JPH02735A - Production of alkyleneamine - Google Patents

Production of alkyleneamine

Info

Publication number
JPH02735A
JPH02735A JP63290106A JP29010688A JPH02735A JP H02735 A JPH02735 A JP H02735A JP 63290106 A JP63290106 A JP 63290106A JP 29010688 A JP29010688 A JP 29010688A JP H02735 A JPH02735 A JP H02735A
Authority
JP
Japan
Prior art keywords
catalyst
acid
niobium oxide
reaction
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63290106A
Other languages
Japanese (ja)
Other versions
JP2676847B2 (en
Inventor
Yasushi Hara
靖 原
Yukio Ito
雪夫 伊藤
Kazuhiko Sekizawa
関沢 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JPH02735A publication Critical patent/JPH02735A/en
Application granted granted Critical
Publication of JP2676847B2 publication Critical patent/JP2676847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain alkyleneamines of favorable quality with increased alkylene chains in high yield by reacting ammonia or alkyleneamines with alkanolamines in the presence of niobium oxide treated with an acid. CONSTITUTION:Ammonia or/and alkyleneamines and alkanolamines are reacted in the presence of niobium oxide (preferably niobium pentoxide) treated with an acid, preferably an inorganic acid (especially boric, phosphoric or sulfuric acid) at 200-400 deg.C, preferably 240-300 deg.C temperature to afford alkyleneamines with increased alkylene chains. A preferred combination of raw materials is ammonia and/or ethyleneamines and ethanolamines. The niobium oxide can be treated with the acid to afford niobium oxide with high activity excellent in heat resistance without undergoing any attack by the reaction solution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルキレンアミン類の製造方法、特に酸で処理
した酸化ニオブを触媒として用いるアルキレンアミン類
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing alkylene amines, and particularly to a method for producing alkylene amines using acid-treated niobium oxide as a catalyst.

(従来の技術) アルキレンアミン類、特に工業的に重要なエチレンアミ
ン類の製造法として、二塩化エチレンをアンモニアと反
応させる方法がある。この製造法によると、ピペラジン
及びピペラジン環含有の環状エチレンアミン類の生成量
が少ない、即ち非環状率が高くて工業的に好ましい品質
のエチレンアミン類が得られる。この製造法は広〈実施
されているが、副生成物として多量の食塩が生じ、分I
■を及び処理に費用がかかるという問題点を有する。
(Prior Art) As a method for producing alkylene amines, particularly ethylene amines which are industrially important, there is a method in which ethylene dichloride is reacted with ammonia. According to this production method, the amount of piperazine and piperazine ring-containing cyclic ethyleneamines produced is small, that is, the acyclic ratio is high, and ethyleneamines of industrially preferable quality can be obtained. Although this manufacturing method is widely practiced, it produces a large amount of salt as a by-product, and
(2) The problem is that processing is expensive.

又、モノエタノールアミンを原料とし、水素と水素添加
触媒の存在下で、アンモニアを反応させるエチレンアミ
ン類の製造法も広〈実施されている。しかし、この方法
ではエチレンジアミンを効率よく製造することは可能で
あるが、ピペラジン環含有の品質的に好ましくない環状
エチレンアミン類が多く生成するために、高分子塁のポ
リエチレンポリアミン類を製造することが困難である。
Furthermore, a method for producing ethyleneamines using monoethanolamine as a raw material and reacting it with ammonia in the presence of hydrogen and a hydrogenation catalyst is also widely practiced. However, although it is possible to efficiently produce ethylenediamine using this method, it produces a large amount of cyclic ethyleneamines containing piperazine rings, which are unfavorable in terms of quality, making it difficult to produce polymer-based polyethylene polyamines. Have difficulty.

これらの方法に加えて、モノエタノールアミンを原料と
し、リン含有物質を触媒として用い、アンモニア及び/
又はエチレンアミンを反応させてエチレンアミン類を製
造する方法が提案されている。例えば特開昭51−14
7600号公報には触媒として、リン酸、亜リン酸を使
用する方法が記載されているが、これらの触媒は水を含
む反応)fk中に溶解するため、反応液からの特別な分
離。
In addition to these methods, ammonia and/or
Alternatively, a method of producing ethyleneamines by reacting ethyleneamine has been proposed. For example, JP-A-51-14
Publication No. 7600 describes a method using phosphoric acid and phosphorous acid as catalysts, but since these catalysts are dissolved in the reaction (fk) containing water, special separation from the reaction solution is required.

回収操作が必要となる。又、特開昭57−87424号
公報には、硫酸、硫酸アンモニウム等の硫黄含有物質を
触媒として使用する方法が記載されているが、これらの
触媒も水を含む反応液1に溶解するため、反応液からの
特別な分離1回収1・■作が必要となる。
Collection operation is required. Furthermore, JP-A-57-87424 describes a method using sulfur-containing substances such as sulfuric acid and ammonium sulfate as catalysts, but since these catalysts are also dissolved in the reaction solution 1 containing water, the reaction is slow. Special separation, recovery, and production from the liquid is required.

そこで、水を含む反応液に不要な種々のリン酸塩、担持
リン酸を触媒として用いるエチレンアミン類の製造法が
提案されている。米国特許4448997号にはリン酸
アルミを、特開昭60−41641号公報には、リン酸
ランタン等のmb族金属のリン酸塩を触媒として用いる
エチレンアミン類の製造法がそれぞれ開示されており、
更に特開昭59−150ぎ38号公報には、二酸化チタ
ン等に担持したリン酸を触媒として用いる方法が開示さ
れている。しかし、これらのリン酸塩、担持リン酸は遊
離のリン酸に比べ極めて活性が低い。また、これらのリ
ン酸系触媒を使用しても、ピペラジン環含有の品質的に
好ましくない環状アミンを工業的に十分に満足できる水
準まで低下させることができない。また特開昭60−7
8945号公報にはNbのリン酸塩を触媒として用いる
方法が開示されている。しかし、この触媒では、ピペラ
ジン環含有の品質的に好ましくない環状アミンを工業的
に十分に満足できる水準まで低下させることができない
。ところで、活性の高いリン系触媒としてリン含有イオ
ン交換樹脂があるが、この触媒は耐熱性が悪く、触媒寿
命に問題がある。
Therefore, methods for producing ethylene amines have been proposed in which various phosphates and supported phosphoric acids, which are unnecessary in the water-containing reaction solution, are used as catalysts. U.S. Pat. No. 4,448,997 discloses a method for producing ethylene amines using aluminum phosphate, and JP-A-60-41641 discloses a method for producing ethylene amines using a phosphate of an mb group metal such as lanthanum phosphate as a catalyst. ,
Further, JP-A-59-150-38 discloses a method in which phosphoric acid supported on titanium dioxide or the like is used as a catalyst. However, these phosphates and supported phosphoric acids have extremely low activity compared to free phosphoric acid. Further, even if these phosphoric acid catalysts are used, it is not possible to reduce the quality-wise undesirable cyclic amine containing a piperazine ring to a level that is industrially satisfactory. Also, JP-A-60-7
No. 8945 discloses a method using Nb phosphate as a catalyst. However, with this catalyst, it is not possible to reduce the quality-wise unfavorable cyclic amine containing a piperazine ring to an industrially satisfactory level. Incidentally, there is a phosphorus-containing ion exchange resin as a highly active phosphorus-based catalyst, but this catalyst has poor heat resistance and a problem with catalyst life.

非リン系の触媒としては、シリカ、アルミナが特開昭5
5−38329号公報に記載されているか、これは著し
く活性が低い。
As non-phosphorous catalysts, silica and alumina are
It is described in Japanese Patent No. 5-38329 and has extremely low activity.

(発明が解決しようとする課題) 上述の様に、アルキレンアミン類の製造法に関しては、
多くの方法が開示されているが、これらの方法は、工業
的見地からは未だ不十分なものである。特にアルカノー
ルアミン類を原料とするアルキレンアミン類を製造する
方法において、高活性9高耐熱性を釘し、反応液に難溶
の固体触媒を用いる、非環状率の高い、高品質のアルキ
レンアミン類の製造法の開発が!;IJ望されている。
(Problems to be Solved by the Invention) As mentioned above, regarding the method for producing alkylene amines,
Although many methods have been disclosed, these methods are still unsatisfactory from an industrial standpoint. In particular, in the method of producing alkylene amines using alkanolamines as raw materials, high-quality alkylene amines with high acyclicity that have high activity, high heat resistance, and use a poorly soluble solid catalyst in the reaction solution are used. Development of manufacturing method! ; IJ is desired.

(課題を解決するための手段) 本発明者らはこの現状に鑑み、アンモニア及び/又はア
ルキレンアミン類とアルカノールアミン類との反応によ
る、原料のアンモニア及び/又はアルキレンアミン類よ
りアルキレン鎖の増加したアルキレンアミン類の製造法
を鋭意検討した結果、該反応において、酸で処理した酸
化ニオブが触媒として高い活性を有し、水を含む反応液
に難溶な固体であり耐熱性にも優れているという新規な
事実を見出し、本発明を完成させるに至った。すなわち
本発明は、酸で処理した酸化ニオブを触媒とし、アンモ
ニア及び/又はアルキレンアミン類をアルカノールアミ
ン類と反応させ、原料のアンモニア及び/又はアルキレ
ンアミン類よりアルキレン鎖の増加したアルキレンアミ
ン類を得ることを特徴とするアルキレンアミン類の製造
方法を提供するものである。
(Means for Solving the Problems) In view of this current situation, the present inventors have discovered that the number of alkylene chains increased by the reaction of ammonia and/or alkylene amines with alkanolamines compared to the raw material ammonia and/or alkylene amines. As a result of intensive studies on the production method of alkylene amines, we found that niobium oxide treated with acid has high activity as a catalyst in this reaction, is a solid that is hardly soluble in reaction liquids containing water, and has excellent heat resistance. This new fact has been discovered, and the present invention has been completed. That is, the present invention uses niobium oxide treated with an acid as a catalyst to react ammonia and/or alkylene amines with alkanolamines to obtain alkylene amines having an increased number of alkylene chains than the raw material ammonia and/or alkylene amines. The present invention provides a method for producing alkylene amines characterized by the following.

