、中立ブ
レーキモードの場合のような大きな制動力は作用しない
However, in this neutral free mode, as long as the direction switching piece 3 is on the push side, the set pressure of the relief valve 12 on the deceleration side remains low (as shown by the broken line in the above), so the direction switching valve 3 is returned to the neutral direction. Even if the brake is operated, the deceleration pressure remains low, and a large braking force is not applied as in the case of the neutral brake mode.

その優、方向切換弁3を中立に戻すと、モータ6の両側
回路6,7が方向切換弁3によりブロックされるが、こ
のときステップS3で’ Y E S ”、ステップS
8でNO”となってステップS +aに進み、両側のリ
リーフ弁11.12の設定圧がいずれも低圧(たとえば
30kg/7)に制御される。
When the directional control valve 3 is returned to neutral, the circuits 6 and 7 on both sides of the motor 6 are blocked by the directional control valve 3, but at this time, ``Y E S'' is selected in step S3, and step S is
8, the process proceeds to step S+a, where the set pressures of the relief valves 11 and 12 on both sides are both controlled to a low pressure (for example, 30 kg/7).

このためモータ4からの排出油はリリーフ弁12を経て
低圧でタンク10にリリーフされながら、また、モータ
4の流入側にはタンク10からチエツク弁8を経て油が
流入されながら、モータ4は慣性により回り続けること
になる。したがって、レバー中立でいわゆる旋回流し運
転が可能となる。
Therefore, the oil discharged from the motor 4 passes through the relief valve 12 and is relieved into the tank 10 at low pressure, and the oil flows into the inlet side of the motor 4 from the tank 10 via the check valve 8. It will continue to rotate. Therefore, so-called swirling operation is possible with the lever in the neutral position.

上記旋回の加速後に、方向切換弁3を押し側から中立を
越えて引き側に逆レバー操作すると、モータ4の排出側
の回路7にポンプ1の吐出油が流入され、流入側の回路
6がタンク10に連通される。このときステップS4で
“No”となり、また、方向切換弁3が引き側に操作さ
れたの対しモータ4は慣性により正転しているので、ス
テップS10で’ N O”となり、さらに、中立フリ
ーモードであるのでステップS11でN O”と判別さ
れてステップS19に進む。そして、モータ流入側のリ
リーフ弁11の設定圧が低圧に保持されたまま(同上破
線チ)で、モータ排出側のリリーフ弁12の設定圧が加
速パターン(同上実線ホ)に沿って次第に高くなるよう
に制御される。これによって逆レバー操作の操作量に応
じて減速圧力が制御され、モータ4がスムーズに減速さ
れる。
When the directional control valve 3 is reverse lever operated from the push side to the pull side beyond neutral after acceleration of the above-mentioned turning, the oil discharged from the pump 1 flows into the circuit 7 on the discharge side of the motor 4, and the circuit 6 on the inflow side It is communicated with the tank 10. At this time, the result in step S4 is "No", and while the directional control valve 3 has been operated to the pull side, the motor 4 is rotating forward due to inertia, so the result in step S10 is 'NO', and furthermore, the neutral free mode, the determination in step S11 is NO'' and the process advances to step S19. Then, while the set pressure of the relief valve 11 on the motor inflow side remains at a low pressure (dotted line H), the set pressure of the relief valve 12 on the motor discharge side gradually increases along the acceleration pattern (solid line H). controlled as follows. As a result, the deceleration pressure is controlled according to the operation amount of the reverse lever operation, and the motor 4 is smoothly decelerated.

なお、中立フリーモードで方向切換弁3を引き側に切換
え、モータ4を逆転させて旋回体5を左方向に旋回加速
する場合、およびその加速後に方向切換弁3を中立から
押し側に逆レバー操作して減速停止する場合も上記と同
様の制御が行われる。
In addition, when switching the directional control valve 3 to the pull side in the neutral free mode and rotating the rotating body 5 to the left by rotating the motor 4 in reverse, and after the acceleration, the directional control valve 3 is switched from the neutral to the push side using the reverse lever. When operating to decelerate and stop, the same control as above is performed.

第4図は本発明の第2実施例を示す油圧回路図であり、
この実施例ではモータ4の両側ポートと方向切換弁3と
の間の回路6,7にそれぞれ可変リリーフ弁親弁17.
18が接続され、各親弁の制御部にチエツク弁19.2
0を介して電磁比例リリーフ弁からなる共通の子弁21
が接続され、この子弁21をコントローラ22により制
御するようにしている。なお、他の構成は第1図の実施
例と実質的に同一であり、したがって、同一部分には同
一符号を付している。
FIG. 4 is a hydraulic circuit diagram showing a second embodiment of the present invention,
In this embodiment, variable relief valve master valves 17.
18 is connected, and a check valve 19.2 is connected to the control section of each master valve.
Common child valve 21 consisting of an electromagnetic proportional relief valve through 0
is connected, and the child valve 21 is controlled by a controller 22. Note that the other configurations are substantially the same as the embodiment shown in FIG. 1, and therefore, the same parts are given the same reference numerals.

次に、第4図の実施例による旋回の制御について説明す
る。
Next, turning control according to the embodiment shown in FIG. 4 will be explained.

■−■ 中立ブレーキモード まず、モード選択手段15により中立ブレーキモードを
選択し、方向切換弁3を押し側に切換えてモータ4を正
転させ、旋回体5を右方向に旋回させる場合、第1図の
実施例と同様に各センサ13.14からの信号および選
択手段15からの信号がコントローラ22に入力される
。そして、コントローラ22により第5図のフローチャ
ートに示す制御が行われる。
■-■ Neutral Brake Mode First, when the neutral brake mode is selected by the mode selection means 15, the directional control valve 3 is switched to the push side, the motor 4 is rotated in the normal direction, and the rotating body 5 is to be rotated to the right, the first As in the embodiment shown, the signals from each sensor 13, 14 and the signal from the selection means 15 are input to the controller 22. Then, the controller 22 performs the control shown in the flowchart of FIG.

すなわち第5図において、ステップS20でストローク
センサ13による検出値が記憶され、ステップ821で
ストロークセンサ13の検出値と上記配憶値との差が演
算され、ステップS°22で回転方向センサ14により
検出されたモータ4の回転方向(正転)が読み込まれ、
ステップS 23の中立ブレーキモードかで“Y E 
S ”と判別され、ステップS 24において、上記ス
テップS 21での演算値に基づいて方向切換弁3のス
プールが加速状態か否かが判別される。ここで、加速状
態とは、方向切換弁3のスプールが押し側、引き側のい
ずれにあっても、スプールが中立位置から遠ざかってい
く操作状態をいう。逆に減速状態(ステップ527)と
は、方向切換弁3のスプールが押し側、引き側いずれに
あっても、スプールが中立位置に戻っていく操作状態を
いう。
That is, in FIG. 5, the detected value by the stroke sensor 13 is stored in step S20, the difference between the detected value of the stroke sensor 13 and the above-mentioned stored value is calculated in step S22, and the detected value by the rotation direction sensor 14 is calculated in step S22. The detected rotation direction (forward rotation) of the motor 4 is read,
Step S23: Neutral brake mode
In step S24, it is determined whether or not the spool of the directional control valve 3 is in an accelerated state based on the calculated value in step S21.Here, the accelerated state refers to the state in which the directional control valve Whether the spool of the directional control valve 3 is on the push side or the pull side, the spool moves away from the neutral position.On the contrary, the deceleration state (step 527) means that the spool of the directional control valve 3 is on the push side or the pull side. Refers to the operating state in which the spool returns to the neutral position regardless of whether it is on the pull side.

したがって、この旋回加速時にはステップS 24で’
YES”、ステップS 25の逆レバーかでNO″とな
り、ステップS 26に進む。そして、子弁21に第3
図の実線イ(ただし、方向切換弁3を引き側に切換えて
加速する場合は実線ホ)に示す加速パターンの制御信号
が出力され、子弁21の設定圧が方向切換弁3のスプー
ルストロークに応じて低圧から高圧(たとえば30〜1
9(1g/cal)の範囲でIIIIJWJされる。こ
の場合、子弁21が両親弁17.18に対して共通であ
るから、モータ4の流入側の可変リリーフ弁親弁17の
設定圧と、排出側のリリーフ弁親弁18の設定圧とが常
に同等に制御される。
Therefore, during this turning acceleration, in step S24, '
YES'', and NO'' by pressing the reverse lever in step S25, and the process proceeds to step S26. Then, the third valve is placed in the child valve 21.
The control signal of the acceleration pattern shown in the solid line A in the figure (however, when accelerating by switching the directional control valve 3 to the pull side, the solid line E) is output, and the set pressure of the child valve 21 changes to the spool stroke of the directional control valve 3. Depending on the pressure, from low pressure to high pressure (e.g. 30~1
IIIJWJ in the range of 9 (1 g/cal). In this case, since the slave valve 21 is common to the parent valves 17 and 18, the set pressure of the variable relief valve master valve 17 on the inflow side of the motor 4 and the set pressure of the relief valve master valve 18 on the discharge side are different. Always equally controlled.

こうして旋回加速時は、モータ4の加速圧力が方向切換
弁3の流量制御によって決まる圧力と、上記子弁21に
よって制御される可変リリーフ弁親弁17の設定圧との
うち、低圧側の圧力によって制御され、上記第1実施例
における■−■の場合と同様にモータ4はスムーズに加
速される。
In this way, during turning acceleration, the acceleration pressure of the motor 4 is determined by the pressure on the lower pressure side of the pressure determined by the flow rate control of the directional control valve 3 and the set pressure of the variable relief valve master valve 17 controlled by the slave valve 21. The motor 4 is smoothly accelerated in the same way as in the cases ①-② in the first embodiment.

ただし、この第2実施例では、方向切換弁3を中立方向
に戻すと、ステップ824で“No″となり、ステップ
827のスプールは減速状態かで“YE S ”となり
、また、ステップS2δの逆レバーかで“No”となり
、ステップS 29に進む。そして、子弁21に第3図
の実線口(ただし、方向切換弁3を引き側に切換えて加
速する場合は実線二)に示す減速パターンの制御信号が
出力され、子弁21の設定圧すなわち両親弁17.18
の設定圧が方向切換弁3を中立位置に戻す程高くなるよ
うに制御され、モータ4の減速圧力がモータ排出側のリ
リーフ弁親弁18によって制御され、モータ4が効率よ
く減速される。
However, in this second embodiment, when the directional control valve 3 is returned to the neutral direction, "No" is returned in step 824, "YES" is obtained in step 827 because the spool is in a deceleration state, and the reverse lever in step S2δ is The answer is "No" and the process advances to step S29. Then, the control signal of the deceleration pattern shown in the solid line port in FIG. Parents dialect 17.18
The set pressure is controlled to be high enough to return the directional control valve 3 to the neutral position, and the deceleration pressure of the motor 4 is controlled by the relief valve parent valve 18 on the motor discharge side, so that the motor 4 is efficiently decelerated.

このように第2実施例において、中立ブレーキモードで
モータ4を加速するときは、子弁21の設定圧を加速パ
ターン(同上実線イまたはホ)に沿って制御し、モータ
4を減速するときは子弁21の設定圧を減速パターン(
同上実線口または二)に沿って制御することにより、モ
ータ4の加速ならびに減速がスムーズに行われる。この
場合、モータ流入側とモータ排出側とが同等に制御され
るが、加速ならびに減速の制御に必要なのは一方の圧力
であり、したがって、旋回の制御に支障をきたすおそれ
はない。
In this way, in the second embodiment, when accelerating the motor 4 in the neutral brake mode, the set pressure of the child valve 21 is controlled according to the acceleration pattern (solid line A or E as above), and when decelerating the motor 4, The set pressure of the child valve 21 is reduced to a deceleration pattern (
By controlling along the solid line 2) above, acceleration and deceleration of the motor 4 can be performed smoothly. In this case, the motor inlet side and the motor outlet side are equally controlled, but only one pressure is required to control acceleration and deceleration, so there is no risk of interfering with turning control.

また、上記旋回減速後に方向切換弁3を中立位置に停止
させると、モータ4の両側回路6.7がブロックされる
とともに、上記ステップS 24で”No” 、ステッ
プ52yT: ”No” とな’Q、サラ□′に、ステ
ップ830のスプールは中立かで’YES″となり、ス
テップS31に進む。そして、子弁21に高圧の制御信
号が出力され、子弁21の設定圧すなわち両すリーフ弁
親弁17.18の設定圧が高圧(たとえば19ON9/
cj)となり、モータ4が高圧で制動され、モータ4の
停止状態が確実に保持される。
Furthermore, when the directional control valve 3 is stopped at the neutral position after the swing deceleration, the circuits 6 and 7 on both sides of the motor 4 are blocked, and the result in step S24 is "No" and the result in step 52yT is "No". In Q, Sarah □', the spool in step 830 is neutral, ``YES'', and the process proceeds to step S31.Then, a high pressure control signal is output to the child valve 21, and the set pressure of the child valve 21, that is, both leaf valves, is output. The set pressure of the master valve 17.18 is high (for example, 19ON9/
cj), the motor 4 is braked at high pressure, and the stopped state of the motor 4 is reliably maintained.

なお、上記旋回の減速、停止時に、方向切換弁3を押し
側から中立を越えて引き側に逆レバー操作した場合、そ
の操作が引き側への加速状態となるので、ステップS 
24で“’ Y E S ”となる。ただし、逆レバー
操作であるからステップS 25でYE S ”となり
、ステップS 31に進み、子弁21には引き続いて高
圧の制御信号(同上破線ハまたはへ)が出力され、上記
両すリーフ弁親弁17.18の設定圧が高圧のままに保
持されることになる。
Note that when the directional control valve 3 is operated from the push side to the pull side beyond neutral when decelerating or stopping the above-mentioned turning, the operation will result in an acceleration state to the pull side, so step S
24 becomes "'YES". However, since this is a reverse lever operation, the result in step S25 is YES, and the process proceeds to step S31, in which a high-pressure control signal (dotted line C or B) is output to the child valve 21, and both leaf valves are activated. The set pressure of the master valves 17 and 18 will be maintained at a high pressure.

したがって、逆レバー操作しても減速圧力は低下するこ
とはなく、モータ4は速やかに制動される。
Therefore, even if the reverse lever is operated, the deceleration pressure does not decrease, and the motor 4 is quickly braked.

■−■ 中立フリーモード モード選択手段15により中立フリーモードを選択し、
方向切換弁3を押し側に切換えてモータ4を正転させ、
旋回体5を右方向に旋回させるときは、上記ステップS
 23の中立ブレーキモードかでN O”となり、ステ
ップS 26に進み、子弁21を介して両すリーフ弁親
弁17.18の設定圧が加速パターン(同上実線イまた
はホ)に沿って制御される。この場合、上記設定圧が常
に加速パターン(同上実線イまたはホ)に沿って制御さ
れるので、加速時には上記■−■の中立ブレーキモード
の場合と同様の作用により旋回がスムーズに加速される
が、その旋回加速後に方向切換弁3を中立位置側に戻し
た場合には、中立位置に近付く程上記設定圧が低くなり
、中立位置で最低(たとえば3ONy/cal)となり
、したがって、レバー中立で慣性による旋回流し運転が
可能となる。
■−■ Neutral free mode is selected by the neutral free mode mode selection means 15,
Switch the directional control valve 3 to the push side to rotate the motor 4 in the normal direction,
When rotating the rotating body 5 to the right, the above step S
23 is in the neutral brake mode, the process goes to step S26, where the set pressures of both leaf valve master valves 17 and 18 are controlled via the child valve 21 according to the acceleration pattern (solid line A or E in the same figure). In this case, the set pressure is always controlled according to the acceleration pattern (solid line A or E above), so when accelerating, the turning is smoothly accelerated by the same effect as in the neutral brake mode of ■-■ above. However, when the directional control valve 3 is returned to the neutral position after the turning acceleration, the above-mentioned set pressure becomes lower as it approaches the neutral position, and becomes the lowest (for example, 3ONy/cal) at the neutral position, so that the lever It is possible to perform swirling operation using inertia in the neutral position.

その後、方向切換弁3をたとえば押し側から中立を越え
て引き側に逆レバー操作すると、上記設定圧が上記加速
パターンに沿って制御され、逆レバーの操作量(スブー
ルスi・ローフ)が大きくなる程リリーフ弁設定圧が高
くなり、その圧力でモータ4が減速停止される。
After that, when the directional control valve 3 is reverse lever operated, for example, from the push side to the pull side beyond neutral, the set pressure is controlled according to the acceleration pattern, and the operation amount of the reverse lever (suburse i loaf) increases. As the pressure increases, the set pressure of the relief valve becomes higher, and the motor 4 is decelerated and stopped by this pressure.

なお、方向切換弁3を引き側に切換えて旋回加速する場
合、その後、方向切換弁3を中立に戻し、さらに押し側
に逆レバー操作する場合も上記と同様の制御が行われる
Note that when the directional switching valve 3 is switched to the pull side to accelerate the turn, the same control as described above is performed when the directional switching valve 3 is then returned to the neutral position and the reverse lever is operated to the push side.

上記各実施例において、方向切換弁3のスプールストロ
ークとリリーフ弁設定圧との関係は第3図に示した例に
限らず、所望に応じて任意に設定されるものであり、ま
た、その設定変更も容易に行えるものである。
In each of the above embodiments, the relationship between the spool stroke of the directional control valve 3 and the relief valve setting pressure is not limited to the example shown in FIG. 3, and can be arbitrarily set as desired. Changes can also be made easily.

〔発明の効果〕〔Effect of the invention〕

以1のように本発明によれば、作業内容等に応じてモー
ド選択手段で作業モードを選択することによって、1台
の機械で、レバーを中立に戻したときにモータを自動停
止させる中立ブレーキモードと、レバーを中立に戻した
ときにモータを慣性により回転させる中立フリーモード
とを任意に使い分けることができ、機械の汎用性を向上
できる。
As described in 1 above, according to the present invention, by selecting a work mode with the mode selection means depending on the work content etc., a neutral brake that automatically stops the motor when the lever is returned to neutral is provided in one machine. mode and a neutral free mode in which the motor is rotated by inertia when the lever is returned to neutral, which can be used as desired, improving the versatility of the machine.

また、各モードに応じてモータの加速圧力および減速圧
力を自動的に適正に制御でき、旋回の加速ならびに減速
をいずれもスムーズに行うことができ、制御性ならびに
作業性を向上できる。
Further, the acceleration pressure and deceleration pressure of the motor can be automatically and appropriately controlled according to each mode, and both the acceleration and deceleration of turning can be performed smoothly, and controllability and workability can be improved.

また、共通の子弁を用いてリリーフ弁設定圧を制御する
ことにより小容旦の電磁比例リリーフ弁を使用でき、構
造を簡素化してコストダウンを図ることができる。
Furthermore, by controlling the relief valve set pressure using a common slave valve, a small-sized electromagnetic proportional relief valve can be used, and the structure can be simplified and costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す油圧回路図、第2図
は第1実施例の制御のフローチャート、第3図はスプー
ルストロークとリリーフ弁設定圧との関係を示す制御特
性図、第4図は第2実施例を示す油圧回路図、第5図は
第2実施例の制御のフローチャートである。 1・・・油圧ポンプ、3・・・方向切換弁、4・・・旋
回油圧モータ、5・・・上部旋回体、6.7・・・回路
、10・・・タンク、11.12・・・電磁比例リリー
フ弁(電磁比例圧力制御弁)、13・・・スプールスト
ロークセンサ、14・・・回転方向センサ、15・・・
モード選択手段、16・・・コントローラ、17.18
・・・可変リリーフ弁親弁、21・・・子弁(電磁比例
リリーフ弁)、22・・・コントローラ。 特許出願人    株式会社神戸製鋼所代 理 人  
  弁理士  小谷悦司同      弁理士  長1
)1 同      弁理士  伊藤孝夫 第  1  図 第  3  図 ↑甲し←  中   → 引 5 立 スツールストローク (mm) 第  4  図
FIG. 1 is a hydraulic circuit diagram showing a first embodiment of the present invention, FIG. 2 is a control flowchart of the first embodiment, and FIG. 3 is a control characteristic diagram showing the relationship between spool stroke and relief valve setting pressure. FIG. 4 is a hydraulic circuit diagram showing the second embodiment, and FIG. 5 is a control flowchart of the second embodiment. DESCRIPTION OF SYMBOLS 1...Hydraulic pump, 3...Directional switching valve, 4...Swivel hydraulic motor, 5...Upper rotating body, 6.7...Circuit, 10...Tank, 11.12...・Electromagnetic proportional relief valve (electromagnetic proportional pressure control valve), 13... Spool stroke sensor, 14... Rotation direction sensor, 15...
Mode selection means, 16...controller, 17.18
... Variable relief valve parent valve, 21... Child valve (electromagnetic proportional relief valve), 22... Controller. Patent applicant: Kobe Steel, Ltd. Agent
Patent Attorney Etsushi Kotani Patent Attorney Chief 1
) 1 Patent Attorney Takao Ito No. 1 Figure 3 Figure ↑ Previous ← Medium → Pull 5 Standing stool stroke (mm) Figure 4

Claims (3)

【特許請求の範囲】[Claims] 1.油圧ポンプの吐出油を方向切換弁を介して旋回油圧
モータに給排してモータの回転方向を制御する旋回制御
装置において、方向切換弁は中立PR接続のブリードオ
フ通路を有する3位置切換弁で構成され、旋回油圧モー
タの両側ポートと方向切換弁との間の両回路にそれぞれ
電磁比例圧力制御弁が接続され、旋回油圧モータの回転
方向検出手段と、方向切換弁の切換量検出手段と、中立
ブレーキモードと中立フリーモードとを選択するモード
選択手段と、上記各検出手段および選択手段からの信号
に基づいて方向制御弁が中立で、中立ブレーキモードの
ときに上記両電磁比例圧力制御弁の設定圧を高圧とし、
中立フリーモードのときに上記両電磁比例圧力制御弁の
設定圧を低圧とするコントローラとを備えていることを
特徴とする旋回制御装置。
1. In a swing control device that controls the rotation direction of the motor by supplying and discharging oil discharged from a hydraulic pump to and from a swing hydraulic motor via a directional switching valve, the directional switching valve is a 3-position switching valve having a bleed-off passage connected to a neutral PR. The electromagnetic proportional pressure control valve is connected to both circuits between the both side ports of the swing hydraulic motor and the directional switching valve, and includes a rotating direction detection means of the swing hydraulic motor, a switching amount detection means of the directional switching valve, mode selection means for selecting between neutral brake mode and neutral free mode; and mode selection means for selecting both of the electromagnetic proportional pressure control valves when the directional control valve is in neutral and in neutral brake mode based on signals from each of the above-mentioned detection means and selection means. Set pressure to high pressure,
A swing control device comprising: a controller that sets the set pressures of both of the electromagnetic proportional pressure control valves to a low pressure when in a neutral free mode.
2.コントローラは、上記旋回油圧モータの回転方向検
出手段ならびに方向切換弁の切換量検出手段からの検出
信号およびモード選択手段からの選択信号に基づいてモ
ータの運転状態を判別し、中立ブレーキモードで、方向
制御弁が中立のときに上記両電磁比例圧力制御弁の設定
圧を高圧とし、旋回加速時に方向切換弁の中立から旋回
位置側への弁切換量が大きくなる程モータ流入側の電磁
比例圧力制御弁の設定圧を高くし、旋回減速時に上記弁
切換量が小さくなる程モータ排出側の電磁比例圧力制御
弁の設定圧を高くする制御信号を出力し、中立フリーモ
ードで、方向制御弁が中立のときに上記両電磁比例圧力
制御弁の設定圧を低圧とし、旋回加速時に上記弁切換量
が大きくなる程モータ流入側の電磁比例圧力制御弁の設
定圧を高くし、旋回減速時に方向切換弁のモータ回転方
向とは逆方向への弁切換量が大きくなる程モータ排出側
の電磁比例圧力制御弁の設定圧を高くする制御信号を出
力する制御手段を備えていることを特徴とする請求項1
記載の旋回制御装置。
2. The controller determines the operating state of the motor based on the detection signal from the rotation direction detection means of the swing hydraulic motor and the switching amount detection means of the directional switching valve, and the selection signal from the mode selection means, and selects the direction in neutral brake mode. When the control valve is in neutral, the set pressure of both electromagnetic proportional pressure control valves is set to a high pressure, and the larger the valve switching amount from the neutral to the swing position of the directional control valve during swing acceleration, the higher the electromagnetic proportional pressure control on the motor inflow side. A control signal is output that increases the set pressure of the valve, and the smaller the valve switching amount becomes during swing deceleration, the higher the set pressure of the electromagnetic proportional pressure control valve on the motor discharge side.In neutral free mode, the directional control valve is in neutral. At this time, the set pressure of both electromagnetic proportional pressure control valves is set to a low pressure, and the larger the switching amount of the valve is during swing acceleration, the higher the set pressure of the electromagnetic proportional pressure control valve on the motor inflow side is. A claim characterized in that the control means is provided for outputting a control signal that increases the set pressure of the electromagnetic proportional pressure control valve on the motor discharge side as the amount of valve switching in the direction opposite to the motor rotation direction increases. 1
The swing control device described.
3.旋回油圧モータの両側ポートと方向切換弁との間の
両回路にそれぞれ可変リリーフ弁親弁が接続され、各親
弁の圧力制御部に電磁比例圧力制御弁からなる共通の子
弁が接続され、コントローラは、旋回油圧モータの回転
方向検出手段と、方向切換弁の切換量検出手段と、モー
ド選択手段とからの各信号に基づいてモータの運転状態
を判別し、中立ブレーキモードで、方向制御弁が中立の
ときに上記子弁の設定圧を高圧とし、旋回加速時に方向
切換弁の中立から旋回位置側への弁切換量が大きくなる
程子弁の設定圧を高くし、旋回減速時に上記弁切換量が
小さくなる程子弁の設定圧を高くする制御信号を出力し
、中立フリーモードで、方向制御弁が中立のときに上記
子弁の設定圧を低圧とし、旋回加速時に上記弁切換量が
大きくなる程子弁の設定圧を高くし、旋回減速時に上記
弁切換量が小さくなる程子弁の設定圧を低くする制御信
号を出力する制御手段を備えていることを特徴とする請
求項1記載の旋回制御装置。
3. Variable relief valve master valves are connected to both circuits between both ports of the swing hydraulic motor and the directional control valve, respectively, and a common slave valve consisting of an electromagnetic proportional pressure control valve is connected to the pressure control section of each master valve, The controller determines the operating state of the motor based on each signal from the rotation direction detection means of the swing hydraulic motor, the switching amount detection means of the directional control valve, and the mode selection means, and selects the directional control valve in the neutral brake mode. The set pressure of the child valve is set to a high pressure when the is in neutral, and the set pressure of the child valve is set high as the amount of valve switching from the neutral to the swing position of the directional control valve increases during swing acceleration, and the above valve switch is set when the swing is decelerated. Outputs a control signal that increases the set pressure of the child valve as the amount decreases, and in neutral free mode, sets the set pressure of the child valve to a low pressure when the directional control valve is in neutral, and increases the valve switching amount during turning acceleration. The swing according to claim 1, further comprising a control means for outputting a control signal for increasing the set pressure of the switch valve and lowering the set pressure of the switch valve such that the valve switching amount becomes smaller during swing deceleration. Control device.
JP63225736A 1988-09-08 1988-09-08 Swing control device Expired - Lifetime JP2549420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225736A JP2549420B2 (en) 1988-09-08 1988-09-08 Swing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225736A JP2549420B2 (en) 1988-09-08 1988-09-08 Swing control device

Publications (2)

Publication Number Publication Date
JPH0276907A true JPH0276907A (en) 1990-03-16
JP2549420B2 JP2549420B2 (en) 1996-10-30

Family

ID=16834026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225736A Expired - Lifetime JP2549420B2 (en) 1988-09-08 1988-09-08 Swing control device

Country Status (1)

Country Link
JP (1) JP2549420B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127604A (en) * 1993-11-05 1995-05-16 Uchida Yuatsu Kiki Kogyo Kk Slewing control device
WO2000032941A1 (en) * 1998-11-27 2000-06-08 Hitachi Construction Machinery Co., Ltd. Revolution control device
JP2005133938A (en) * 2003-10-03 2005-05-26 Poclain Hydraulics Industrie Open hydraulic circuit with relief valve device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200004A (en) * 1986-02-26 1987-09-03 Yutani Juko Kk Control circuit of hydraulic motor for driving rotating structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200004A (en) * 1986-02-26 1987-09-03 Yutani Juko Kk Control circuit of hydraulic motor for driving rotating structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127604A (en) * 1993-11-05 1995-05-16 Uchida Yuatsu Kiki Kogyo Kk Slewing control device
WO2000032941A1 (en) * 1998-11-27 2000-06-08 Hitachi Construction Machinery Co., Ltd. Revolution control device
EP1052413A1 (en) * 1998-11-27 2000-11-15 Hitachi Construction Machinery Co., Ltd. Revolution control device
US6339929B1 (en) 1998-11-27 2002-01-22 Hitachi Construction Machinery Co., Ltd. Swivel control apparatus
KR100383740B1 (en) * 1998-11-27 2003-05-12 히다치 겡키 가부시키 가이샤 Revolution control device
EP1052413A4 (en) * 1998-11-27 2006-01-04 Hitachi Construction Machinery Revolution control device
JP2005133938A (en) * 2003-10-03 2005-05-26 Poclain Hydraulics Industrie Open hydraulic circuit with relief valve device

Also Published As

Publication number Publication date
JP2549420B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US6339929B1 (en) Swivel control apparatus
JP3893857B2 (en) Control device for hydraulic drive winch
JP2000145711A (en) Method and device for controlling turning system hydraulic device
JPH0276907A (en) Turn control device
JPH0624688A (en) Turning control device for crane
JP2547441B2 (en) Swing control circuit
JP2002120990A (en) Turning control device of construction machine
JPH0717688A (en) Drive control device for hydraulic winch
JP3989648B2 (en) Swing control device
JP2002265187A (en) Revolution control device
JPH09203087A (en) Construction machine
JPH06173904A (en) Rotary hydraulic circuit
JP3714713B2 (en) Hydraulic control device
JP2008143635A (en) Swivel control unit for crane
JP2702058B2 (en) Drive control method and device for hydraulic winch
JPS62124354A (en) Control of closed circuit hydraulic drive unit
KR980009679A (en) Boom rising speed and revolution speed control device of excavator
JPH10265194A (en) Hydraulic controller of industrial vehicle
JP3593401B2 (en) Hydraulic control circuit
JPH06288402A (en) Oil pressure passage for swirl
JPS5988544A (en) Oil-pressure circuit of slewing device
JP2001163583A (en) Turn control device
JPS63315496A (en) Stoppage controller for revolving superstructure
JPH045342A (en) Hydraulic driving gear for civil engineering construction machine
JPH0363320A (en) Operation device for power shovel