JPH027523B2 - - Google Patents

Info

Publication number
JPH027523B2
JPH027523B2 JP56072516A JP7251681A JPH027523B2 JP H027523 B2 JPH027523 B2 JP H027523B2 JP 56072516 A JP56072516 A JP 56072516A JP 7251681 A JP7251681 A JP 7251681A JP H027523 B2 JPH027523 B2 JP H027523B2
Authority
JP
Japan
Prior art keywords
mosfet
output terminal
power supply
output
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56072516A
Other languages
Japanese (ja)
Other versions
JPS57186812A (en
Inventor
Masunori Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56072516A priority Critical patent/JPS57186812A/en
Priority to DE8181104892T priority patent/DE3173056D1/en
Priority to EP84105146A priority patent/EP0139078B1/en
Priority to EP81104892A priority patent/EP0045841B1/en
Priority to US06/276,742 priority patent/US4427903A/en
Priority to DE8484105146T priority patent/DE3176981D1/en
Publication of JPS57186812A publication Critical patent/JPS57186812A/en
Publication of JPH027523B2 publication Critical patent/JPH027523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はMOSFETを主な構成素子とする差動
増幅回路に関するものである。 2つの入力信号間の差を増幅する差動増幅回路
は、演算増幅器等リニア回路に於ては不可欠な回
路である。 MOSFETによるリニア集積回路に於ては、差
動増幅回路としてはバイポーラトランジスタの集
積回路に於けるのと同様な共通電流源を持つ回路
が従来用いられてきた。こうした従来回路の典型
的な例を第1図に示す。 第1図に於て1及び2は電気的特性の整合がと
られたMOSFETであり、ドレイン電極はそれぞ
れ第1の出力端子8及び第2の出力端子9に接続
され、ゲート電極はそれぞれ第1の入力端子6及
び第2の入力端子7に接続され、またソース電極
は接続点13に於て互いに接続されている。3及
び4は負荷素子であり、電気的特性の整合がとら
れている。第1図にはゲート電極とソース電極が
接続されたデプレツシヨン型MOSFETを用いる
例を示してあるが、ゲート電極とドレイン電極を
接続したエンハンスメント型MOSFETもしばし
ば用いられる。これらの負荷素子は、第1の電源
10と第1の出力端子8との間及び第1の電源1
0と第2の出力端子9との間に接続される。
MOSFET5は、ドレイン電極が接続点13に接
続され、ソース電極は第2の電源11に接続され
ており、ゲート電極12にはバイアス電圧が与え
られ、接続点13と第2の電源11との間に常に
一定の電流を流す電流源の働きをする。 以下この従来回路の動作を説明する。 1例としてMOSFETはNチヤネル素子として
説明するが、Pチヤネル素子の場合の動作も本質
的に変わりはない。第1図に於て入力端子6及び
7に加えられる同一方向の電位変化、いわゆる同
相入力に対しては、素子1及び3を有する第1の
枝を流れる電流と素子2及び4を有する第2の枝
を流れる電流とは等しく、しかもその和は
MOSFET5の働きにより1定であるから、結局
それぞれの枝を流れる電流は変化せず従つて出力
端子8及び9の電位は変化しない。ところが入力
端子6及び7に逆方向の電位変化、いわゆる差動
入力が加わつた場合は、素子1及び3を有する第
1の枝を流れる電流と素子2及び4を有する第2
の枝を流れる電流とに互いに逆方向の変化が生
じ、その和はMOSFET5の働きにより1定であ
つてもそれぞれの電流に差が生じ、その差は負荷
素子3及び4の働きによつて電圧差として出力端
子8及び9間に得られる。このようにして同相成
分に対して出力に変化を生じず、差動成分のみを
増幅する。 以上述べた如く第1図に示す従来回路が差動増
幅回路として働くためには、MOSFET5がその
ドレイン電極とソース電極と間に一定の電流を流
す必要があり、接続点13の電位にかかわらず一
定の電流を流すためにはMOSFET5は飽和領域
になければならない。この為にはMOSFET5の
閾値電圧をVT5、ゲート電極に加えられるバイ
アス電圧をVB、接続点13の電位をV13とす
ると VB−VT5<V13 が満たされれば良い。従つて第2の電源の値を
VSSとすると、VBをVSS+VT5よりごく僅か
だけ大きい値にすると、V13としてはVSS近
くまで下げることができる。ところがこのように
考えてVBを下げていくとその分MOSFET5の
電流利得を増さなければならず、これは
MOSFET5のチヤネル幅を増すことであり、
MOSFET5の幾可学的大きさが増加する。この
幾可学的な大きさの増加の為に実際はVBとして
はVSS+2VT5程度までしか下げることができ
ず、従つてV13はVSS+VT5程度までしか下
げることはできない。入力端子6及び7に加える
電圧はV13よりも、少くともMOSFET1及び
2に共通な閾値電圧VI以上は高くなければなら
ないから、第1図の差動増幅回路に許される同相
入力電位の下限はせいぜい VSS+V15+VT である。通常VT5=VTとするから、その場合
は同相入力電位は第2の電源の電位よりも閾値電
圧VTの2倍程度高い値よりも低くすることがで
きない。 しかしながらMOSFET集積回路に於ては近年
低電源電圧化の要求が著しい。このため、第1図
の従来回路に於て同相入力の下限が第2の電源電
圧VSSよりエンハンスメント型MOSFETの閾値
電圧の2倍程度高い値にならざるを得ないという
点は、充分な同相入力範囲を得る必要から低電源
電圧化を制限するきわめて大きな欠点となつてき
た。 本発明はこの点に鑑み、同相入力電圧範囲が従
来のものよりも広い新しい回路形式の差動増幅回
路を提供するものである。 本発明によれば、ドレイン電極を第1の電源に
接続しゲート電極を制御端子に接続しソース電極
を第1の出力端子に接続した第1のMOSFET
と、ドレイン電極を前記第1の電源に接続しゲー
ト電極を前記制御端子に接続しソース電極を第2
の出力端子に接続した第2のMOSFETと、ドレ
イン電極を前記第1の出力端子に接続しゲート電
極を第1の入力端子となしソース電極を第2の電
源に接続した第3のMOSFETと、ドレイン電極
を前記第2の出力端子に接続しゲート電極を第2
の入力端子となしソース電極を前記第2の電源に
接続した第4のMOSFETと、前記第1の出力端
子上の電位変化と前記第2の出力端子上の電位変
化の和を反転増幅し前記制御端子に加える手段
と、を具備することを特徴とする差動増幅回路が
得られる。 以下、本発明を1実施例を示す図面に基いて説
明する。 第2図に於て21及び22は互いに電気的特性
の整合をとつて構成したMOSFETであり、
MOSFET21のソース電極は第1の出力端子2
8に接続され、MOSFET22のソース電極は第
2の出力端子29に接続されている。またそれぞ
れのドレイン電極は共に第1の電源30に接続さ
れ、それぞれのゲート電極は共に増幅器34の出
力に接続されている。23及び24も電気的特性
の整合がとつて構成したMOSFETである。
MOSFET23のドレイン電極は第1の出力端子
28に接続され、ゲート電極は第1の入力端子2
6に接続され、ソース電極は第2の電源31に接
続されている。またMOSFET24のドレイン電
極は第2の出力端子29に接続され、ゲート電極
は第2の入力端子27に接続され、ソース電極は
第2の電源31に接続されている。増幅器34
は、第1の出力端子28の出力電圧と第2の出力
端子29の出力電圧の和を反転して増幅し、
MOSFET21及び22のゲート電極にそれぞれ
印加する。 次に第2図に示す実施例の動作を説明する。出
力端子28及び29に生じる同じ方向の電位変化
は増幅器34で反転増幅され、MOSFET21及
び22のゲート電極に加えられる。こうして
MOSFET21及び22のゲート電極に加えられ
た電圧は、出力端子28及び29に元々生じた電
位変化を打ち消そうとする方向に働く。増幅器3
4の利得の絶対値が無限大という理想的な条件の
もとでは出力端子28及び29に生じる同じ方向
の電位変化は完全に打ち消され、結果として出力
端子28及び29には電位変化が生じない。一
方、出力端子28及び29に生じる逆方向で同じ
大きさの電位変化はその合計は零であるため増幅
器34の出力には影響を与えず、電位変化が打ち
消されることはない。入力端子26及び27に印
加される同じ方向の電位変化、すなわち同相入力
は出力端子28及び29に同じ方向の電位変化を
生ぜしめるように働くため、前述の如く増幅器3
4の働きにより出力端子28及び29の電位は変
化しない。一方、入力端子26及び27に印加さ
れる逆方向の電位変化、すなわち差動入力は出力
端子28及び29に逆方向の電位変化を生じ、前
述の如くこの変化は打ち消されない。以上のよう
に同相入力に対しては出力に変化を生じず、差動
入力のみを増幅して伝える差動増幅回路として本
発明は所望の特性を得ることができる。 本実施例に於いて同相入力電位を第2の電源3
1に近づけていつた場合、動作が保たれる限界を
考えてみると、MOSFET23及び24が遮断状
態になるまでであり、従つて第2の電源31の電
位よりMOSFET23及び24の閾値電圧だけN
チヤネル素子に於ては高い電位まで、Pチヤネル
素子に於ては逆にこの閾値電圧だけ低い電位まで
動作し得る。第1図に示した従来例に於ては
MOSFETの閾値電圧の2倍程度までしか第2の
電源電位に近づけなかつたことを考えると、第2
図に示す本発明の実施例の効果は明白である。 尚第2図に於てMOSFET21のドレイン電極
と第1の電源30との間及びMOSFET22のド
レイン電極と第1の電極30との間、また
MOSFET23のドレイン電極と出力端子28と
の間及びMOSFET24のドレイン電極と出力端
子29との間に周波数特性調整用のMOSFETや
抵抗素子等他の素子を配置しそれらの素子を介し
て前記各所を接続しても、それが直流的に導通し
ているものである限りは、本発明の効果を何ら妨
げるものではない。しかしMOSFET23及び2
4のソース電極と第2の電源31との間に抵抗素
子等他の素子を接続するのはその素子の両端間の
電圧分だけ同相入力範囲を狭めるので好ましくな
い。また、MOSFET21のソース電極と出力端
子28との間、及びMOSFET22のソース電極
と出力端子29との間に他の素子を接続するの
は、増幅器34の出力の変化が出力端子の変化に
反映されにくくなり、増幅器34の利得が有限の
場合に同相入力に対する出力の変化が充分抑圧さ
れない場合が出てくるので注意を要する。 第3図は第2図に示す実施例をさらに具体的に
した実施例である。 第3図に於てMOSFET41,42,43,4
4,45からなる回路は第2図に於ける増幅器3
4の一例を具体的に示したものである。
MOSFET41及び42は電気的特性の整合をと
つて構成したMOSFETであり、ドレイン電極は
共に第1の電源30に接続されソース電極は共に
接続点46に接続され、またゲート電極はそれぞ
れ第1の出力端子28と第2の出力端子29に接
続されている。MOSFET43のドレイン電極は
接続点46に接続され、ソース電極は第2の電源
31に接続され、ゲート電極47にはバイアス電
圧が与えられている。MOSFET44はゲート電
極が接続点46に接続され、ソース電極が第2の
電源31に接続されている。MOSFET45は負
荷素子であり、ドレイン電極は第1の電源30に
接続され、ソース電極とゲート電極はMOSFET
44のドレイン電極に接続されると共に
MOSFET21及び22のゲート電極に接続され
ている。MOSFET41,42,43からなる回
路は、MOSFET41及び42ゲート電極に加え
られる電位変化の和に対し接続点46を出力点と
するソースフオロワ回路を構成し、前記電位変化
の和を接続点46に於ける電位変化として伝え
る。MOSFET44及び45はいわゆるインバー
タ回路を構成し、接続点46に於ける電位変化を
反転増幅しMOSFET21及び22のゲート電極
に印加する。従つてMOSFET41,42,4
3,44,45からなる回路は所望の増幅動作を
行なう。 以上、本発明を1実施例を示す第2図及び第3
図に基いて説明したが、本発明は示した実施例に
限るものではなく、特許請求範囲に記載の構成を
満たす限り実現し得るものであり、上記実施例と
基本的には同じ効果を得る。 以上述べた如く本発明によれば従来技術よりも
同相入力電圧範囲の広い差動増幅回路が得られ、
特に低電源電圧化に際し大きな効果を得る。
The present invention relates to a differential amplifier circuit whose main constituent elements are MOSFETs. A differential amplifier circuit that amplifies the difference between two input signals is an essential circuit in linear circuits such as operational amplifiers. In linear integrated circuits using MOSFETs, circuits having a common current source similar to those in bipolar transistor integrated circuits have been used as differential amplifier circuits. A typical example of such a conventional circuit is shown in FIG. In FIG. 1, 1 and 2 are MOSFETs whose electrical characteristics are matched, the drain electrodes of which are connected to the first output terminal 8 and the second output terminal 9, respectively, and the gate electrodes of which are connected to the first output terminal, respectively. is connected to the input terminal 6 and the second input terminal 7, and the source electrodes are connected to each other at a connection point 13. 3 and 4 are load elements whose electrical characteristics are matched. Although FIG. 1 shows an example of using a depletion type MOSFET in which the gate electrode and the source electrode are connected, an enhancement type MOSFET in which the gate electrode and the drain electrode are connected is also often used. These load elements are connected between the first power supply 10 and the first output terminal 8 and between the first power supply 10 and the first output terminal 8.
0 and the second output terminal 9.
The MOSFET 5 has a drain electrode connected to the connection point 13, a source electrode connected to the second power supply 11, a bias voltage applied to the gate electrode 12, and a connection between the connection point 13 and the second power supply 11. acts as a current source that always flows a constant current. The operation of this conventional circuit will be explained below. As an example, MOSFET will be explained as an N-channel device, but the operation is essentially the same when it is a P-channel device. In FIG. 1, for potential changes in the same direction applied to input terminals 6 and 7, so-called in-phase input, the current flows in the first branch having elements 1 and 3 and the second branch having elements 2 and 4. The current flowing through the branches of is equal, and their sum is
Since it is constant due to the action of MOSFET 5, the current flowing through each branch does not change after all, and therefore the potentials of output terminals 8 and 9 do not change. However, when a potential change in the opposite direction, a so-called differential input, is applied to the input terminals 6 and 7, the current flowing through the first branch having elements 1 and 3 and the second branch having elements 2 and 4.
The currents flowing through the branches of the MOSFET 5 change in opposite directions, and even though the sum is constant due to the action of the MOSFET 5, there is a difference between the currents. The difference is obtained between output terminals 8 and 9. In this way, only the differential component is amplified without causing any change in the output with respect to the in-phase component. As mentioned above, in order for the conventional circuit shown in FIG. MOSFET 5 must be in the saturation region to allow a constant current to flow. For this purpose, if the threshold voltage of MOSFET 5 is VT5, the bias voltage applied to the gate electrode is VB, and the potential of connection point 13 is V13, it is sufficient that VB-VT5<V13 is satisfied. Therefore, the value of the second power source is
Assuming VSS, if VB is set to a value only slightly larger than VSS+VT5, V13 can be lowered to close to VSS. However, if you think like this and lower VB, you will have to increase the current gain of MOSFET 5 accordingly, which is
It is to increase the channel width of MOSFET5,
The geometric size of MOSFET 5 increases. Due to this increase in geometric size, VB can actually be lowered only to about VSS+2VT5, and therefore V13 can only be lowered to about VSS+VT5. Since the voltage applied to input terminals 6 and 7 must be higher than V13 by at least the threshold voltage VI common to MOSFETs 1 and 2, the lower limit of the common-mode input potential allowed for the differential amplifier circuit in Figure 1 is at most VSS+V15+VT. Normally, VT5=VT, so in that case, the common-mode input potential cannot be lower than a value that is about twice the threshold voltage VT higher than the potential of the second power supply. However, in recent years, there has been a significant demand for lower power supply voltages in MOSFET integrated circuits. Therefore, in the conventional circuit shown in Figure 1, the lower limit of the common-mode input must be approximately twice the threshold voltage of the enhancement MOSFET than the second power supply voltage VSS. The need to obtain a wide range has become an extremely large drawback that limits the ability to lower the power supply voltage. In view of this point, the present invention provides a differential amplifier circuit with a new circuit type having a wider common-mode input voltage range than conventional ones. According to the present invention, the first MOSFET has a drain electrode connected to a first power source, a gate electrode connected to a control terminal, and a source electrode connected to a first output terminal.
The drain electrode is connected to the first power source, the gate electrode is connected to the control terminal, and the source electrode is connected to the second power source.
a third MOSFET whose drain electrode is connected to the first output terminal, whose gate electrode is the first input terminal, and whose source electrode is connected to the second power supply; The drain electrode is connected to the second output terminal, and the gate electrode is connected to the second output terminal.
a fourth MOSFET whose input terminal and source electrode are connected to the second power supply; and a fourth MOSFET that inverts and amplifies the sum of the potential change on the first output terminal and the potential change on the second output terminal. A differential amplifier circuit is obtained, characterized in that it comprises means for applying the control terminal to the control terminal. Hereinafter, the present invention will be explained based on drawings showing one embodiment. In FIG. 2, 21 and 22 are MOSFETs configured with mutually matched electrical characteristics.
The source electrode of MOSFET 21 is the first output terminal 2
The source electrode of MOSFET 22 is connected to second output terminal 29 . Further, both drain electrodes are connected to the first power source 30, and both gate electrodes are connected to the output of the amplifier 34. 23 and 24 are also MOSFETs whose electrical characteristics are matched.
The drain electrode of the MOSFET 23 is connected to the first output terminal 28, and the gate electrode is connected to the first input terminal 28.
6, and its source electrode is connected to a second power source 31. Further, the drain electrode of the MOSFET 24 is connected to the second output terminal 29 , the gate electrode is connected to the second input terminal 27 , and the source electrode is connected to the second power supply 31 . amplifier 34
inverts and amplifies the sum of the output voltage of the first output terminal 28 and the output voltage of the second output terminal 29,
The voltage is applied to the gate electrodes of MOSFETs 21 and 22, respectively. Next, the operation of the embodiment shown in FIG. 2 will be explained. Potential changes occurring in the same direction at the output terminals 28 and 29 are inverted and amplified by the amplifier 34 and applied to the gate electrodes of the MOSFETs 21 and 22. thus
The voltages applied to the gate electrodes of MOSFETs 21 and 22 act in a direction that attempts to cancel out potential changes originally occurring at output terminals 28 and 29. Amplifier 3
Under the ideal condition that the absolute value of the gain of 4 is infinite, potential changes in the same direction that occur at output terminals 28 and 29 are completely canceled, and as a result, no potential change occurs at output terminals 28 and 29. . On the other hand, the potential changes occurring in the output terminals 28 and 29 in opposite directions and having the same magnitude have a total of zero, so they do not affect the output of the amplifier 34, and the potential changes are not canceled out. Since potential changes in the same direction applied to the input terminals 26 and 27, that is, in-phase inputs, act to cause potential changes in the same direction at the output terminals 28 and 29, the amplifier 3
4, the potentials of the output terminals 28 and 29 do not change. On the other hand, the potential change in the opposite direction applied to the input terminals 26 and 27, ie, the differential input, causes a potential change in the opposite direction to the output terminals 28 and 29, and as described above, this change is not canceled out. As described above, the present invention can obtain desired characteristics as a differential amplifier circuit that amplifies and transmits only differential inputs without causing any change in output in response to common-mode inputs. In this embodiment, the common mode input potential is connected to the second power supply 3.
1, the limit at which operation can be maintained is until MOSFETs 23 and 24 are cut off, and therefore N is lower than the potential of second power supply 31 by the threshold voltage of MOSFETs 23 and 24.
A channel element can operate up to a high potential, and a P channel element can operate up to a potential lower by this threshold voltage. In the conventional example shown in Figure 1,
Considering that the second power supply potential could only be approached to twice the threshold voltage of the MOSFET, the second
The advantages of the embodiment of the invention shown in the figures are obvious. In addition, in FIG. 2, between the drain electrode of MOSFET 21 and the first power supply 30, between the drain electrode of MOSFET 22 and the first electrode 30, and
Other elements such as a MOSFET for frequency characteristic adjustment and a resistance element are arranged between the drain electrode of the MOSFET 23 and the output terminal 28 and between the drain electrode of the MOSFET 24 and the output terminal 29, and the various parts mentioned above are connected through these elements. However, as long as it is DC-conducting, it does not impede the effects of the present invention in any way. However, MOSFET23 and 2
It is not preferable to connect another element such as a resistive element between the source electrode of No. 4 and the second power source 31 because it narrows the common-mode input range by the voltage across the element. Furthermore, connecting other elements between the source electrode of the MOSFET 21 and the output terminal 28 and between the source electrode of the MOSFET 22 and the output terminal 29 is necessary because changes in the output of the amplifier 34 are reflected in changes in the output terminal. If the gain of the amplifier 34 is finite, there may be cases where changes in the output with respect to the in-phase input are not suppressed sufficiently, so care must be taken. FIG. 3 shows a more specific embodiment of the embodiment shown in FIG. In Figure 3, MOSFET41, 42, 43, 4
The circuit consisting of 4 and 45 is the amplifier 3 in FIG.
This is a concrete example of No. 4.
The MOSFETs 41 and 42 are MOSFETs configured with matching electrical characteristics, and their drain electrodes are both connected to the first power supply 30, their source electrodes are both connected to the connection point 46, and their gate electrodes are connected to the first output. It is connected to terminal 28 and second output terminal 29 . The drain electrode of the MOSFET 43 is connected to the connection point 46, the source electrode is connected to the second power supply 31, and the gate electrode 47 is applied with a bias voltage. The gate electrode of the MOSFET 44 is connected to the connection point 46, and the source electrode is connected to the second power supply 31. The MOSFET 45 is a load element, the drain electrode is connected to the first power supply 30, and the source electrode and gate electrode are connected to the MOSFET 45.
connected to the drain electrode of 44 and
It is connected to the gate electrodes of MOSFETs 21 and 22. The circuit consisting of MOSFETs 41, 42, and 43 constitutes a source follower circuit with connection point 46 as an output point for the sum of potential changes applied to the gate electrodes of MOSFETs 41 and 42, and the sum of the potential changes is output at connection point 46. It is transmitted as a change in potential. MOSFETs 44 and 45 constitute a so-called inverter circuit, which inverts and amplifies the potential change at connection point 46 and applies it to the gate electrodes of MOSFETs 21 and 22. Therefore, MOSFET41, 42, 4
The circuit consisting of 3, 44 and 45 performs the desired amplification operation. As described above, FIGS. 2 and 3 show one embodiment of the present invention.
Although the present invention has been explained based on the drawings, the present invention is not limited to the illustrated embodiment, but can be realized as long as the configuration described in the claims is satisfied, and basically the same effect as the above embodiment can be obtained. . As described above, according to the present invention, a differential amplifier circuit with a wider common-mode input voltage range than the conventional technology can be obtained.
This is particularly effective in lowering the power supply voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す回路図である。第2図及
び第3図は本発明の実施例を示す回路図である。 図に於て、1,2,3,4,5,21,22,
23,24,41,42,43,44,45は
MOSFETを、6,7,26,27は入力端子
を、8,9,28,29は出力端子を、10,1
1,30,31は電源を、12,47はバイアス
電圧印加端子を、34は増幅器を、それぞれ示
す。
FIG. 1 is a circuit diagram showing a conventional example. FIGS. 2 and 3 are circuit diagrams showing embodiments of the present invention. In the figure, 1, 2, 3, 4, 5, 21, 22,
23, 24, 41, 42, 43, 44, 45 are
MOSFET, 6, 7, 26, 27 are input terminals, 8, 9, 28, 29 are output terminals, 10, 1
1, 30, and 31 are power supplies, 12, 47 are bias voltage application terminals, and 34 is an amplifier, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 ドレイン電極を第1の電源に接続しゲート電
極を制御端子に接続しソース電極を第1の出力端
子に接続した第1のMOSFETと、ドレイン電極
を前記第1の電源に接続しゲート電極を前記制御
端子に接続しソース電極を第2の出力端子に接続
した第2のMOSFETと、ドレイン電極を前記第
1の出力端子に接続しゲート電極を第1の入力端
子となしソース電極を第2の電源に接続した第3
のMOSFETと、ドレイン電極を前記第2の出力
端子に接続しゲート電極を第2の入力端子となし
ソース電極を前記第2の電源に接続した第4の
MOSFETと、前記第1の出力端子上の電位変化
と前記第2の出力端子上の電位変化の和を反転増
幅し前記制御端子に加える手段と、を具備するこ
とを特徴とする差動増幅回路。
1 A first MOSFET with a drain electrode connected to a first power source, a gate electrode connected to a control terminal, and a source electrode connected to a first output terminal; a first MOSFET with a drain electrode connected to the first power source and a gate electrode connected to the first output terminal; a second MOSFET connected to the control terminal and having a source electrode connected to a second output terminal; a second MOSFET having a drain electrode connected to the first output terminal, a gate electrode serving as a first input terminal, and a second MOSFET having a source electrode connected to the second output terminal; the third connected to the power supply of
a fourth MOSFET whose drain electrode is connected to the second output terminal, whose gate electrode is the second input terminal, and whose source electrode is connected to the second power supply.
A differential amplifier circuit comprising: a MOSFET; and means for inverting and amplifying the sum of a potential change on the first output terminal and a potential change on the second output terminal and applying it to the control terminal. .
JP56072516A 1980-06-24 1981-05-14 Differential amplifying circuit Granted JPS57186812A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56072516A JPS57186812A (en) 1981-05-14 1981-05-14 Differential amplifying circuit
DE8181104892T DE3173056D1 (en) 1980-06-24 1981-06-24 Linear voltage-current converter
EP84105146A EP0139078B1 (en) 1980-06-24 1981-06-24 Amplifier transistor circuit
EP81104892A EP0045841B1 (en) 1980-06-24 1981-06-24 Linear voltage-current converter
US06/276,742 US4427903A (en) 1980-06-24 1981-06-24 Voltage current converter circuit
DE8484105146T DE3176981D1 (en) 1980-06-24 1981-06-24 Amplifier transistor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56072516A JPS57186812A (en) 1981-05-14 1981-05-14 Differential amplifying circuit

Publications (2)

Publication Number Publication Date
JPS57186812A JPS57186812A (en) 1982-11-17
JPH027523B2 true JPH027523B2 (en) 1990-02-19

Family

ID=13491573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56072516A Granted JPS57186812A (en) 1980-06-24 1981-05-14 Differential amplifying circuit

Country Status (1)

Country Link
JP (1) JPS57186812A (en)

Also Published As

Publication number Publication date
JPS57186812A (en) 1982-11-17

Similar Documents

Publication Publication Date Title
EP0139078B1 (en) Amplifier transistor circuit
EP0168198B1 (en) Cmos operational amplifier
US6356153B1 (en) Rail-to-rail input/output operational amplifier and method
US5525897A (en) Transistor circuit for use in a voltage to current converter circuit
US8410854B2 (en) Semiconductor integrated circuit device
US6118340A (en) Low noise differential input, differential output amplifier and method
US4459555A (en) MOS Differential amplifier gain control circuit
US4284957A (en) CMOS Operational amplifier with reduced power dissipation
JPS59212009A (en) Current amplifying device
US6316997B1 (en) CMOS amplifiers with multiple gain setting control
JPH0520924B2 (en)
US7825734B2 (en) Amplifier having an output protection, in particular operational amplifier for audio application
JPS6119134B2 (en)
US4240039A (en) MOS Differential amplifier
JP3081210B2 (en) Linear gain amplifier
US6114897A (en) Low distortion compensated field effect transistor (FET) switch
JPH027523B2 (en)
JPH0471365B2 (en)
US20030222717A1 (en) Variable gain amplifier having improved gain slope characteristic and linearity
US4590438A (en) Bipolar transistor circuit with FET constant current source
JP3343299B2 (en) Output circuit
US6356154B1 (en) FET-based, linear voltage-controlled resistor for wide-band gain control circuit
JPS61131606A (en) Differential amplifier circuit
US6407637B1 (en) Differential current mirror and method
JPH0237724B2 (en) SADOZOFUKUKAIRO