以下に、本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明の方法において使用する触媒は、酸で処理した酸
化ニオブである。
The catalyst used in the process of the invention is acid treated niobium oxide.

本発明の方法において使用される酸で処理した酸化ニオ
ブとは、酸溶液と酸化ニオブを接触させたものをいう。
The acid-treated niobium oxide used in the method of the present invention refers to niobium oxide that has been brought into contact with an acid solution.

酸化ニオブを接触させる酸としては、硝酸、塩酸、フッ
酸等の無機酸が好ましく、特にホウ酸、リン酸、硫酸が
活性2選択性、耐熱性の面から好ましい。ホウ酸溶液の
濃度は特に限定されないが、例えば、0.01M以上、
4.4M以下、好ましくは0.1M以上、3M未満であ
る。この範囲を越える濃度のホウ酸の場合には、多聞に
存在するホウ酸が触媒として作用し、生成するアミン中
の環状体が増加するなどの悪影響を及ぼし、生成するア
ミンの品質が低下する。処理するホウ酸の濃度が上記範
囲より低い場合には、触媒の耐熱性が低下する。すなわ
ち触媒が低温において表面積が小さい結晶に転移する。
As the acid with which niobium oxide is brought into contact, inorganic acids such as nitric acid, hydrochloric acid, and hydrofluoric acid are preferred, and boric acid, phosphoric acid, and sulfuric acid are particularly preferred from the viewpoint of activity 2 selectivity and heat resistance. The concentration of the boric acid solution is not particularly limited, but for example, 0.01M or more,
It is 4.4M or less, preferably 0.1M or more and less than 3M. If the concentration of boric acid exceeds this range, the boric acid that is often present acts as a catalyst, causing an adverse effect such as an increase in the number of cyclic bodies in the produced amine, resulting in a decrease in the quality of the produced amine. If the concentration of boric acid to be treated is lower than the above range, the heat resistance of the catalyst will decrease. That is, the catalyst transforms into crystals with a small surface area at low temperatures.

また生成するアミン中の環状体が増加する。リン酸水溶
液の濃度は特に限定されないが、例えば0.01M〜1
0M1好ましくは0.1M〜5Mである。この範囲を越
える濃度のリン酸の場合には、触媒の表面積が極めて減
少し、水を含む反応液中にリン酸が溶出する。又、多量
に存在するリン酸及びその塩が触媒として働き、生成す
るアミン中の環状体が増加するなどの悪影響を及ぼし、
生成するアミンの品質が低下する。処理するリン酸の濃
度が」二記範囲より低い場合には、触媒の耐熱性が低下
し、かつ生成するアミン中の環状体が増加する。
Furthermore, the number of cyclic bodies in the produced amine increases. The concentration of the phosphoric acid aqueous solution is not particularly limited, but for example, 0.01M to 1
0M1 is preferably 0.1M to 5M. If the concentration of phosphoric acid exceeds this range, the surface area of the catalyst will be extremely reduced and the phosphoric acid will be eluted into the reaction solution containing water. In addition, phosphoric acid and its salts, which are present in large amounts, act as catalysts and have adverse effects such as an increase in the number of cyclic bodies in the produced amine.
The quality of the amine produced decreases. If the concentration of the phosphoric acid to be treated is lower than the above range, the heat resistance of the catalyst will decrease and the amount of cyclic bodies in the produced amine will increase.

硫酸は、O,001M以」二から18Mまで使用でき、
特に、0.01M以上の濃度の硫酸が好ましい。
Sulfuric acid can be used from O,001M to 18M.
In particular, sulfuric acid with a concentration of 0.01M or more is preferred.

0.001Mより低い濃度の硫酸の場合は、硫酸で処理
した効果が小さく、触媒の活性が低下する。
When the concentration of sulfuric acid is lower than 0.001M, the effect of treatment with sulfuric acid is small and the activity of the catalyst is reduced.

本発明の方法において使用する酸化ニオブには、ホウ酸
又はリン酸が少量残存するが、その存在量はホウ酸の場
合、酸化ニオブ1モルに対して、0.01モル以上5モ
ル以下、好ましくは、0.01モル以上2モル未満であ
り、リン酸の場合、酸化ニオブ1モルに対して、0.0
1モル以」二1モル未満、好ましくは0.01モル以」
二〇、75モル未満である。。残存量が、o、oiモル
未満であると、触媒の耐熱性が低下する。すなわち触媒
が低温において表面積が小さい結晶に転移する。また生
成するアミン中の環状体が増加する。また、ホウ酸の存
在量が5モルを越えると、ホウ酸が触媒として作用する
ため、生成するアミン中の環状体の量が増大し、品質が
低化する。リン酸の存在量が1モル以上であると、触媒
の表面積が極めて減少し、水を含む反応液中にリン酸が
溶出する。又、リン酸及びその塩が触媒として作用する
ため、生成するアミン中の環状体の量が増大し、品質が
低下する。更に、硫酸で処理した酸化ニオブには、硫酸
が残存していても良いし、残存していなくても良い。硫
酸が残存している場合には、硫酸の存在量は、酸化ニオ
ブ1モルに対して、5モル以下が好ましく、特に、1モ
ル以下が好ましい。上記範囲より多く硫酸が残存してい
る場合、多量に存在している硫酸が触媒として作用し、
生成するアミン中の環状体が増加する等の悪影響を及ぼ
し、生成するアミンの品質が低下する。
A small amount of boric acid or phosphoric acid remains in the niobium oxide used in the method of the present invention. is 0.01 mole or more and less than 2 moles, and in the case of phosphoric acid, 0.0 mole per mole of niobium oxide
1 mole or more"21 mole or more, preferably 0.01 mole or more"
Less than 20.75 moles. . If the residual amount is less than o or oi moles, the heat resistance of the catalyst will decrease. That is, the catalyst transforms into crystals with a small surface area at low temperatures. Furthermore, the number of cyclic bodies in the produced amine increases. Furthermore, if the amount of boric acid present exceeds 5 moles, boric acid acts as a catalyst, so the amount of cyclic bodies in the produced amine increases and the quality deteriorates. When the amount of phosphoric acid present is 1 mole or more, the surface area of the catalyst is extremely reduced, and the phosphoric acid is eluted into the reaction solution containing water. Furthermore, since phosphoric acid and its salts act as catalysts, the amount of cyclic bodies in the produced amine increases, resulting in a decrease in quality. Furthermore, sulfuric acid may or may not remain in the niobium oxide treated with sulfuric acid. When sulfuric acid remains, the amount of sulfuric acid present is preferably 5 mol or less, particularly preferably 1 mol or less, per 1 mol of niobium oxide. If more sulfuric acid remains than the above range, the large amount of sulfuric acid will act as a catalyst,
This has an adverse effect such as an increase in the number of cyclic bodies in the produced amine, resulting in a decrease in the quality of the produced amine.

本発明の方法において使用する酸化ニオブには、/7.
酸化ニオブ、四酸化ニオブ、三酸化ニオブ、二酸化ニオ
ブ、−酸化ニオブがあり、どの酸化ニオブを使用しても
一向に差支えないが、五酸化ニオブを使用するのが好ま
しい。五酸化ニオブの形態に特に制限はなく、含水物を
用いても、無水物を用いても、−向に差支えない。含水
状態の五酸化ニオブはニオブ酸とも呼ばれ、一般に N b  O−x H20(0< x≦5)と表される
The niobium oxide used in the method of the present invention includes /7.
There are niobium oxide, niobium tetroxide, niobium trioxide, niobium dioxide, and -niobium oxide, and any niobium oxide can be used without any problem, but it is preferable to use niobium pentoxide. There is no particular restriction on the form of niobium pentoxide, and there is no problem whether a hydrated form or an anhydrous form is used. Niobium pentoxide in a hydrous state is also called niobic acid and is generally expressed as NbO-xH20 (0<x≦5).

X l−5の場合には水酸化ニオブとも呼ばれる。In the case of Xl-5, it is also called niobium hydroxide.

本発明の方法において使用する酸化ニオブの調製法は、
特に限定されないが、例えばホウ酸水溶液、低濃度リン
酸水溶液あるいは硫酸水溶液に五酸化ニオブを浸漬させ
、その後蒸発乾固、焼成する方法が用いられる。水洗は
行っても行わなくても良いが、酸が多口に存在する場合
には、水洗した方が好ましい。
The method for preparing niobium oxide used in the method of the present invention is as follows:
Although not particularly limited, for example, a method may be used in which niobium pentoxide is immersed in an aqueous boric acid solution, a low concentration phosphoric acid aqueous solution, or a sulfuric acid aqueous solution, and then evaporated to dryness and calcined. Washing with water may or may not be performed, but if a large amount of acid is present, washing with water is preferable.

本発明の方法において使用される触媒は焼成して用いて
も、焼成せずに用いても良い。焼成をする場合、焼成温
度には特に制限はないが、ホウ酸で処理した場合は60
0℃以下、リン酸で処理した場合は700℃以下、硫酸
で処理した場合500℃以下の温度がそれぞれ好ましい
。上記の範囲を越える温度で焼成すると触媒の結晶化が
生じるため、表面積が小さくなり、触媒活性が低下する
The catalyst used in the method of the present invention may be used after being calcined or may be used without being calcined. When firing, there is no particular restriction on the firing temperature, but when treated with boric acid, the firing temperature is 60°C.
The temperature is preferably 0° C. or lower, 700° C. or lower when treated with phosphoric acid, and 500° C. or lower when treated with sulfuric acid. If calcined at a temperature exceeding the above range, crystallization of the catalyst will occur, resulting in a decrease in surface area and a decrease in catalytic activity.

本発明の方法においては、触媒の形状に特に制限はなく
、反応形式に応じて粉末のまま、あるいは成型して用い
られる。例えば懸濁床では粉末。
In the method of the present invention, there is no particular restriction on the shape of the catalyst, and it may be used as a powder or in the form of a mold, depending on the type of reaction. For example, powder in a suspended bed.

顆粒状で用いられ、固定床ではペレット状、ビーズ状に
成型して用いられる。触媒の成型方法としては、例えば
押出し成型法、打錠成型法あるいは顆粒成型法があり、
成型する際にはシリカ、アルミナ、シリカ−アルミナ、
粘土等を粘結剤として加えても良い。又、触媒の表面積
を大きくするため、酸で処理した酸化ニオブをシリカ、
アルミナ。
It is used in granular form, and in fixed beds, it is molded into pellets or beads. Examples of catalyst molding methods include extrusion molding, tablet molding, and granule molding.
When molding, use silica, alumina, silica-alumina,
Clay or the like may be added as a binder. In addition, in order to increase the surface area of the catalyst, acid-treated niobium oxide was mixed with silica,
alumina.

チタニア、ジルコニア、多孔質バイコールガラス等の担
体にIcI t!j しても良い。
IcIt! on carriers such as titania, zirconia, and porous Vycor glass. j You can do that.

本発明の方法における酸で処理した酸化ニオブの触媒使
用瓜は、反応を工業的に有意な反応速度で進行せしめる
のに必要な量であれば良い。
The amount of acid-treated niobium oxide catalyst used in the method of the present invention may be as long as it is necessary for the reaction to proceed at an industrially significant reaction rate.

本発明の方法において使用するアンモニア、アルキレン
アミン類とは式(I) R,R[/ [但し、式中a −2〜6、r−0〜6、R1は水素又
は炭素数1〜4のアルキル基、R1′は式%式%(1) (但し、式中b−2〜6、d−0,1、s−0〜4)で
表される基をそれぞれ示す]で表される化合物、又は式
(II)、 [但し、式中e−2〜6、f−2〜6、R2゜R2はそ
れぞれ式(2)、 [(CH2) gNHI t−H(2)(但し、式中g
−2〜6.1−0〜5)で表される基を示す]で表され
る化合物である。
Ammonia and alkylene amines used in the method of the present invention have the formula (I) R, R [/ [wherein a-2 to 6, r-0 to 6, and R1 are hydrogen or carbon atoms of 1 to 4]. An alkyl group, R1' represents a group represented by the formula % (1) (in the formula, b-2 to 6, d-0, 1, s-0 to 4), respectively] , or formula (II), [wherein e-2 to 6, f-2 to 6, and R2゜R2 are respectively formula (2), [(CH2) gNHI t-H(2) (however, in the formula g
-2 to 6.1-0 to 5)]

式(I)、又は式(n)で表されるどちらの化合物を用
いても良いが、好ましくは、式(1)で表されるアンモ
ニア又はアルキレンアミン類が用いられる。式(1)で
表されるアルキレンアミン類を用いると、非環状率の高
い、高品質のアルキレンアミン類が生成する。式(I)
で表されるアンモニア及びアルキレンアミン類とは、例
えば、アンモニア、エチレンジアミン、ジエチレントリ
アミン、トリエチレンテトラミン ンペンタミン、ペンタエチレンへキサミン,ヘキサエチ
レンへブタミン等のエチレンアミン類、プロピレンジア
ミン、ジプロピレントリアミン等のプロピレンアミン類
、ブチレンジアミン、ジエチレントリアミン等のブチレ
ンアミン類、ヘキサメチレンジアミン等のアルキレンア
ミン類及びこれらのアルキル化体、即ち、N−メチルエ
チレンジアミン、N−エチルエチレンジアミン等である
Either compound represented by formula (I) or formula (n) may be used, but ammonia or alkylene amines represented by formula (1) are preferably used. When the alkylene amines represented by formula (1) are used, high quality alkylene amines with a high acyclic ratio are produced. Formula (I)
Ammonia and alkylene amines represented by include, for example, ammonia, ethylene amines such as ethylene diamine, diethylene triamine, triethylene tetramine, pentamine, pentaethylene hexamine, hexaethylene hebutamine, propylene diamine, dipropylene triamine, etc. These include propylene amines, butylene amines such as butylene diamine and diethylene triamine, alkylene amines such as hexamethylene diamine, and alkylated products thereof, such as N-methylethylene diamine and N-ethylethylene diamine.

その中でも、本発明の方法において使用される原料とし
ては、エチレンジアミンやジエチレントリアミン等のエ
チレンアミン類が好ましい。
Among these, ethyleneamines such as ethylenediamine and diethylenetriamine are preferable as raw materials used in the method of the present invention.

本発明の方法において使用されるアンモニア。Ammonia used in the method of the invention.

アルキレンアミン類は、一種類でも二種類以上を混合し
たものでも一向に差支えない。
The alkylene amines may be one type or a mixture of two or more types without any problem.

本発明の方法において使用されるアルカノールアミン類
とは、式(III) [但し、式中h=2〜6、u − 0 〜5、R,′ 
は水素又は炭素数1〜4のアルキル基、R3′は、式%
式%) (但し、式中i−1〜6、j−0.1、y −m Q〜
4)で表わ・される基をそれぞれ示す]で表わされる化
合物又は式(IV) [但し、式中1c = 2 〜6 、j2 = 2 〜
6、m− 2〜6、R4は式(4)、 [ (CH2) nNH] 、−H      (4)
(但し、式中n−2〜6、w−Q〜5)で表される基を
示す]で表される化合物である。
The alkanolamines used in the method of the present invention are represented by the formula (III) [where h=2 to 6, u − 0 to 5, R,′
is hydrogen or an alkyl group having 1 to 4 carbon atoms, R3' is the formula %
(Formula %) (However, in the formula, i-1 to 6, j-0.1, y-m Q-
4) or the compound represented by the formula (IV) [wherein 1c = 2 to 6, j2 = 2 to
6, m-2~6, R4 is the formula (4), [(CH2) nNH], -H (4)
(However, in the formula, a group represented by n-2 to 6, w-Q to 5)].

式(III)又は、式(IV)で表されるどちらの化合
物を用いても良いが、好ましくは、式([)で表わされ
るアルカノールアミン類が用いられる。
Either compound represented by formula (III) or formula (IV) may be used, but alkanolamines represented by formula ([) are preferably used.

式(m)で表されるアルカノールアミン類を用いると、
非環状率の高い、高品質のアルキレンアミン類が生成す
る。式(III)で表されるアルヵノ−ルアミラ類とは
、具体的には、モノエタノールアミン、N−(2−アミ
ノエチル)エタノールアミン、モツプロバノールアミン
、N−(3−アミノプロピル)プロパツールアミン等の
アルカノールアミン類が例示できるが、本発明の方法に
おいて使用される原料としては、モノエタノールアミン
When alkanolamines represented by formula (m) are used,
High quality alkylene amines with high acyclic ratio are produced. Specifically, the alkanol amylates represented by formula (III) include monoethanolamine, N-(2-aminoethyl)ethanolamine, motuprobanolamine, and N-(3-aminopropyl)propanol. Examples include alkanolamines such as amines, and the raw material used in the method of the present invention is monoethanolamine.

N−(2−アミノエチル)エタノールアミンのようなエ
タノールアミン類が好ましい。
Ethanolamines such as N-(2-aminoethyl)ethanolamine are preferred.

本発明の方法において使用されるアルカノールアミン類
は、一種類でも二種類以上を混合したものでも一向に差
支えない。
The alkanolamines used in the method of the present invention may be one type or a mixture of two or more types.

本発明の方法における原料の組合わせには、1)アンモ
ニアとアルカノールアミン類、2)アルキレンアミン類
とアルカノールアミン類、3)アンモニア及びアルキレ
ンアミン類とアルカノールアミン類、 の三つの場合があり、いずれの組合せで反応を実施して
もよい。好ましい原料の組合わせは、l)アンモニアと
式(III)で表されるアルカノールアミン類、 2) アンモニア以外の、式(1)で表されるアルキレ
ンアミン類と式(III)で表わされるアルカノールア
ミン類、 3)式(I)で表されるアンモニア及びアルキレンアミ
ン類と式(m)で表わされるアルカノールアミン類、 である。更に好ましい原料の組合せは、l) アンモニ
アとエタノールアミン類、2) エチレンアミン類とエ
タノールアミン類、3)アンモニア及びエチレンアミン
類とエタノールアミン類 である。
There are three combinations of raw materials in the method of the present invention: 1) ammonia and alkanolamines, 2) alkyleneamines and alkanolamines, and 3) ammonia, alkyleneamines, and alkanolamines. The reaction may be carried out in combination. Preferred combinations of raw materials include: l) ammonia and alkanolamines represented by formula (III); 2) alkyleneamines other than ammonia, represented by formula (1) and alkanolamines represented by formula (III). 3) Ammonia and alkylene amines represented by formula (I) and alkanolamines represented by formula (m). More preferred combinations of raw materials are l) ammonia and ethanolamines, 2) ethyleneamines and ethanolamines, and 3) ammonia, ethyleneamines, and ethanolamines.

本発明の方法において供給される原料の好ましいモル比
は、 ■) アンモニアとアルカノールアミン類とを原料とし
て用いる場合、アンモニア/アルカノールアミン類のモ
ル比が2〜30゜ 2) アルキレンアミン類とアルカノールアミン類を原
料として用いる場合、アルキレンアミン順/アルカノー
ルアミン類のモル比が0.5〜10. 3) アンモニア及びアルキレンアミン類とアルカノー
ルアミン類を原料として用いる場合、(アンモニア士ア
ルキレンアミン類)/アルカノールアミン類のモル比が
0.5〜30 である。いずれの場合も、原料のモル比によって、生成
するアルキレンアミン類の品質が変動する。
The preferred molar ratio of the raw materials supplied in the method of the present invention is: 1) When ammonia and alkanolamines are used as raw materials, the molar ratio of ammonia/alkanolamines is 2 to 30°. 2) Alkyleneamines and alkanolamines When using alkyleneamines as raw materials, the molar ratio of alkyleneamine/alkanolamines is 0.5 to 10. 3) When ammonia, alkylene amines, and alkanolamines are used as raw materials, the molar ratio of (ammonium alkylene amines)/alkanolamines is 0.5 to 30. In either case, the quality of the alkylene amines produced varies depending on the molar ratio of the raw materials.

このモル比が」二足範囲より小さいと、ピペラジン理念
rイアミン類が多く生成し、好ましくない品質のアルキ
レンアミン類が生成する。このモル比が」二足範囲より
大きいと反応速度が低下し、そして圧力が極めて高くな
り実用的ではない。
If this molar ratio is less than the 2-total range, a large amount of piperazine amines will be produced, and alkylene amines of unfavorable quality will be produced. If this molar ratio is larger than the ``bilateral range'', the reaction rate will decrease and the pressure will become extremely high, making it impractical.

本発明の方法においては、生成するアルキレンアミン類
は、原料の種類により異なる。アンモニア及び/又はア
ルキレンアミン類にアルカノールアミン類を反応させた
場合、生成するアルキレンアミン類は、原料のアンモニ
ア、アルキレンアミン類よりアルキレン鎖が増加したも
のである。例えば、式(I)で表されるアンモニア及び
/又はアルキレンアミン類に、式(III)で表される
アルカノールアミン類を反応させた場合、生成するアル
キレンアミン類は式(V)、 [但し、式中ow−2〜6、x−1〜?、R5は水素又
は炭素数1〜4のアルキル基、R5’ は式%式%(5
) (但し、式中p−1〜6、q−o、1、y−o〜4)で
表される基をそれぞれ示すコで表される化合物であり、
生成するアルキレンアミン類のX及び/又はyは原料の
アンモニア・、又はアルキレンアミン類のr及び/又は
Sよりも、少なくとも1以」二増加したもので、原料よ
りもアルキレン鎖の増加したアルキレンアミン類が得ら
れる。例えば、アンモニアとモノエタノールアミンを反
応させると、エチレンジアミンと、ジエチレントリアミ
ン。
In the method of the present invention, the alkylene amines produced vary depending on the type of raw material. When ammonia and/or alkylene amines are reacted with alkanolamines, the alkylene amines produced have more alkylene chains than the raw material ammonia and alkylene amines. For example, when ammonia and/or alkylene amines represented by formula (I) are reacted with alkanolamines represented by formula (III), the alkylene amines produced are of formula (V), [However, In the formula, ow-2~6, x-1~? , R5 is hydrogen or an alkyl group having 1 to 4 carbon atoms, R5' is the formula % formula % (5
) (However, in the formula, a compound represented by a group represented by p-1 to 6, q-o, 1, yo to 4), respectively,
X and/or y of the alkylene amines to be produced are increased by at least 1 or more than r and/or S of the raw material ammonia or alkylene amines, and the alkylene amines have an increased number of alkylene chains than the raw materials. can be obtained. For example, when ammonia and monoethanolamine are reacted, ethylenediamine and diethylenetriamine are produced.

トリエチレンテトラミン ミン、ペンタエチレンへキサミン等の非環状のポリエチ
レンポリアミン類が生成し、エチレンジアミンとモノエ
タノールアミンを反応させると、前述の非環状のポリエ
チレンポリアミン類が生成し、アンモニアとエチレンジ
アミンとモノエタノールアミンを反応させると、エチレ
ンジアミンおよび前述の非環状のポリエチレンポリアミ
ン類が生成する。
Acyclic polyethylene polyamines such as triethylenetetramine and pentaethylene hexamine are produced, and when ethylenediamine and monoethanolamine are reacted, the above-mentioned acyclic polyethylene polyamines are produced, and ammonia, ethylenediamine, and monoethanolamine are produced. When reacted, ethylenediamine and the above-mentioned acyclic polyethylene polyamines are produced.

本発明の方法においては、反応は通常200〜400℃
好ましくは240〜350℃の温度範囲で実施される。
In the method of the present invention, the reaction is usually carried out at 200-400°C.
Preferably it is carried out at a temperature range of 240 to 350°C.

200℃未満の1g度では反応速度が著しく低下し、又
400℃を超えると生成物のアルキレンアミン類の分解
が起こり実用的ではない。
If the temperature is less than 200° C. by 1 g, the reaction rate will drop significantly, and if the temperature exceeds 400° C., the alkylene amines in the product will decompose, making it impractical.

本発明の方法においては、反応は気相で行っても?fk
相で行っても良いが、高品質のアルキレンアミン類を製
造するためには液相で行う方が好ましい。
In the method of the present invention, can the reaction be carried out in the gas phase? fk
Although it may be carried out in a phase, it is preferable to carry out in a liquid phase in order to produce high quality alkylene amines.

本発明の方法においては、反応は懸濁床による回分、半
回分、連続式でも、また固定床流通式でも実施できるが
、工業的には固定床流通式が操作。
In the method of the present invention, the reaction can be carried out in a suspended bed, batchwise, semi-batch, or continuously, or in a fixed bed flow system, but industrially the fixed bed flow system is used.

装置、経済性の面からa利である。It is advantageous in terms of equipment and economy.

本発明の方法においては、反応の圧力は、気相反応か’
ttK相反応か、またアンモニアを使用するかしないか
により大きく変動するため、範囲を限定することは困難
であるが、例えばアンモニアを添加しない液相反応の場
合、およそ1〜300kg / cd Gである。
In the method of the present invention, the reaction pressure is
It is difficult to limit the range because it varies greatly depending on whether it is a ttK phase reaction and whether ammonia is used or not, but for example, in the case of a liquid phase reaction without adding ammonia, it is approximately 1 to 300 kg/cd G. .

本発明の方法においては、触媒は通常の方法で、反応液
から分離2回収され、その後原料は蒸留によって分AI
 、回収される。分離2回収された原料は、必要に応じ
て再び反応帯域へ循環される。反応生成物組成を変動さ
せるため、反応生成物の一部を反応帯域へ循環しても良
い。原料、生成物の分離は通常、蒸留によってなされる
が、蒸留は連続式で行ってもバッチ式で行っても一部に
差支えない。
In the method of the present invention, the catalyst is separated and recovered from the reaction solution by a conventional method, and then the raw material is distilled to a fraction of AI.
, will be recovered. Separation 2 The recovered raw materials are recycled to the reaction zone again as necessary. A portion of the reaction product may be recycled to the reaction zone to vary the reaction product composition. Separation of raw materials and products is usually accomplished by distillation, but distillation may be carried out either continuously or batchwise.

反応生成物の純度2色調を改善するため、反応生成物を
活性炭、水素化ホウ素ナトリウム等で処理しても良い。
In order to improve the purity and color tone of the reaction product, the reaction product may be treated with activated carbon, sodium borohydride, and the like.

水素存在下で反応を行うことにより反応生成物の色調、
臭気等を改浮しても良い。
By carrying out the reaction in the presence of hydrogen, the color tone of the reaction product,
It may also be used to remove odors, etc.

水酸基含有アミンのような品質−ヒ好ましくないアミン
類の生成を減少させるため、あるいは反応速度を」−げ
るために反応帯域から生成水を除去しても良いし、また
触媒寿命を延ばし、かつアンモニア、アルキレンアミン
類の取扱いを容品にするため水を加えて反応させても良
い。
Product water may be removed from the reaction zone to reduce the formation of undesirable amines, such as hydroxyl-containing amines, or to increase reaction rates, and to extend catalyst life and In order to make it easier to handle ammonia and alkylene amines, water may be added to the reaction.

(発明の効果) 本発明は、酸化ニオブを酸で処理することにより、活性
か高く、反応液に侵されず、耐熱性の優れたニオブを得
、該酸化ニオブを触媒として用いることにより、従来の
方法に比べて、好ましい品質のアルキレンアミン類を高
収率で製造する方法を提案するものであり、工業的に極
めて有意義である。
(Effects of the Invention) The present invention obtains niobium with high activity, is not attacked by the reaction solution, and has excellent heat resistance by treating niobium oxide with an acid, and by using the niobium oxide as a catalyst, The present invention proposes a method for producing alkylene amines of preferable quality in high yield compared to the method described above, and is extremely meaningful industrially.

(実施例) 以ド、本発明を具体的に実施例にて説明するが、本発明
はこれらの実施例にのみ特に限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically explained using Examples, but the present invention is not particularly limited only to these Examples.

i′Iられた生成物のアルキレンアミン類及び原料とな
るアルキレンアミン類及びアルカノールアミン類は以下
のような記号で略記する。
The alkylene amines of the produced product and the alkylene amines and alkanolamines used as raw materials are abbreviated using the following symbols.

DA EA IP EP ETA EEA ETA EPA EHA H3 エチレンジアミン モノエタノールアミン ピペラジン N−(2−アミノエチル)ピペラジン ジエチレントリアミン N−(2−アミノエチル)エタノール アミン トリエチレンテトラミン(直鎖状1分 枝状、環状異性体、水酸基含有異性体)テトラエチレン
ペンタミン(直鎖状。
DA EA IP EP ETA EEA ETA EPA EHA H3 Ethylenediamine monoethanolamine piperazine N-(2-aminoethyl)piperazine diethylenetriamine N-(2-aminoethyl)ethanolamine triethylenetetramine (linear mono-branched, cyclic isomer , hydroxyl group-containing isomer) tetraethylenepentamine (linear.

分岐状、環状異性体、水酸基含有異性 体) ペンタエチレンへキサミン(直鎖状。Branched, cyclic isomers, hydroxyl group-containing isomers body) Pentaethylene hexamine (linear).

分岐状、環状異性体、水酸基含有異性 体) アンモニア 実施例1 (触媒調製) 触媒A 酸化ニオブ(CBMM肚製)1sgをIMのホウ酸水溶
液;10m1に加え、24時間、浸漬した。
Branched, cyclic isomers, hydroxyl group-containing isomers) Ammonia Example 1 (Catalyst preparation) Catalyst A 1 sg of niobium oxide (manufactured by CBMM Fu) was added to 10 ml of IM boric acid aqueous solution and immersed for 24 hours.

その後、これを120℃で蒸発、乾固し、さらに乾燥空
気流通下、400℃で2時間、焼成し、これを触媒Aと
した。元素分析の結果、ホウ酸/酸化ニオブ(モル比)
は、1,20であった。示差熱分tliから触媒Aの無
定形から結晶化への転移温l艷は590℃であることが
わかった。
Thereafter, this was evaporated to dryness at 120°C, and further calcined at 400°C for 2 hours under dry air circulation, and this was designated as catalyst A. As a result of elemental analysis, boric acid/niobium oxide (molar ratio)
was 1,20. It was found from the differential heat fraction tli that the transition temperature from amorphous to crystallization of catalyst A was 590°C.

触媒B 酸化ニオブ(CB M M社製);5gを2Mのホウ酸
/エタノール;10m1に加え、24時間、浸漬した。
Catalyst B Niobium oxide (manufactured by CBMM); 5 g was added to 10 ml of 2M boric acid/ethanol, and immersed for 24 hours.

これを水洗した後、80℃で蒸発、乾固し、さらに乾燥
空気流通下、400℃で2時間、焼成し、これを触媒B
とした。元素分析の結果、ホウ酸/酸化ニオブ(モル比
)は、0.92であった。
After washing with water, this was evaporated to dryness at 80°C, and further calcined at 400°C for 2 hours under dry air circulation.
And so. As a result of elemental analysis, the boric acid/niobium oxide (molar ratio) was 0.92.

触媒C 酸化ニオブ(CBMM社製);5gを5Mのリン酸;1
0m1に加え、24時間、浸漬した。その後、これを1
20℃で蒸発、乾固し、さらに乾燥空気流通下、600
℃で2時間、焼成し、これを触媒Cとした。元素分析の
結果、リン酸/酸化ニオブ(モル比)は、0.71であ
り、BET比表面積は、9.1rrr/gであった。X
線回折パターンから、ニオブのリン酸塩は認められなか
った。
Catalyst C Niobium oxide (manufactured by CBMM); 5g to 5M phosphoric acid; 1
0ml and soaked for 24 hours. Then change this to 1
Evaporate to dryness at 20°C, and further dry at 600°C under dry air circulation.
It was calcined at ℃ for 2 hours, and this was designated as Catalyst C. As a result of elemental analysis, the phosphoric acid/niobium oxide (molar ratio) was 0.71, and the BET specific surface area was 9.1 rrr/g. X
From the line diffraction pattern, no niobium phosphate was observed.

触媒D リン酸の濃度を2Mとした以外は触媒Cと同様の方法で
触媒りを5.IJ製した。元素分析の結果、リン酸/酸
化ニオブ(モル比)は、0.30であり、BET比表面
積は、45.2rr?/gであった。X線回折パターン
から、ニオブのリン酸塩は認められなかった。
Catalyst D: The catalyst was prepared in the same manner as Catalyst C except that the concentration of phosphoric acid was 2M. Manufactured by IJ. As a result of elemental analysis, the phosphoric acid/niobium oxide (molar ratio) was 0.30, and the BET specific surface area was 45.2rr? /g. No niobium phosphate was observed from the X-ray diffraction pattern.

触媒E 酸化ニオブ(CBMM社製);5gをIMのリン酸;1
0m1に加え、24時間、浸漬した。その後、これを、
120℃で蒸発、乾固し、さらに乾燥空気流通下、40
0℃で2時間、焼成し、これを触媒Eとした。元素分析
の結果、リン酸/酸化ニオブ(モル比)は、0,12で
あった。触媒EのBET比表面積は、57.8イ/gで
あり、X線回折パターンから、これは無定形であること
がわかった。
Catalyst E Niobium oxide (manufactured by CBMM); 5 g IM phosphoric acid; 1
0ml and soaked for 24 hours. Then, this
Evaporate to dryness at 120°C, and then cool for 40 minutes under dry air circulation.
This was calcined at 0° C. for 2 hours, and this was designated as Catalyst E. As a result of elemental analysis, the phosphoric acid/niobium oxide (molar ratio) was 0.12. The BET specific surface area of Catalyst E was 57.8 I/g, and the X-ray diffraction pattern revealed that it was amorphous.

触媒F 触媒Eを乾燥空気流通下、600℃で2時間焼成し、こ
れを触媒Fとした。元素分析の結果、リン酸/酸化ニオ
ブ(モル比)は、0.12であった。触媒FのBET比
表面積は、43.9イ/gであり、X線回折パターンか
ら、ニオブのリン酸塩は、認められなかった。
Catalyst F Catalyst E was fired at 600° C. for 2 hours under dry air circulation, and this was designated as Catalyst F. As a result of elemental analysis, the phosphoric acid/niobium oxide (molar ratio) was 0.12. The BET specific surface area of Catalyst F was 43.9 I/g, and no niobium phosphate was observed from the X-ray diffraction pattern.

触媒G リン酸の濃度を0.5Mとした以外は触媒Cと同様の方
法で触媒Gを調製した。元素分析の結果、リン酸/酸化
ニオブ(モル比)は、0.07であり、BET比表面積
は、44.4rrr/gであった。
Catalyst G Catalyst G was prepared in the same manner as Catalyst C except that the concentration of phosphoric acid was 0.5M. As a result of elemental analysis, the phosphoric acid/niobium oxide (molar ratio) was 0.07, and the BET specific surface area was 44.4 rrr/g.

X線回折パターンから、ニオブのリン酸塩は、認められ
なかった。
No niobium phosphate was observed from the X-ray diffraction pattern.

触媒H リン酸の濃度を0.2Mとした以外は触媒Cと同様の方
法で触媒Hを調製した。元素分析の結果、リン酸/酸化
ニオブ(モル比)は、0.02であり、BET比表面積
は、51,7rf/gであった。
Catalyst H Catalyst H was prepared in the same manner as Catalyst C except that the concentration of phosphoric acid was 0.2M. As a result of elemental analysis, the phosphoric acid/niobium oxide (molar ratio) was 0.02, and the BET specific surface area was 51.7 rf/g.

X線回折パターンから、ニオブのリン酸塩は、認められ
なかった。
No niobium phosphate was observed from the X-ray diffraction pattern.

この触媒H; Igに蒸溜水;100m1を加え1時間
還流し、F別した。これを乾燥空気流通下600℃で2
時間焼成したところ全量回収された。
100 ml of distilled water was added to this catalyst H; Ig, and the mixture was refluxed for 1 hour, and F was separated. This was heated at 600℃ under dry air circulation for 2
After firing for several hours, the entire amount was recovered.

触媒■ 酸化ニオブ(CBMM社製);5gをIMの硫酸水溶液
;10m1に加え、24時間、浸漬した。
Catalyst (1) 5 g of niobium oxide (manufactured by CBMM) was added to 10 ml of an aqueous IM sulfuric acid solution and immersed for 24 hours.

その後、これを120℃で蒸発、乾固し、さらに乾燥空
気流通下、400℃で2時間、焼成し、これを触媒Iと
した。この触媒に蒸溜水100m1を加え1時間還流し
た後、触媒を炉別し、乾燥空気流通下、400℃で2時
間焼成したところ、触媒は全量回収された。
Thereafter, this was evaporated to dryness at 120° C., and further calcined at 400° C. for 2 hours under dry air circulation to obtain Catalyst I. After adding 100 ml of distilled water to this catalyst and refluxing it for 1 hour, the catalyst was separated into a furnace and calcined at 400° C. for 2 hours under dry air circulation, and the entire amount of the catalyst was recovered.

触媒J OlIMの硫酸水溶液を用いた以外は触媒Aと同一の条
件で調製し、触媒Jとした。
Catalyst J Catalyst J was prepared under the same conditions as Catalyst A except that an aqueous sulfuric acid solution of OlIM was used.

触媒l( 酸化ニオブ(CB M M F、):製);5gを15
0℃で18Mの硫酸30m1に溶解させた。これを冷却
した後、水を加え、生じた沈殿を炉別、水洗し、乾燥空
気流通下、400℃で2時間焼成し、触媒■(とした。
Catalyst l (made by niobium oxide (CB MMF, )); 5 g to 15
It was dissolved in 30 ml of 18M sulfuric acid at 0°C. After cooling, water was added, and the resulting precipitate was separated in a furnace, washed with water, and calcined at 400° C. for 2 hours under dry air circulation to obtain a catalyst (1).

比較触媒A CB M M)I:制酸化ニオブ;5gを乾燥空気流通
下、400℃で2時間焼成し、比較触媒Aとした。
Comparative Catalyst A CB M M) I: Niobium antaoxide; 5 g was calcined at 400° C. for 2 hours under dry air circulation to obtain Comparative Catalyst A.

比較触媒AのBET比表面積は99rr?/gであった
。示差熱分析から比較触媒Aの無定形から結晶への転移
温度は563°Cであることがわかった。
Is the BET specific surface area of comparative catalyst A 99rr? /g. Differential thermal analysis revealed that Comparative Catalyst A had a transition temperature from amorphous to crystalline at 563°C.

比較触媒B 硝酸ランタン六水和物130g (0,30moj2)
を撹拌しながら脱イオン化水に溶解した。
Comparative catalyst B lanthanum nitrate hexahydrate 130g (0.30moj2)
was dissolved in deionized water with stirring.

リン酸水素二アンモニウム79.2g (0,6Onl
 Oρ)を撹拌しながら脱イオン化水に溶解した。
Diammonium hydrogen phosphate 79.2g (0.6Onl
Oρ) was dissolved in deionized water with stirring.

リン酸水素二アンモニウム水溶液を激しく撹拌しながら
、硝酸ランタン水溶液を一度に加えたところ、濃厚な塊
状沈澱が形成した。撹拌して、濃厚なりリーム状の懸濁
液とし、吸引濾過により、沈澱を炉別した。得られたペ
ースト状の固体を脱イオン化水で十分洗浄した後、80
〜90℃で乾燥して得られた酸性リン酸ランタンを比較
触媒Bとした。
When the lanthanum nitrate aqueous solution was added all at once while vigorously stirring the diammonium hydrogen phosphate aqueous solution, a thick lumpy precipitate was formed. The mixture was stirred to form a thick, creamy suspension, and the precipitate was filtered out by suction filtration. After thoroughly washing the resulting pasty solid with deionized water,
Comparative catalyst B was an acidic lanthanum phosphate obtained by drying at ~90°C.

比較触媒C 酸化ニオブ(CBMM比製);5gを17Mのリン酸;
20m1に加え、24時間、浸漬した。その後、これを
120℃で蒸発、乾固し、さらに乾燥空気流通下、60
0℃で2時間、焼成し、これを比較触媒Aとした。元素
分析の結果、リン酸/酸化ニオブ(モル比)は、6.1
であった。比較触媒CのBET比表面積は、1 nl’
 / gであり、X線回折パターンから、ニオブのリン
酸塩が生成していることがわかった。
Comparative Catalyst C Niobium oxide (manufactured by CBMM); 5g to 17M phosphoric acid;
20 ml and soaked for 24 hours. Thereafter, this was evaporated to dryness at 120°C, and further heated for 60°C under dry air circulation.
This was calcined at 0° C. for 2 hours, and this was designated as Comparative Catalyst A. As a result of elemental analysis, phosphoric acid/niobium oxide (molar ratio) was 6.1.
Met. The BET specific surface area of comparative catalyst C is 1 nl'
/g, and it was found from the X-ray diffraction pattern that niobium phosphate was produced.

この触媒;1gに蒸溜水;100m1を加え、1時間辺
流し、その後が別した。これを乾燥空気流通下、600
℃で2時間焼成したところ、回収された触媒は0.38
gであった。
100 ml of distilled water was added to 1 g of this catalyst, left to stand for 1 hour, and then separated. This was dried under dry air circulation for 600 minutes.
When calcined at ℃ for 2 hours, the recovered catalyst was 0.38
It was g.

比較触媒D 12Mのリン酸を10m1使用した以外は比較触媒Cと
同様の方法で比較触媒りを調製した。元素分析の結果、
リン酸/酸化ニオブ(モル比)は、1.22であった。
Comparative Catalyst D A comparative catalyst was prepared in the same manner as Comparative Catalyst C except that 10 ml of 12M phosphoric acid was used. As a result of elemental analysis,
The phosphoric acid/niobium oxide (molar ratio) was 1.22.

BET比表面積は、1イ/gであり、X線回折パターン
から、ニオブのリン酸塩は、認められなかった。
The BET specific surface area was 1 i/g, and no niobium phosphate was observed from the X-ray diffraction pattern.

比較触媒E CBMM社製酸化ニオブ;5gを乾燥空気流通下、60
0℃で2時間焼成し、比較触媒Eとした。
Comparative Catalyst E Niobium oxide manufactured by CBMM; 5g was passed through dry air at 60%
Comparative catalyst E was obtained by calcining at 0° C. for 2 hours.

比較触媒EのBET比表面積は、12rrf/gであっ
た。
The BET specific surface area of Comparative Catalyst E was 12rrf/g.

実施例2 200 mlの電磁撹拌式ステンレス製オートクレーブ
にEDA;60g、MEA;30g及び触媒A; Ig
を入れ、窒素置換の後、300℃に昇温し、5時間温度
を維持した。反応圧力は、42kg / c4 Gであ
った。冷却後、反応液を取出し、ガスクロマトグラフィ
ーで分析した。分析の結果、MEAの転化率は54.8
%であり、原料及び生成水を除いた反応物の組成は、P
IF、2.58重量%、DETA、43.93市量%、
AEEA;0.07重量%、AEP;1.36重冊%。
Example 2 In a 200 ml magnetically stirred stainless steel autoclave were added 60 g of EDA, 30 g of MEA, and catalyst A; Ig.
After replacing with nitrogen, the temperature was raised to 300°C, and the temperature was maintained for 5 hours. The reaction pressure was 42 kg/c4 G. After cooling, the reaction solution was taken out and analyzed by gas chromatography. As a result of analysis, the conversion rate of MEA was 54.8.
%, and the composition of the reactant excluding raw materials and produced water is P
IF, 2.58% by weight, DETA, 43.93% by weight,
AEEA: 0.07% by weight, AEP: 1.36% by weight.

TETA、12. 48重口%、  TEPA;0.0
1重量%であった。なお生成したTETAの非環状比率
[ガスクロマトグラフィー%;(分岐+直鎖)/(分岐
+直鎖+環状+水酸基含を)x100]は95.36%
であった。
TETA, 12. 48 weight%, TEPA; 0.0
It was 1% by weight. The acyclic ratio of the generated TETA [gas chromatography %; (branched + linear) / (branched + linear + cyclic + hydroxyl group content) x 100] is 95.36%.
Met.

比較例1 触媒として比較触媒Aを1g使用した以外は実施例2と
同一の条件で反応を行った。反応圧力は40kg/cJ
Gであった。反応液の分析の結果、MEAの転化率は4
7.1%であり、原料及び生成水を除いた反応物の組成
は、PIF、2.37重量%、DETA、47.61重
量%、AEEA;0.16重M%、AEP;1.23重
量%。
Comparative Example 1 A reaction was carried out under the same conditions as in Example 2 except that 1 g of Comparative Catalyst A was used as a catalyst. Reaction pressure is 40kg/cJ
It was G. As a result of analysis of the reaction solution, the conversion rate of MEA was 4.
7.1%, and the composition of the reactant excluding raw materials and produced water is: PIF, 2.37% by weight, DETA, 47.61% by weight, AEEA: 0.16% by weight, AEP: 1.23 weight%.

TETA、11.23重量%、TEPA。TETA, 11.23% by weight, TEPA.

0.74重間%であった。なおTETAの非環状比率は
、93.06%であった。
It was 0.74% by weight. Note that the acyclic ratio of TETA was 93.06%.

比較例2 触媒としてホウ酸を3g使用した以外は、実施例2と同
一の条件で反応を行った。反応液を分析した結果、ME
Aの転化率は41.0%であり、原料及び生成水を除い
た反応物の組成は、PIF。
Comparative Example 2 A reaction was carried out under the same conditions as in Example 2, except that 3 g of boric acid was used as a catalyst. As a result of analyzing the reaction solution, ME
The conversion rate of A was 41.0%, and the composition of the reactant excluding raw materials and produced water was PIF.

3.12重1′:L%、DETA、58.722重丸。3.12-fold 1': L%, DETA, 58.722-fold round.

AEEA;5.02重量%、AEP;1.28重1i%
、TETA、10.84重量%、TEPA;0.21r
I1%であった。なおTIETAの非環状比率は、85
.23%であった。
AEEA: 5.02% by weight, AEP: 1.28% by weight
, TETA, 10.84% by weight, TEPA; 0.21r
The I was 1%. The acyclic ratio of TIETA is 85
.. It was 23%.

比較例3 触媒として添用理化学■社製の結晶化した酸化ニオブを
3g使用した以外は、実施例2と同一の条件で反応を行
った。反応液を分析した結果、MEAの転化率は10.
1%であり、原料及び生成水を除いた反応物の組成は、
PIP、5.68iR瓜%、DETA;7.20重量%
、AEP。
Comparative Example 3 A reaction was carried out under the same conditions as in Example 2, except that 3 g of crystallized niobium oxide manufactured by Addiyo Rikagaku ■ was used as a catalyst. As a result of analyzing the reaction solution, the conversion rate of MEA was 10.
1%, and the composition of the reactant excluding raw materials and produced water is:
PIP, 5.68iR melon%, DETA; 7.20% by weight
, AEP.

0.97重量%であった。It was 0.97% by weight.

比較例4 比較触媒Bを1g使用した以外は、実施例2と同一の条
件で反応させた。反応液を分析した結果、MEAの転化
率は26.8%であり、原料及び生成水を除いた反応物
の組成は、prp:4.22重量%、DETA、55.
72重量%、AEEA;17.02重量%、AEP;0
− 98重量%。
Comparative Example 4 The reaction was carried out under the same conditions as in Example 2, except that 1 g of Comparative Catalyst B was used. As a result of analyzing the reaction solution, the conversion rate of MEA was 26.8%, and the composition of the reaction product excluding raw materials and produced water was: prp: 4.22% by weight, DETA, 55%.
72% by weight, AEEA; 17.02% by weight, AEP; 0
- 98% by weight.

TETA、5.54重量26. TE PA ; 0.
 38重量%であった。
TETA, 5.54 weight 26. TE PA; 0.
It was 38% by weight.

実施例3 200m1の電磁撹拌式ステンレス製オートクレーブに
EDA;30g、、MEA;15g及び触媒8.3gを
入れ、窒素置換の後、NH3を25.4g加え、280
℃に昇温し、30分間その温度に維持した。反応圧力は
、80!<g/ciGであった。冷却の後、反応液を取
出し、ガスクロマトグラフィーで分析した。分析の結果
、MEAの転化率は、59.8%であり、原料及び生成
水を除いた反応物の組成は、PIP、2.73重m26
゜DETA、46.05重量%、AEEA;3.01爪
量%、AEP;2.05重量%。
Example 3 30 g of EDA, 15 g of MEA and 8.3 g of catalyst were placed in a 200 ml electromagnetic stirring stainless steel autoclave, and after purging with nitrogen, 25.4 g of NH3 was added.
The temperature was increased to 0.degree. C. and maintained at that temperature for 30 minutes. The reaction pressure is 80! <g/ciG. After cooling, the reaction solution was taken out and analyzed by gas chromatography. As a result of analysis, the conversion rate of MEA was 59.8%, and the composition of the reactant excluding raw materials and produced water was PIP, 2.73 m26
°DETA, 46.05% by weight, AEEA: 3.01% by weight, AEP: 2.05% by weight.

TETA、13. 98 重量%、TEPA;4.12
重量96. P EHA ; 1. 09重冊%であっ
た。
TETA, 13. 98% by weight, TEPA; 4.12
Weight 96. PEHA; 1. It was 0.09% double volume.

実施例4 触媒として触媒Cを用いた以外は、実施例2と同一の条
件で反応させた。反応圧力は36.0kg/ ca G
であった。冷却後、反応液を取出し、ガスクロマトグラ
フィーで分析した。分析の結果、MEAの転化率は51
.5%であり、原料及び生成水を除いた反応物の組成は
、PIF、1.99i1i、’品96. DETA ;
 58. 87fli12)96. AEEA ;3.
34屯は%、AEP;1.3111重冊%、TETA、
12.73重量%、TEPA、2.066重丸であった
。なお生成したエチレンアミン類の環状比率を示すP 
I F/DETAの比は0.034であった。
Example 4 The reaction was carried out under the same conditions as in Example 2, except that catalyst C was used as the catalyst. Reaction pressure is 36.0 kg/ca G
Met. After cooling, the reaction solution was taken out and analyzed by gas chromatography. As a result of analysis, the conversion rate of MEA was 51
.. 5%, and the composition of the reactant excluding raw materials and produced water is PIF, 1.99i1i, 'Product 96. DETA;
58. 87fli12)96. AEEA ;3.
34 tons is %, AEP; 1.3111 double book%, TETA,
It was 12.73% by weight, TEPA, and 2.066 weight%. Note that P indicates the cyclic ratio of the generated ethyleneamines.
The ratio of IF/DETA was 0.034.

比較例5 触媒としてリン酸を0.3g使用し、反応時間を4.5
時間とした以外は、実施例2と同一の条件で反応を行っ
た。反応圧力は76 、 5 kg/cJGであった。
Comparative Example 5 Using 0.3g of phosphoric acid as a catalyst, reaction time was 4.5
The reaction was carried out under the same conditions as in Example 2 except for the different times. The reaction pressure was 76.5 kg/cJG.

反応液の分析結果、MEAの転化率は49.4%であり
、原料及び生成水を除いた反応物の組成は、PIP;4
.04重量%、DETA。
As a result of analysis of the reaction solution, the conversion rate of MEA was 49.4%, and the composition of the reaction product excluding raw materials and produced water was PIP;
.. 04% by weight, DETA.

42.57徂措%、AEEA、2.09重ゴ%。42.57%, AEEA, 2.09%.

AEP;1.35重冊%、TETA;7.38重量%、
 T E P A ; 1 、 17重量%、  P 
E HA ;0、 181nfii%テアツタo ナオ
P I P/ D E TAの比は0.095であった
AEP: 1.35% by weight, TETA: 7.38% by weight,
TEP A; 1, 17% by weight, P
E HA ; 0, 181% The ratio of P I P / D E TA was 0.095.

実施例5〜9 触媒として表1記載の触媒を1g使用した以外は実施例
2と同一の条件で反応させた。結果は表1に記載した。
Examples 5 to 9 Reactions were carried out under the same conditions as in Example 2, except that 1 g of the catalyst shown in Table 1 was used as the catalyst. The results are listed in Table 1.

なおTETA環状比率は環状体の比率を示す数値であり
、TETA異性体中に占める環状異性体のガスクロマト
グラフィー%[環状体/(分岐+直鎖+水酸基含−a十
環状体)×100]で示している。
Note that the TETA cyclic ratio is a numerical value indicating the ratio of cyclic bodies, and the gas chromatography percentage of the cyclic isomer in the TETA isomer [cyclic body/(branched + straight chain + hydroxyl group-containing -a decacyclic body) x 100] It is shown in

比較例6〜8 触媒として表1記載の触媒を1g使用した以外は実施例
2と同一の条件で反応させた。結果は表1に記載した。
Comparative Examples 6 to 8 The reaction was carried out under the same conditions as in Example 2, except that 1 g of the catalyst shown in Table 1 was used as the catalyst. The results are listed in Table 1.

表1 実施例10〜12 200 mlの電磁撹拌式ステンレス製オー!・クレー
プに触媒D; 3g及び原料として表2記載の原料を表
2記載の瓜だけ入れ、窒素置換の後、300℃で1時間
反応させた。結果は表2に示した。
Table 1 Examples 10 to 12 200 ml electromagnetic stirring stainless steel O! - 3 g of Catalyst D and the raw materials listed in Table 2 were added to the crepe, and only the melons listed in Table 2 were added, and after nitrogen substitution, the mixture was reacted at 300° C. for 1 hour. The results are shown in Table 2.

実施例13 200 mlの電磁撹拌式ステンレス製オートクレーブ
に触媒りを3g、EDA;60g及びMEA ;30g
を入れ、窒素置換の後、NH3を34.5g入れた。こ
れを280℃で5時間反応させた。
Example 13 In a 200 ml stainless steel autoclave with magnetic stirring, 3 g of catalyst, 60 g of EDA, and 30 g of MEA were added.
After replacing with nitrogen, 34.5 g of NH3 was added. This was reacted at 280°C for 5 hours.

反応圧力は、221 kg/cJGであった。反応液を
ソfスクロマトグラフィー1こて分1斤したところM 
E Aの転化率は43.7%であった。反応液の覆11
成は、水;4.7重間%、EDA;56.9LIfrf
96.  P I P ; 0. 6市は96. D 
ETA ;11.9重量%、AEEA ; 0.6重M
%。
The reaction pressure was 221 kg/cJG. When one loaf of the reaction solution was applied to one trowel of Sof chromatography, M
The conversion rate of EA was 43.7%. Covering the reaction solution 11
Composition: Water; 4.7% by weight, EDA; 56.9LIfrf
96. PIP; 0. Six cities are 96. D
ETA: 11.9% by weight, AEEA: 0.6% by weight
%.

AEP;0.3重量%、TETA;1.5重L1%。AEP: 0.3% by weight, TETA: 1.5% by weight L1.

であった。Met.

実施例14 触媒として触媒■を用いた以外は、実施例2と同一の条
件で反応させた。反応圧力は39kg/ci Gであっ
た。冷却後、反応液を取出し、ガスクロマトグラフィー
で分析した。分析の結果、MEAの転化率は64.4%
であり、原料及び生成水を除いた反応物の組成は、PI
F、2.56重重瓜、DETA、40.74重瓜%、A
EEA;1、 561ri爪96. AEP ; 1.
94 m Ea 96 +TETA 、16.49if
i瓜%、TEPA;1.28重口%であった。
Example 14 The reaction was carried out under the same conditions as in Example 2, except that catalyst (1) was used as the catalyst. The reaction pressure was 39 kg/ciG. After cooling, the reaction solution was taken out and analyzed by gas chromatography. As a result of analysis, the conversion rate of MEA was 64.4%.
The composition of the reactants excluding the raw materials and produced water is PI
F, 2.56 weight melon, DETA, 40.74 weight melon%, A
EEA; 1, 561ri nails 96. AEP; 1.
94 m Ea 96 +TETA, 16.49if
i% of melon, TEPA; 1.28% by weight.

実施例15 200mlの電磁撹拌式ステンレス製オートクレーブに
EDA;30g、MEA;60g及び触媒に3gを入れ
、窒素置換の後、300℃に昇温し、1時間温度を維持
した。反応圧力は、33kg / ca Gであった。
Example 15 30 g of EDA, 60 g of MEA, and 3 g of catalyst were placed in a 200 ml electromagnetic stirring stainless steel autoclave, and after purging with nitrogen, the temperature was raised to 300° C. and the temperature was maintained for 1 hour. The reaction pressure was 33 kg/ca G.

冷却の後、反応液を取出し、ガスクロマトグラフィーで
分析した。分析の結果、MEAの転化率は、40.2%
であり、原料及び生成水を除いた反応物の組成は、PI
F。
After cooling, the reaction solution was taken out and analyzed by gas chromatography. As a result of analysis, the conversion rate of MEA was 40.2%.
The composition of the reactants excluding the raw materials and produced water is PI
F.

3.63重量96. DETA 、 23. 54重量
%。
3.63 weight 96. DETA, 23. 54% by weight.

AEEA;20.95重量%、AEP、2.70重口%
、TETA 、14.77重量%、TEPA;3.59
重量%、PEHA;0.67重重瓜であった。なお生成
したTETAの非環状比率[ガスクロマトグラフィー%
; (分岐+直鎖)/(分岐+直鎖+環状+水酸基含有
)x100]は67.6%であった。
AEEA; 20.95% by weight, AEP, 2.70% by weight
, TETA, 14.77% by weight, TEPA; 3.59
Weight %, PEHA; 0.67 weight %. Note that the acyclic ratio of the generated TETA [gas chromatography%
; (branched + straight chain)/(branched + straight chain + cyclic + hydroxyl group-containing) x 100] was 67.6%.

比較例9 触媒として硫酸を0.93g使用し、反応時間を2時間
25分とした以外は、実施例3と同一の条件で反応を行
った。反応圧力は35 kg / cJであり、反応)
fkを分析した結果、M E Aの転化率は35.5%
であり、生成水及び原料を除いた生成物の組成は、PI
P;1.99重重瓜、DETA;16.77重重瓜、A
EEA;19.29重量%。
Comparative Example 9 A reaction was carried out under the same conditions as in Example 3, except that 0.93 g of sulfuric acid was used as a catalyst and the reaction time was 2 hours and 25 minutes. The reaction pressure is 35 kg/cJ (reaction)
As a result of fk analysis, the conversion rate of MEA was 35.5%
The composition of the product excluding produced water and raw materials is PI
P; 1.99 times a day, DETA; 16.77 times a day, A
EEA: 19.29% by weight.

AEP;1.43重口%、TETA;7.26重14%
、TEPA;1.59市瓜%、PEHA。
AEP: 1.43% by weight, TETA: 7.26% by weight
, TEPA; 1.59% marketed melon, PEHA.

0.13iri、jTh%であった。なお生成したTE
TAの非環状比率は、64.76%であった。
It was 0.13iri, jTh%. Furthermore, the generated TE
The acyclic ratio of TA was 64.76%.

K ; 3 gを入れ、窒素置換の後、NH3を25.
7g加え、280℃で1時間反応させた。
After adding 3 g of K; and replacing with nitrogen, 25.0 g of NH3 was added.
7g was added and the reaction was carried out at 280°C for 1 hour.

反応圧力は、78kg/ctlGであった。冷却の後、
反応液を取出し、ガスクロマトグラフィーで分析した。
The reaction pressure was 78 kg/ctlG. After cooling,
The reaction solution was taken out and analyzed by gas chromatography.

分tlrの結果、MEAの転化率は、33.996であ
り、原料及び生成水を除いた反応物の組成は、PIF、
1.70重量%、DETA;48.69重Q96.AE
EA ; 7.73重間%。
As a result of minute tlr, the conversion rate of MEA was 33.996, and the composition of the reactant excluding raw materials and produced water was PIF,
1.70% by weight, DETA; 48.69wt Q96. A.E.
EA: 7.73% by weight.

AEP ; 0.72!′rcfm%、TETA;8.
72重瓜96.TEPA ; 0.32重量%てあった
AEP; 0.72! 'rcfm%, TETA; 8.
72 melons 96. TEPA: 0.32% by weight.

特許出願人  東ソ −株式会社 実施例16 200 mlの電磁撹拌式ステンレス製オートクレーブ
にEDA、30g、MEA、15g及び触媒手続全車J
J二招: 5補正の対象 平成元年 月11日 明細書の発明の詳細な説明の欄。
Patent Applicant Toso - Co., Ltd. Example 16 A 200 ml electromagnetic stirring stainless steel autoclave containing 30 g of EDA, 15 g of MEA, and all catalyst procedures J
Invitation J: Detailed description of the invention in the specification dated November 11, 1989, subject to 5 amendments.

Claims (4)

【特許請求の範囲】[Claims] (1)酸で処理した酸化ニオブの存在下、アンモニア及
び/又はアルキレンアミン類をアルカノールアミン類と
反応させ、原料のアンモニア及び/又はアルキレンアミ
ン類よりアルキレン鎖の増加したアルキレンアミン類を
得ることを特徴とするアルキレンアミン類の製造方法。
(1) In the presence of acid-treated niobium oxide, ammonia and/or alkylene amines are reacted with alkanolamines to obtain alkylene amines with an increased number of alkylene chains than the raw material ammonia and/or alkylene amines. Characteristic method for producing alkylene amines.
(2)酸が、ホウ酸、リン酸又は硫酸である特許請求の
範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the acid is boric acid, phosphoric acid, or sulfuric acid.
(3)アルキレンアミン類が、エチレンアミン類である
特許請求の範囲第1項に記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the alkylene amines are ethylene amines.
(4)アルカノールアミン類が、エタノールアミン類で
ある特許請求の範囲第1項に記載の製造方法。
(4) The manufacturing method according to claim 1, wherein the alkanolamines are ethanolamines.
JP63290106A 1987-12-18 1988-11-18 Method for producing alkylene amines Expired - Fee Related JP2676847B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP31891487 1987-12-18
JP62-318915 1987-12-18
JP31891387 1987-12-18
JP62-318913 1987-12-18
JP31891587 1987-12-18
JP62-318914 1987-12-18

Publications (2)

Publication Number Publication Date
JPH02735A true JPH02735A (en) 1990-01-05
JP2676847B2 JP2676847B2 (en) 1997-11-17

Family

ID=27339689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63290106A Expired - Fee Related JP2676847B2 (en) 1987-12-18 1988-11-18 Method for producing alkylene amines

Country Status (1)

Country Link
JP (1) JP2676847B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214215A (en) * 1990-03-30 1993-05-25 Union Carbide Chemicals & Plastics Technology Corporation Selective production of aminoethylethanolamine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214215A (en) * 1990-03-30 1993-05-25 Union Carbide Chemicals & Plastics Technology Corporation Selective production of aminoethylethanolamine

Also Published As

Publication number Publication date
JP2676847B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
CA1325427C (en) Mixed oxide catalyst and process for producing an alkylenamine by using the catalyst
US4584405A (en) Activated carbon catalysts and preparation of linear polyethylene polyamines therewith
JPS63225341A (en) Production of alkylamines
JPH0229066B2 (en)
US5011999A (en) Process of preparing non-cyclic polyalkylenepolyamines employing group VB metal catalysts
JP2764968B2 (en) Method for producing alkyleneamines
JPH07504660A (en) Catalytic modification of cyclic alkylene amines
JPH0735356B2 (en) Process for producing acyclic ethylene amines
EP0069322A2 (en) Catalysis of condensation reactions of amines
US4996363A (en) Catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
US5166442A (en) Catalytic reforming of alkyleneamines
JP2922553B2 (en) Catalytic synthesis of linear polyethylene polyamines
JPS63307846A (en) Production of alkyleneamines
JPH0113701B2 (en)
JPH02735A (en) Production of alkyleneamine
JPS59152350A (en) Condensation of organic compound
EP0111928A1 (en) Catalysis of condensation reactions
EP0592052B1 (en) Phosphorus containing catalysts and process for the production of linear polyamines
US5149877A (en) Process for producing alkylenamine
JP2590504B2 (en) Method for producing alkyleneamines
JPH022876A (en) Compound oxide catalyst and production of alkyleneamines with same
JPH01153659A (en) Production of alklyleneamines
JPH01132550A (en) Production of alkyleneamines by vapor-phase reaction
JPH01168647A (en) Production of alkyleneamines
JPH01157936A (en) Production of alkyleneamines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees