JPH0274877A - Method for spotting fault point in electric power system - Google Patents

Method for spotting fault point in electric power system

Info

Publication number
JPH0274877A
JPH0274877A JP22706688A JP22706688A JPH0274877A JP H0274877 A JPH0274877 A JP H0274877A JP 22706688 A JP22706688 A JP 22706688A JP 22706688 A JP22706688 A JP 22706688A JP H0274877 A JPH0274877 A JP H0274877A
Authority
JP
Japan
Prior art keywords
data
fault
power system
terminal
fault point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22706688A
Other languages
Japanese (ja)
Other versions
JP2506161B2 (en
Inventor
Koichi Tsuji
辻 浩一
Sonshiyou Yanagida
柳田 孫肖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Original Assignee
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co filed Critical Hokuriku Electric Power Co
Priority to JP63227066A priority Critical patent/JP2506161B2/en
Publication of JPH0274877A publication Critical patent/JPH0274877A/en
Application granted granted Critical
Publication of JP2506161B2 publication Critical patent/JP2506161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the spotting errors of fault points by collecting the time series data of the voltage and the current of each terminal of a terminal device which is provided at every important point in an electric power system, sending the data to a central apparatus, and processing the data all together. CONSTITUTION:Terminal devices 1 are provided at the end of an electric power system. (The Figure shows a case wherein two terminals are provided in one circuit.) The terminal device 1 detects a fault and collects the current and the voltage in time series from a CT and a PT which are provided in each phase. The values are converted into digital quantities and stored in a memory. At the same time, the data are sent into a central apparatus 2 through a communication line L. The digital data are received with a receiving part 2a in the central apparatus. The data are operated and processed all together in an operating and processing part 2b so that the measuring errors become the minimum values. The result is printed out at an output part 2c. In this way, the kind of the fault is estimated based on the fault point is decreased. Thus the field inspection tour is made efficient.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、送電線や変電所等の電力系統に事故が発生
した場合に、事故点と原因とを探索するための電力系統
の故障点標定方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is a method for detecting fault points in power systems to search for fault points and causes when faults occur in power systems such as transmission lines and substations. Concerning orientation methods.

〔従来の技術〕[Conventional technology]

従来より、送電線などの電力系統に故障が発生した場合
に、故障点を発見するため現場巡視に出なければならず
、多くの労力と時間とを費やしてきた。そのため故障点
を自動的に探索する故障点標定装置が開発されてきた。
Traditionally, when a failure occurs in a power system such as a power transmission line, it is necessary to go on site patrol to discover the point of failure, which requires a lot of effort and time. Therefore, failure point locating devices that automatically search for failure points have been developed.

この故障点標定装置には多種多様な形式があり、近年、
送電線の片端子にのみ装置を設置してその電圧・電流情
報から故障点の標定を行なうインピーダンス方式が主流
となりつつある〇 〔発明が解決しようとする課題〕 ところが、上記のインピーダンス方式の故障点標定装置
では、送電線の片端子の電圧・電流情報のみを用いて故
障点の標定を行なっているため、計器用変成器(PT−
CT)や負荷潮流及び多端子系統の影響によって1〜3
kmの標定誤差があるといわれている。また電力系統の
故障では原因不明の場合が多く、上記装置によって故障
点を標定し、その結果に基づいて現場巡視を行なっても
、故障が自然復旧するので故障原因がつかめず、再発防
止対策をとれないケースもある。
There are a wide variety of types of failure point locating devices, and in recent years,
The impedance method, in which a device is installed only at one terminal of a power transmission line, and the fault point is located from the voltage and current information, is becoming mainstream.〇 [Problem to be solved by the invention] However, the fault point of the impedance method described above is becoming mainstream. Since the location equipment uses only the voltage and current information of one terminal of the power transmission line to locate the fault point, it
1 to 3 depending on the influence of CT), load flow, and multi-terminal system.
It is said that there is a orientation error of km. In addition, in many cases, the cause of power system failures is unknown, and even if the failure point is located using the above equipment and site patrols are conducted based on the results, the cause of the failure cannot be determined because the failure recovers naturally, and measures to prevent recurrence cannot be taken. There are cases where it is not possible.

そこで、この発明は前記事情に基づいてなされたもので
あり、標定誤差をより小さくすると共に、故障点抵抗を
算出して故障原因を推定する電力系統の故障点標定方法
を提供することを目的とする。
Therefore, the present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide a fault point locating method for an electric power system that further reduces the location error and estimates the cause of the fault by calculating the fault point resistance. do.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するための本発明による電力系統の故
障点標定方法は、電力系統の事故発生時、電力系統の要
所毎に設置した端末機により各端子の時系列の電圧・電
流データを収集し、各端末機から中央装置に集めた多端
子の時系列の電圧・電流データを計測誤差が最小となる
よう一括して演算処理し、電力系統の故障点と故障点抵
抗とを算出することを特徴とするものである。
To achieve the above object, the power system failure point locating method according to the present invention, when an accident occurs in the power system, collects time-series voltage and current data of each terminal using terminals installed at each important point in the power system. The time-series voltage and current data of multiple terminals collected from each terminal to the central device are collectively processed to minimize measurement errors, and the fault points and fault point resistances of the power system are calculated. It is characterized by this.

〔作 用〕[For production]

本発明による電力系統の故障点標定方法では、電力系統
の故障発生時、故障区間を検出する多端子の電圧・電流
データを用いることにより負荷潮流、多端子系統の影響
を除去し、故障点と故障点抵抗を標定している。又、故
障発生後系統状態の変化しない時間内における時系列の
電圧・電流データを用いることで、データに冗長性をも
たせ、より精度の高い標定を行なっている。さらに、故
障点抵抗の数値及び時間的変化から電撃による閃絡や、
樹木接触などの故障原因を推定するものである。
In the power system fault location method according to the present invention, when a fault occurs in a power system, the influence of load flow and multi-terminal system is removed by using multi-terminal voltage and current data for detecting fault sections, and the fault point is located. The fault point resistance is located. In addition, by using time-series voltage and current data during a time period during which the system status does not change after a failure occurs, redundancy is provided to the data and more accurate location is achieved. Furthermore, from the numerical value and temporal change of the resistance at the failure point, flash shorting due to electric shock,
This is to estimate the cause of the failure, such as contact with a tree.

〔実施例〕〔Example〕

以下、本発明による電力系統の故障点標定方法について
図面を参照しつつ具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for locating a fault point in an electric power system according to the present invention will be specifically described with reference to the drawings.

第1図は本発明方法のためのシステム構成図であり、最
も基本的な2端子−回線送電線の場合を示している。こ
の送電線に故障が生じた場合には、この送電線の両端電
気所に設置した端末機1でこれを検知し、PT−CTか
ら送電線各端子の電圧・電流データを収集する。そして
、中央装置2では、各端末機1から通信回線を介して送
られた電圧・電流データを一括処理して故障点と故障点
抵抗を算出するようになっている。
FIG. 1 is a system configuration diagram for the method of the present invention, showing the most basic case of a two-terminal-line power transmission line. If a failure occurs in this power transmission line, it is detected by terminal devices 1 installed at electrical stations at both ends of the power transmission line, and voltage and current data at each terminal of the power transmission line is collected from the PT-CT. Then, the central device 2 collectively processes the voltage and current data sent from each terminal 1 via the communication line to calculate the failure point and failure point resistance.

各端末機1では、事故発生を検知し、PT−CTから電
圧・電流データを収集する。このデータはデジタル量に
変換してメモリに記憶させると共に送信部で通信回線を
介して中央装置2に伝送する。
Each terminal 1 detects the occurrence of an accident and collects voltage and current data from the PT-CT. This data is converted into a digital amount and stored in a memory, and is also transmitted to the central unit 2 via a communication line by a transmitter.

中央装置2では、各端末機1からのデータを入力部2a
で受信し、各端子の電圧・電流データを元に二次計画法
(QP法)を用いて演算処理し、故障位置、故障点抵抗
を求める。上記の故障点と故障点抵抗の演算は演算処理
部2bにより行われる。
In the central device 2, data from each terminal 1 is input to an input section 2a.
, and performs arithmetic processing using quadratic programming (QP method) based on the voltage and current data of each terminal to determine the fault location and fault point resistance. The above calculation of the failure point and failure point resistance is performed by the calculation processing section 2b.

演算処理部2bに接続された出力部(プリンタ、CRT
等)2cで、演算結果として故障日時、回線名、故障相
、故障点抵抗の時間的変化、故障点位置等を出力する。
An output section (printer, CRT) connected to the arithmetic processing section 2b
etc.) In 2c, the failure date and time, line name, failure phase, temporal change in failure point resistance, failure point position, etc. are output as calculation results.

次に、演算方法の具体例を示す。まず各端子の電圧・電
流データから制約条件マトリックスを作成する。第1図
の電力系統に故障が生じた場合には、第2図のような等
節回路が考えられる。第2図において送電線インピーダ
ンスZLは各相平衡とし、故障点イビーダ7スRFa、
 RFb、 RFcは抵抗骨のみとし、またスイッチS
vを閉じれば地絡、開けば短絡となる。地絡の場合、各
端子の電圧・電流データを使ったキルヒホッフの第1、
第2法則の式は次のようになる。
Next, a specific example of the calculation method will be shown. First, a constraint matrix is created from the voltage and current data of each terminal. If a failure occurs in the power system shown in FIG. 1, an equinodal circuit as shown in FIG. 2 can be considered. In Fig. 2, the transmission line impedance ZL is assumed to be balanced for each phase, and the fault points Ivida 7s RFa,
RFb and RFc are only resistance bones, and switch S
If v is closed, it will be a ground fault, and if it is opened, it will be a short circuit. In the case of a ground fault, Kirchhoff's first method using the voltage and current data of each terminal,
The formula for the second law is as follows.

VSa”にzt IS、+RF−(isa+tR,)V
sb=I Zt I sb+RFb (I sb+ I
ab)Vsc=mZ11sc+RFC(Isc+ IR
6)VR&= (1−に) Zj Ia、+Rp、 (
IR,+1Sa)VRb” (1−1) Zi I R
b+RFb (IRb+ l5b)VR−” (1−n
t) zt I Rc+RF。(tR6+rs−)・・
・・・・・・・・・・・・・・・・■ここでVsa、 
Vsb、か。、負、、9にす、 Q尺。。
zt IS, +RF-(isa+tR,)V
sb=I Zt I sb+RFb (I sb+ I
ab) Vsc=mZ11sc+RFC(Isc+IR
6) VR&= (to 1-) Zj Ia, +Rp, (
IR, +1Sa) VRb” (1-1) Zi I R
b+RFb (IRb+ l5b) VR-” (1-n
t) zt I Rc+RF. (tR6+rs-)...
・・・・・・・・・・・・・・・・■Here, Vsa,
Vsb, huh? , negative, 9, Q scale. .

tc、 l 、 m、 RFa、 R1”b、 RFc
は変数、Ztは既知数であり、そのまま0式を解いても
答えは求まるがPT−CTの誤差の影響で標定誤差が大
きく十   − なる為、各相の誤差をε 、εとおき0式を得る。
tc, l, m, RFa, R1”b, RFc
is a variable and Zt is a known number, and the answer can be found by solving Equation 0 as is, but the orientation error will be large due to the influence of the PT-CT error, so let the errors of each phase be ε and ε and use Equation 0. get.

VRC= (1−m) Zj I Rc+RF。(IR
c+Isj+εRe−εRc・・・・・・・・・・・・
・・・・・・■■式では一時刻断面のみの定式化である
が、系統状態が変化しないとみなせる期間の多断面のデ
ータ、例えば2周期分30°サンプリングの都合24断
面のデータからも0式を作成し、これを制約条件とする
。第3図にその制約条件マトリックスを示す。
VRC= (1-m) Zj I Rc+RF. (IR
c+Isj+εRe−εRc・・・・・・・・・・・・
・・・・・・■■The formula is formulated for only one time cross-section, but it can also be calculated from data from multiple cross-sections during a period in which the system status can be considered unchanged, for example, from data from 24 cross-sections due to two periods of 30° sampling. Create equation 0 and use this as a constraint. Figure 3 shows the constraint matrix.

一方、目的関数Iを誤差の二乗和 +(々8゜(’:l )2+ (々8゜品)2+(妬a
 (:))2+ (々。3品)2+(妬b(ム)2+(
jRb品)2+(妬。(ム)2+(妬。品内・・・・・
・・・・・・・・・・・・・■とする。ここでnは各時
刻断面を意味する。
On the other hand, the objective function I is the sum of squared errors +
(:))2+ (etc.3 items)2+(envy b(mu)2+(
jRb item) 2 + (jealous. (mu) 2 + (jealous. Shinanai...
・・・・・・・・・・・・・・・■. Here, n means each time section.

QP法で解く場合、第3図の制約条件で■の目的関数を
最小にするような変数の値を求めることになる。これに
よって送電線全長に対する比であるに、12mが求まり
、故障点を高精度で標定すると共に、故障点抵抗RFa
、 RFb、 RFcも求められる。
When solving using the QP method, values of variables that minimize the objective function (■) under the constraints shown in Figure 3 are found. As a result, a ratio of 12 m to the total length of the power transmission line is determined, and the fault point can be located with high precision, and the fault point resistance RFa
, RFb, and RFc are also determined.

尚、上記演算方法では、地絡の場合を例示しであるが、
短絡時も同様に、測定データから制約条件マトリックス
を作成し、QP法により故障位置、故障点抵抗を求め得
る。これにより、故障点抵抗の時間的な推移も把握する
ことができ、故障原因を推定することが出来る。
In addition, in the above calculation method, the case of a ground fault is exemplified, but
Similarly, when a short circuit occurs, a constraint matrix is created from the measured data, and the fault location and fault point resistance can be determined using the QP method. As a result, it is possible to grasp the temporal change in the resistance at the fault point, and the cause of the fault can be estimated.

上述の実施例は単純モデル系統の場合であるが、この方
式は、多端子、2回線送電線、並びに変電所構内事故に
ついても必要な箇所毎に端末機を設置し、入力情報を増
やすことにより適用可能である。
The above example is for a simple model system, but this method can also be applied to multi-terminal, two-circuit transmission lines, and substation premises accidents by installing terminals at each necessary location and increasing input information. Applicable.

〔発明の効果〕〔Effect of the invention〕

本発明の故障点標定方法は、多端子の時系列データを用
いて一括演算するものであり、標定誤差を低減すること
が出来る。これによって、事故時の現場巡視を効率的に
行なえ、省力化できる。
The fault point locating method of the present invention performs batch calculations using multi-terminal time series data, and can reduce location errors. This makes it possible to efficiently patrol the scene of an accident and save labor.

また、従来捕捉できなかった故障時の故障点抵抗及びそ
の経時的な変化をも計測できるという顕著な効果があり
、この情報に基づき故障原因を把握し、設備上弱い箇所
への設備補強対策を的確に行なうことができる。
Additionally, it has the remarkable effect of being able to measure the resistance at the failure point and its changes over time, which could not be detected in the past.Based on this information, the cause of the failure can be ascertained and measures taken to strengthen weak points in the equipment. Can be done accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2端子−回線送電線の場合の本発明による電力
系統の故障点標定方法に用いる装置の概略図、第2図は
2端子−回線送電線の場合の故障時の等価回路、第3図
は本発明方法で使用する制約条件マトリックスの一例で
ある。 1・・・端末機、2・・・中央装置
Fig. 1 is a schematic diagram of a device used in the fault point locating method for a power system according to the present invention in the case of a two-terminal-line power transmission line, and Fig. 2 is an equivalent circuit at the time of a failure in the case of a two-terminal-line power transmission line. FIG. 3 is an example of a constraint matrix used in the method of the present invention. 1...Terminal, 2...Central device

Claims (1)

【特許請求の範囲】[Claims] 1、電力系統の事故発生時、電力系統の要所毎に設置し
た端末機(1)により各端子の電圧・電流の時系列デー
タを収集し、各端末機(1)から中央装置(2)に集め
た時系列の電圧・電流データを計測誤差が最小となるよ
う一括して演算処理し、電力系統の故障点と故障点抵抗
とを算出することを特徴とする電力系統の故障点標定方
1. When an accident occurs in the power system, terminals (1) installed at important points in the power system collect time-series data on the voltage and current of each terminal, and each terminal (1) transmits the data to the central device (2). A fault point locating method for a power system, characterized in that the time-series voltage and current data collected in the above are collectively processed so as to minimize the measurement error, and the fault point and fault point resistance of the power system are calculated.
JP63227066A 1988-09-09 1988-09-09 Power system fault location method Expired - Fee Related JP2506161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227066A JP2506161B2 (en) 1988-09-09 1988-09-09 Power system fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227066A JP2506161B2 (en) 1988-09-09 1988-09-09 Power system fault location method

Publications (2)

Publication Number Publication Date
JPH0274877A true JPH0274877A (en) 1990-03-14
JP2506161B2 JP2506161B2 (en) 1996-06-12

Family

ID=16854999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227066A Expired - Fee Related JP2506161B2 (en) 1988-09-09 1988-09-09 Power system fault location method

Country Status (1)

Country Link
JP (1) JP2506161B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186266A (en) * 2008-02-05 2009-08-20 Jfe Steel Corp Fine ground fault detector
CN109444790A (en) * 2018-10-29 2019-03-08 广西电网有限责任公司电力科学研究院 A method of supply voltage mutual inductor working condition is identified suitable for line feed terminals
JP2020054164A (en) * 2018-09-28 2020-04-02 株式会社東芝 Power system accident cause estimation device, power system accident cause estimation system, power system accident cause estimation computer program and power system accident cause estimation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174863A (en) * 1982-04-07 1983-10-13 Fuji Electric Co Ltd Fault locating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174863A (en) * 1982-04-07 1983-10-13 Fuji Electric Co Ltd Fault locating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186266A (en) * 2008-02-05 2009-08-20 Jfe Steel Corp Fine ground fault detector
JP2020054164A (en) * 2018-09-28 2020-04-02 株式会社東芝 Power system accident cause estimation device, power system accident cause estimation system, power system accident cause estimation computer program and power system accident cause estimation method
CN109444790A (en) * 2018-10-29 2019-03-08 广西电网有限责任公司电力科学研究院 A method of supply voltage mutual inductor working condition is identified suitable for line feed terminals

Also Published As

Publication number Publication date
JP2506161B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
CN104483601A (en) Power distribution network fault location method based on fault indicators
CA2504006A1 (en) Remote battery monitoring systems and sensors
CN105004918B (en) The harvester of city rail train energy consumption data
WO2005078673A1 (en) Remote battery monitoring system having embedded telesensors
CN103454559A (en) Power distribution network single-phase earth fault zone positioning method and positioning device
CN103376387A (en) Transmission grid fault detection system and method based on internet of thing technology
CN111722155B (en) Cable joint fault monitoring system and monitoring method
CN108683256A (en) Intelligent power distribution cabinet with on-line measurement function
CN103353717B (en) Networking comprehensive intelligent socket and its implementation
CN211402669U (en) Low-voltage distribution network leakage current monitoring device
CN102156260B (en) System and method for evaluating status of oscillation circuit of active high-voltage direct-current switch
CN116736212B (en) On-line monitoring and metering method for running errors of mutual inductor
JPH0274877A (en) Method for spotting fault point in electric power system
CN109557500B (en) Online remote verification intelligent verification system for electric energy metering device based on data sharing
WO2023109882A1 (en) Smart power meter
CN105158539B (en) Method based on pressure drop cancellation element measurement PT secondary circuit voltage drops
CN208720383U (en) Toilet
CN112147409B (en) Online impedance detection method and device for low-voltage distribution line
CN114865601A (en) Fault judgment method and system based on variable quantity criterion
CN112557943A (en) Low-voltage switch system based on double current transformers
CN110824226A (en) Direct current measuring method, device and system
CN105182057A (en) high precision cell voltage monitoring device
CN213987208U (en) Intelligent low-voltage switch of double-current transformer structure
CN111624511A (en) Grounding current online monitoring device and online monitoring control method for transformer iron core
CN106997002B (en) Circuit structure and method for measuring PT secondary circuit voltage drop and load

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees