JPH01168647A - Production of alkyleneamines - Google Patents

Production of alkyleneamines

Info

Publication number
JPH01168647A
JPH01168647A JP62325274A JP32527487A JPH01168647A JP H01168647 A JPH01168647 A JP H01168647A JP 62325274 A JP62325274 A JP 62325274A JP 32527487 A JP32527487 A JP 32527487A JP H01168647 A JPH01168647 A JP H01168647A
Authority
JP
Japan
Prior art keywords
niobium
catalyst
water
ammonia
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62325274A
Other languages
Japanese (ja)
Other versions
JP2600734B2 (en
Inventor
Shinsei Suzuki
紳正 鈴木
Yasushi Hara
靖 原
Yukio Ito
雪夫 伊藤
Kazuhiko Sekizawa
関沢 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP62325274A priority Critical patent/JP2600734B2/en
Publication of JPH01168647A publication Critical patent/JPH01168647A/en
Application granted granted Critical
Publication of JP2600734B2 publication Critical patent/JP2600734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To readily, industrially and advantageously obtain the title compounds with increased alkylene chains from that of a raw material NH3, etc., in high yield and quality, by reacting NH3, etc., with alkanolamines in the presence of specific niobium oxide having excellent heat resistance as a catalyst. CONSTITUTION:Ammonia and/or alkyleneamines, such as NH3 and/or ethyleneamine, are reacted with alkanolamines, such as ethanolamine, preferably in the liquid phase in the presence of a niobium oxide catalyst obtained by adding an Nb-containing substance expressed by the formula (0<=x<=5, provided that the substance is called niobium hydroxide when x is 5) to a hydrous liquid at 200-400 deg.C to afford the aimed compounds, such as diethylenetriamine. The hydrous liquid of the above-mentioned catalyst is a liquid containing water in an amount required to hydrolyze the total amount of the Nb-containing substance into niobium oxide or more and refers to, e.g., alcohols, amines or NaOH, or water. For example, the niobium oxide is obtained by adding a solution of a niobium alkoxide in an alcohol to heated water.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルキレンアミン類の製法、特に酸化ニオブを
触媒として用いたアルキレンアミン類の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing alkylene amines, particularly to a method for producing alkylene amines using niobium oxide as a catalyst.

(従来の技術) アルキレンアミン類、特に工業的に重要なエチレンアミ
ン類の製造法として、二塩化エチレンをアンモニアと反
応させる方法がある。この製造方法によると、ピペラジ
ン及びピペラジン環含有の環状エチレンアミン類の生成
景が少ない、即ち非環状率が高くて工業的に好ましい品
質のエチレンアミン類が得られる。この製造法は広〈実
施されているが、副生成物として多量の食塩が生じ、分
離及び処理に費用がかかるという問題点を有する。
(Prior Art) As a method for producing alkylene amines, particularly ethylene amines which are industrially important, there is a method in which ethylene dichloride is reacted with ammonia. According to this production method, ethyleneamines of industrially preferable quality with less formation of piperazine and piperazine ring-containing cyclic ethyleneamines, that is, a high acyclic ratio, can be obtained. Although this production method is widely practiced, it has the problem that a large amount of common salt is produced as a by-product, and separation and treatment are expensive.

又、モノエタノールアミンを原料とし、水素と水素添加
触媒の存在下で、アンモニアを反応させるエチレンアミ
ン類の製造方法も広〈実施されている。しかし、この方
法ではエチレンジアミンを効率よく製造することは可能
であるが、ピベラジン環含有の品質的に好ましくない環
状エチレンアミン類が多く生成するために、高分子量の
ポリエチレンポリアミン類を製造することが困難である
Furthermore, a method for producing ethyleneamines using monoethanolamine as a raw material and reacting it with ammonia in the presence of hydrogen and a hydrogenation catalyst is also widely practiced. However, although it is possible to efficiently produce ethylenediamine using this method, it is difficult to produce high molecular weight polyethylene polyamines because a large amount of cyclic ethyleneamines containing piperazine rings, which are unfavorable in terms of quality, are produced. It is.

これらの方法に加えて、モノエタノールアミンを原料と
し、リン含有物質を触媒として用い、アンモニア及び/
又はエチレンアミンを反応させてエチレンアミン類を製
造する方法が提案されている0例えば特開昭51−14
7600号公報には触媒として、リン酸、亜リン酸を使
用する方法が記載されているが、これらの触媒は水を含
む反応液中に溶解するため、反応液からの特別な分離。
In addition to these methods, ammonia and/or
Alternatively, a method for producing ethyleneamines by reacting ethyleneamine has been proposed. For example, JP-A-51-14
Publication No. 7600 describes a method using phosphoric acid and phosphorous acid as catalysts, but since these catalysts are dissolved in the reaction solution containing water, special separation from the reaction solution is required.

回収操作が必要となる。そこで、水を含む反応液に不要
な種々のリン酸塩、担持リン酸を触媒として用いるエチ
レンアミン類の製造法が提案されている。特開昭60−
41641号公報には、リン酸ランタン等のmb族金属
のリン酸塩を触媒として用いるエチレンアミン類の製造
方法が開示されており、又、特開昭59−150538
号公報には、二酸化チタン等に担持したリン酸を触媒と
して用いる方法が開示されている。しかし、これらのリ
ン酸塩、担持リン酸は遊離のリン酸に比べ極めて活性が
低い、また、これらのリン酸系触媒を使用しても、ピペ
ラジン環含有の品質的に好ましくない環状アミンおよび
アミノエチルエタノールアミン等の水酸基含有アミンを
工業的に十分に満足できる水準まで低下させることがで
きない、ところで、活性の高いリン系触媒としてリン含
有イオン交換樹脂があるが、この触媒は耐熱性が悪く、
触媒寿命に問題がある。
Collection operation is required. Therefore, methods for producing ethylene amines have been proposed in which various phosphates and supported phosphoric acids, which are unnecessary in the water-containing reaction solution, are used as catalysts. Japanese Patent Application Publication 1986-
41641 discloses a method for producing ethylene amines using a mb group metal phosphate such as lanthanum phosphate as a catalyst;
The publication discloses a method using phosphoric acid supported on titanium dioxide or the like as a catalyst. However, these phosphates and supported phosphoric acids have extremely low activity compared to free phosphoric acid, and even when these phosphoric acid-based catalysts are used, unfavorable cyclic amines and amino acids containing piperazine rings are produced. It is not possible to reduce hydroxyl group-containing amines such as ethylethanolamine to industrially satisfactory levels. By the way, phosphorus-containing ion exchange resins are highly active phosphorus-based catalysts, but these catalysts have poor heat resistance.
There is a problem with catalyst life.

非リン系の触媒としては、シリカ、アルミナが特開昭5
5−38329号公報に記載されているが、これは著し
く活性が低い。
As non-phosphorous catalysts, silica and alumina are
Although it is described in Japanese Patent No. 5-38329, its activity is extremely low.

(発明が解決しようとする問題点) 上述の様に、アルキレンアミン類の製造方法に関しては
、多くの方法が開示されているが、これらの方法は、工
業的見地がらは未だ不十分なものである。特にアルカノ
ールアミン類を原料とするアルキレンアミン類を製造す
る方法において、反応液に難溶で、高耐熱性、高性能を
有する固体触媒を用いる、非環状率の高く、水酸基含有
アミンの少ない、高品質のアルキレンアミン類の製造方
法の開発が切望されている。
(Problems to be Solved by the Invention) As mentioned above, many methods have been disclosed for producing alkylene amines, but these methods are still insufficient from an industrial standpoint. be. In particular, in the method of producing alkylene amines using alkanolamines as raw materials, a solid catalyst that is hardly soluble in the reaction solution, has high heat resistance, and high performance is used. There is a strong need for the development of a method for producing high quality alkylene amines.

(問題を解決するための手段) 本発明者らは、アンモニア及び/又はアルキレンアミン
類とアルカノールアミン類との反応による、原料のアン
モニア及び/スはアルキレンアミン類よりアルキレン鎖
の増加したアルキレンアミン類の製法を鋭意検討した結
果、該反応において、含水液体にニオブ含有物質を加え
て得られる酸化ニオブが水を含む反応液に難溶で、耐熱
性にも優れた固体であり、触媒として高い性能を有して
いるという新規な事実を見出し、本発明を完成させるに
至った。すなわち本発明は、含水液体にニオブ含有物質
を加えて得られる酸化ニオブの存在下、アンモニア及び
/又はアルキレンアミン類をアルカノールアミン類と反
応させ、原料のアンモニア及び/又はアルキレンアミン
類よりアルキレン鎖の増加したアルキレンアミン類を得
ることを特徴とするアルキレンアミン類の製法を提供す
るものである。
(Means for Solving the Problem) The present inventors have discovered that by reacting ammonia and/or alkylene amines with alkanolamines, raw material ammonia and/or alkylene amines have an increased number of alkylene chains than alkylene amines. As a result of intensive studies on the production method for this reaction, we found that niobium oxide, which is obtained by adding a niobium-containing substance to a water-containing liquid, is a solid that is poorly soluble in a water-containing reaction liquid and has excellent heat resistance, and has high performance as a catalyst. The present invention was completed based on the discovery of the novel fact that That is, in the present invention, ammonia and/or alkylene amines are reacted with alkanolamines in the presence of niobium oxide obtained by adding a niobium-containing substance to a water-containing liquid, and the alkylene chains are removed from the raw material ammonia and/or alkylene amines. The present invention provides a method for producing alkylene amines, which is characterized by obtaining an increased amount of alkylene amines.

以下に、本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明の方法において使用される触媒は、含水液体にニ
オブ含有物質を加えて得られる酸化ニオブである。
The catalyst used in the process of the invention is niobium oxide obtained by adding a niobium-containing material to a water-containing liquid.

本発明の方法における含水液体とは、ニオブ含有物質全
量を完全に加水分解して酸化ニオブにするために必要な
量以上の水を含む液体、又は、水を意味する。この含水
液体の溶媒は有機化合物。
The water-containing liquid in the method of the present invention means a liquid containing water in an amount greater than the amount necessary to completely hydrolyze the entire amount of the niobium-containing substance into niobium oxide, or water. The solvent for this water-containing liquid is an organic compound.

無機化合物のいずれであっても良く、有機化合物として
は、アルコール類、アミン類等が例示できる。又、この
含水液体は水及び溶媒以外の成分を含んでいても良く、
水及び溶媒以外の成分としては、具体的には、水酸化ナ
トリウム、アンモニア等の無機化合物、尿素、アミン類
等の有機化合物を挙げることができる。この含水液体は
水及び溶媒以外の成分を二成分以上含んでいても一向に
差支えない、更に、この含水液体は塩基性、中性。
It may be any inorganic compound, and examples of organic compounds include alcohols and amines. Further, this water-containing liquid may contain components other than water and solvent,
Specific examples of components other than water and solvent include inorganic compounds such as sodium hydroxide and ammonia, and organic compounds such as urea and amines. This water-containing liquid may contain two or more components other than water and the solvent, and furthermore, this water-containing liquid is basic and neutral.

酸性のいずれであっても良い。It may be acidic.

本発明の方法においては、ニオブ含有物質とは、含水液
体に加えることで加水分解して酸化二オブになる物質で
あれば特に制限はない。ニオブ含有物質として、具体的
にはニオブメトキシド、ニオブエトキシド等のニオブア
ルコキシド類もしくはそのアルコール溶液、塩化ニオブ
の塩酸溶液スはシュウ酸ニオブのシュウ酸溶液もしくは
水溶液等を挙げることができるが、好ましくは、ニオブ
アルコキシド類もしくはそのアルコール溶液が用いられ
る。
In the method of the present invention, the niobium-containing substance is not particularly limited as long as it is a substance that is hydrolyzed into niobium oxide when added to a water-containing liquid. Examples of niobium-containing substances include niobium alkoxides such as niobium methoxide and niobium ethoxide, or alcohol solutions thereof, solutions of niobium chloride in hydrochloric acid, and oxalic acid solutions or aqueous solutions of niobium oxalate. Preferably, niobium alkoxides or alcohol solutions thereof are used.

本発明の方法においては、酸化ニオブを得る方法につい
ては、含水液体にニオブ含有物質を加えるという以外に
は特に制限はない、酸化ニオブを得る方法については、
具体的には、 1)加熱した水にニオブアルコキシドのアルコール溶液
を加える方法、 2)アンモニア水に塩化ニオブの塩酸溶液を加える方法
、 3)水酸化アルカリの水溶液にシュウ酸ニオブの水溶液
を加える方法 等を例示できるが、好ましくは、1)の方法が用いられ
る。
In the method of the present invention, there are no particular limitations on the method for obtaining niobium oxide other than adding a niobium-containing substance to the water-containing liquid.
Specifically, 1) a method of adding an alcoholic solution of niobium alkoxide to heated water, 2) a method of adding a hydrochloric acid solution of niobium chloride to aqueous ammonia, 3) a method of adding an aqueous solution of niobium oxalate to an aqueous solution of alkali hydroxide. For example, method 1) is preferably used.

又、含水液体にニオブ含有物質を加えて酸化ニオブを調
製する際の含水液体の使用量、含水液体の温度、含水液
体中の水の濃度、ニオブ含有物質の供給速度等は、含水
液体にニオブ含有物質を加えることでニオブ含有物質全
量が完全に酸化ニオブに転化するための条件を満たして
いれば、特に制限されない。
In addition, when preparing niobium oxide by adding a niobium-containing substance to a water-containing liquid, the amount of water-containing liquid used, the temperature of the water-containing liquid, the concentration of water in the water-containing liquid, the feeding rate of the niobium-containing substance, etc. There is no particular restriction as long as the addition of the niobium-containing substance satisfies the conditions for the total amount of the niobium-containing substance to be completely converted into niobium oxide.

本発明の方法においては、水を含む溶液にニオブ含有物
質を加えて得られる酸化ニオブのニオブの酸化状態には
特に制限はなく、5価、4価、3価、2価、1価のいず
れであってもよいが、5価のニオブが好ましく、又、5
価のニオブの酸化物の形態に特に制限はなく、含水物を
用いても無水物を用いても一向に差支えない。含水状態
の五酸化ニオブはニオブ酸とも呼ばれ、一般には式、N
  b     O−x  R20(0<  x  ≦
 5 )と表される。X=5の場合には水酸化ニオブと
も呼ばれる。
In the method of the present invention, there is no particular restriction on the oxidation state of niobium in the niobium oxide obtained by adding a niobium-containing substance to a solution containing water; However, pentavalent niobium is preferable, and pentavalent niobium is preferable.
There is no particular restriction on the form of the niobium oxide, and there is no problem whether a hydrated form or an anhydrous form is used. Niobium pentoxide in its hydrated state is also called niobic acid and is generally represented by the formula, N
b O-x R20 (0< x ≦
5). When X=5, it is also called niobium hydroxide.

本発明の方法においては、水を含む溶液にニオブ含有物
質を加えて得られる酸化ニオブ単独で使用しても良いし
、他の物質との混合物または他の酸化物との複合酸化物
として使用しても良い。
In the method of the present invention, niobium oxide obtained by adding a niobium-containing substance to a solution containing water may be used alone, or it may be used as a mixture with other substances or as a composite oxide with other oxides. It's okay.

本発明の方法においては、触媒の形状に特に制限はなく
、反応式に応じて粉末のまま、あるいは成型して用いら
れる。例えば懸濁床では粉末、顆粒状で用いられ、固定
床ではタブレット状、ビーズ状に成型して用いられる。
In the method of the present invention, there is no particular restriction on the shape of the catalyst, and it may be used as a powder or in the form of a mold, depending on the reaction formula. For example, in a suspended bed, it is used in the form of powder or granules, and in a fixed bed, it is used in the form of tablets or beads.

触媒の成型方法としては、例えば押出し成型法。Examples of catalyst molding methods include extrusion molding.

打錠成型法あるいは顆粒成型法があり、成型する際には
シリカ、アルミナ、シリカ−アルミナ、グラファイト、
粘土等を粘結剤として加えても良い。
There is a tablet molding method or a granule molding method, and when molding, silica, alumina, silica-alumina, graphite,
Clay or the like may be added as a binder.

又、触媒の表面積を大きくするため、水を含むむ溶液に
ニオブ含有物質を加えて得られる酸化ニオブをシリカ、
アルミナ、チタニア、ジルコニア。
In addition, in order to increase the surface area of the catalyst, niobium oxide, which is obtained by adding a niobium-containing substance to a solution containing water, is mixed with silica,
Alumina, titania, zirconia.

多孔質バイコールガラス等の担体に担持しても良い。It may be supported on a carrier such as porous Vycor glass.

触媒は焼成して用いても、焼成せずに用いても良い。焼
成をする場合、焼成温度には特に制限はないが、500
℃以下が好ましい。500°Cを越える温度で焼成する
と表面積が小さくなり、触媒活性が低下する。
The catalyst may be used after being fired or may be used without being fired. When firing, there is no particular restriction on the firing temperature, but 500
℃ or less is preferable. Calcining at a temperature exceeding 500°C reduces the surface area and reduces the catalytic activity.

本発明の方法においては、触双使用丘は、反応を工業的
に有意な反応速度で進行せしめるのに必要な量であれば
良い。
In the method of the present invention, the amount of catalyst used may be as long as it is necessary for the reaction to proceed at an industrially significant reaction rate.

本発明の方法において使用するアンモニア又はアルキレ
ンアミン類とは式(I) [但し、式中a=2〜6、)−=O〜6、R1は水素又
は炭素数1〜4のアルキル基、R/、は式%式%(1) (但し、式中b=1〜6、d=o、1、s=0〜4)で
表される基をそれぞれ示す]で表される化合物、又は式
(ff)、 [1uシ、式中e=2〜6、f−2〜6、R2゜R′2
はそれぞれ式(2)、 −[(CH2>gNHll−H(2) (但し、式中(J=2〜6.1=a〜5)で表される基
を示す] で表される化合物である。
The ammonia or alkylene amines used in the method of the present invention have the formula (I) [wherein a=2 to 6, )-=O to 6, R1 is hydrogen or an alkyl group having 1 to 4 carbon atoms, R /, represents a group represented by the formula % formula % (1) (in the formula, b = 1 to 6, d = o, 1, s = 0 to 4), respectively], or a compound represented by the formula (ff), [1u, in the formula e = 2 to 6, f-2 to 6, R2゜R'2
are compounds represented by the formula (2), -[(CH2>gNHll-H(2) (wherein the formula represents a group represented by (J=2-6.1=a-5)), respectively. be.

式(■)、又は式(I[)で表されるどちらの化合物を
用いても良いが、好ましくは、式(I)で表されるアン
モニア又はアルキレンアミン類が用いられる1式(I)
で表されるアルキレンアミン類を用いると、非環状率の
高い、高品質のアルキレンアミン類が生成する0式(I
>で表されるアンモニア及びアルキレンアミン類とは、
具体的には、例えば、アンモニア、エチレンジアミン、
ジエチレントリアミン、トリエチレンテトラミン。
Either compound represented by formula (■) or formula (I[) may be used, but preferably ammonia or alkylene amines represented by formula (I) are used.Formula (I)
When using alkylene amines represented by formula 0, high quality alkylene amines with a high acyclic ratio are produced.
Ammonia and alkylene amines represented by > are
Specifically, for example, ammonia, ethylenediamine,
Diethylenetriamine, triethylenetetramine.

テトラエチレンペンタミン、ペンタエチレンへキサミノ
。ヘキサエチレンへブタミン等のエチレンアミン類、プ
ロピレンジアミン、ジプロピレントリアミン等のプロピ
レンアミン類、ブチレンジアミン、ジエチレントリアミ
ン等のブチレンアミン類、ヘキサメチレンジアミン等の
アルキレンアミン類及びこれらのアルキル化体、即ち、
N−メチルエチレンジアミン、N−エチルエチレンジア
ミン等である。その中でも、本発明の方法において使用
される原料としては、エチレンジアミンやジエチレント
リアミン等のエチレンアミン類が好ましい。
Tetraethylenepentamine, pentaethylenehexamino. Ethylene amines such as hexaethylene hebutamine, propylene amines such as propylene diamine and dipropylene triamine, butylene amines such as butylene diamine and diethylene triamine, alkylene amines such as hexamethylene diamine, and alkylated products thereof, i.e.,
These include N-methylethylenediamine and N-ethylethylenediamine. Among these, ethyleneamines such as ethylenediamine and diethylenetriamine are preferable as raw materials used in the method of the present invention.

本発明の方法において使用されるアンモニア。Ammonia used in the method of the invention.

アルキレンアミン類は、一種類でも二種類以上を混合し
たものでも一向に差支えない。
The alkylene amines may be one type or a mixture of two or more types without any problem.

本発明の方法において使用されるアルカノールアミン類
とは、式(II) 〔但し、式中h=2〜6、u=0〜5、R3は水素又は
炭素数1〜4のアルキル基、II3は、式%式%(3) (但し、式中1=1〜6、j=o、1、V=O〜4)で
表わされる基をそれぞれ示す]で表わされる化合物又は
式(IV ) [但し、式中に=2〜6、N=2〜6、m=2〜6、R
4は式(4)、 −[(CH2)。NHE、−H(4) (但し、式中n=2〜6、w:=0〜5)で表される基
を示す]で表される化合物である。
The alkanolamines used in the method of the present invention are those of the formula (II) [where h = 2 to 6, u = 0 to 5, R3 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and II3 is , Formula %Formula %(3) (However, in the formula, 1=1 to 6, j=o, 1, V=O to 4, respectively)] or a compound represented by formula (IV) [However, , in the formula = 2-6, N = 2-6, m = 2-6, R
4 is the formula (4), −[(CH2). It is a compound represented by NHE, -H(4) (in the formula, n=2-6, w:=0-5).

式(II)又は、式(IV )で表されるどちらの化合
物を用いても良いが、好ましくは、式(I[[)で表さ
れるアルカノールアミン類が用いられる0式(I)で表
されるアルカノールアミン類を用いると、非環状率の高
い、高品質のアルキレンアミン類が生成する。式(I[
[>で表されるアルカノールアミン類とは、具体的には
、モノエタノールアミン、N−(2−アミノエチル)エ
タノールアミン。
Either compound represented by formula (II) or formula (IV) may be used, but preferably alkanolamines represented by formula (I) are used. When the alkanolamines are used, high-quality alkyleneamines with a high degree of acyclicity are produced. Formula (I[
The alkanolamines represented by > are specifically monoethanolamine and N-(2-aminoethyl)ethanolamine.

モノプロパツールアミン、N−(3−アミノプロピル)
プロパツールアミン等のアルカノールアミン類が例示で
きる。
Monopropaturamine, N-(3-aminopropyl)
Examples include alkanolamines such as propatoolamine.

本発明の方法において使用される原料としては、モノエ
タノールアミン、N−(2−アミノエチル)エタノール
アミンのようなエタノールアミン類が好ましい。
As raw materials used in the method of the present invention, ethanolamines such as monoethanolamine and N-(2-aminoethyl)ethanolamine are preferred.

本発明の方法において使用されるアルカノールアミン類
は、一種類でも二種類以上を混合したものでも一向に差
支えない。
The alkanolamines used in the method of the present invention may be one type or a mixture of two or more types.

本発明の方法における原料の組合わせには、1)アンモ
ニアとアルカノールアミン類、2)アルキレンアミン類
とアルカノールアミン類、3)アンモニア、アルキレン
アミン類とアルカノールアミン類、 の三つの場合があり、いずれの組合せで反応を実施して
もよい、好ましい原料の組合わせは、1)アンモニアと
式(I[[)で表されるアルカノールアミン類、 2)アンモニア以外の、式(I>で表されるアルキレン
アミン類と式(II[)で表わされるアルカノールアミ
ン類、 3)式(I)で表されるアンモニア及びアルキレンアミ
ン類と式(III)で表わされるアルカノールアミノ類
、 である。更に好ましい原料の組合せは、1)アンモニア
とエタノールアミン類、2)エチレンアミン類とエタノ
ールアミン類、3)アンモニア及びエチレンアミン類と
エタノールアミン類 である。
There are three combinations of raw materials in the method of the present invention: 1) ammonia and alkanolamines, 2) alkyleneamines and alkanolamines, and 3) ammonia, alkyleneamines and alkanolamines. Preferred raw material combinations in which the reaction may be carried out include: 1) ammonia and alkanolamines represented by the formula (I[[); 2) alkanolamines represented by the formula (I>) other than ammonia alkylene amines and alkanolamines represented by formula (II[); 3) ammonia and alkylene amines represented by formula (I) and alkanolamines represented by formula (III). More preferred combinations of raw materials are 1) ammonia and ethanolamines, 2) ethyleneamines and ethanolamines, and 3) ammonia, ethyleneamines, and ethanolamines.

本発明の方法において供給される原料の好ましいモル比
は、 1)アンモニアとアルカノールアミン類とを原料として
用いる場合、アンモニア/アルカノールアミン類のモル
比が2〜30. 2)アルキレンアミン類とアルカノールアミン類を原料
として用いる場合、アルキレンアミン類/アルカノール
アミン類のモル比が0.5〜10. 3)アンモニア及びアルキレンアミン類とアルカノール
アミン類を原料として用いる場合、(アンモニア+アル
キレンアミン類)/アルカノールアミン類のモル比が0
.5〜30 である。いずれの場合も、原料のモル比によって、生成
するアルキレンアミン類の品質が変動する。
Preferred molar ratios of the raw materials supplied in the method of the present invention are as follows: 1) When ammonia and alkanolamines are used as raw materials, the ammonia/alkanolamines molar ratio is 2 to 30. 2) When alkyleneamines and alkanolamines are used as raw materials, the molar ratio of alkyleneamines/alkanolamines is 0.5 to 10. 3) When ammonia, alkylene amines, and alkanolamines are used as raw materials, the molar ratio of (ammonia + alkylene amines)/alkanolamines is 0.
.. 5-30. In either case, the quality of the alkylene amines produced varies depending on the molar ratio of the raw materials.

このモル比が上記範囲より小さいと、ピペラジン環含有
アミン類が多く生成し、好ましくない品質のアルキレン
アミン類が生成する。このモル比が上記範囲より大きい
と反応速度が低下し、圧力が極めて高くなり実用的では
ない。
If this molar ratio is smaller than the above range, a large amount of piperazine ring-containing amines will be produced, resulting in the production of alkylene amines of unfavorable quality. If this molar ratio is larger than the above range, the reaction rate will decrease and the pressure will become extremely high, making it impractical.

本発明の方法においては、生成するアルキレンアミン類
は、原料の種類により異なる。アンモニア及び/又はア
ルキレンアミン類にアルカノールアミン類を反応させた
場合、生成するアルキレンアミン類は、原料のアンモニ
ア、アルキレンアミン類よりアルキレン鎖が増加したも
のである。例えば、式(I)で表されるアンモニア及び
/又はアルキレンアミン類に、式(I[)で表されるア
ルカノールアミン類を反応させた場合、生成するアルキ
レンアミン類は式(V)、 [但し、式中0=2〜6、x = 1〜7、R5は水素
又は炭素数1〜4のアルキル基、R′5  は式%式%
(5) (但し、式中p=t〜6、q=0.1、y=Q〜4)で
表される基をそれぞれ示すコで表される化合物であり、
生成するアルキレンアミン類のX及び/又はyは原料の
アンモニア、又はアルキレンアミン類のr及び/又はS
よりも、少なくとも1以上増加し、アルキレン鎖がのび
ている0例えば、アンモニアとモノエタノールアミンを
反応させると、エチレンジアミンと、ジエチレントリア
ミン。
In the method of the present invention, the alkylene amines produced vary depending on the type of raw material. When ammonia and/or alkylene amines are reacted with alkanolamines, the alkylene amines produced have more alkylene chains than the raw material ammonia and alkylene amines. For example, when ammonia and/or alkylene amines represented by formula (I) are reacted with alkanolamines represented by formula (I[), the alkylene amines produced are of formula (V), [However, , in the formula 0 = 2 to 6, x = 1 to 7, R5 is hydrogen or an alkyl group having 1 to 4 carbon atoms, R'5 is the formula % formula %
(5) (However, in the formula, p = t ~ 6, q = 0.1, y = Q ~ 4) is a compound represented by a group respectively represented by
X and/or y of the alkylene amines to be produced are ammonia as the raw material, or r and/or S of the alkylene amines.
For example, when ammonia and monoethanolamine are reacted, ethylenediamine and diethylenetriamine are produced.

トリエチレンテトラミン、テトラエチレンペンタミン及
びペンタエチレンへキサミン等の非環状のポリエチレン
ポリアミン類が生成し、エチレンジアミンとモノエタノ
ールアミンを反応させると前述の非環状のポリエチレン
ポリアミン類が生成し、アンモニアとエチレンジアミン
とモノエタノールアミンを反応させると、エチレンジア
ミン及び前述の非環状のポリエチレンポリアミン類が生
成する。
Acyclic polyethylene polyamines such as triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine are produced, and when ethylenediamine and monoethanolamine are reacted, the above-mentioned acyclic polyethylenepolyamines are produced, and ammonia and ethylenediamine are reacted. When monoethanolamine is reacted, ethylenediamine and the aforementioned acyclic polyethylene polyamines are produced.

本発明の方法においては、反応は通常200〜400°
C好ましくは240〜350℃の温度範囲で実施される
。200℃未満の温度では反応速度が著しく低下し、又
400℃を超えると生成物のアルキレンアミン類の分解
が起こり実用的ではない。
In the method of the present invention, the reaction is usually carried out at 200-400°
C It is preferably carried out at a temperature range of 240 to 350°C. If the temperature is less than 200°C, the reaction rate will drop significantly, and if it exceeds 400°C, the alkylene amines in the product will decompose, making it impractical.

本発明の方法においては、反応は気相で行っても液相で
行っても良いが、高品質のアルキレンアミン類を製造す
るためには液相で行う方が好ましい。
In the method of the present invention, the reaction may be carried out in the gas phase or in the liquid phase, but in order to produce high quality alkylene amines, it is preferable to carry out the reaction in the liquid phase.

本発明の方法においては、反応は懸濁床による回分、半
回分、連続式でも、また固定床流通式でも実施できるが
工業的には固定床流通式が操作。
In the method of the present invention, the reaction can be carried out in a suspended bed batch, semi-batch, or continuous manner, or in a fixed bed flow system, but industrially the fixed bed flow system is used.

装置、経済性の面から有利である。It is advantageous in terms of equipment and economy.

本発明の方法においては、反応の圧力は、気相反応か液
相反応か、またアンモニアを使用するかしないかにより
大きく変動するため、範囲を限定することは困難である
が、例えばアンモニアを添加しない液相反応の場合、お
よそ1〜300kg/ cIINGである6 本発明の方法においては、触媒は通常の方法で、反応液
から分離1回収され、その後原料は蒸留によって分離1
回収される。分離1回収された原料は、必要に応じて再
び反応帯域へ循環される。反応生成物組成を変動させる
ため、反応生成物の一部を反応帯域へ循環しても良い。
In the method of the present invention, the reaction pressure varies greatly depending on whether it is a gas phase reaction or a liquid phase reaction, and whether ammonia is used or not, so it is difficult to limit the range. In the case of a liquid-phase reaction in which the reaction is not
It will be collected. Separation 1 The recovered raw material is recycled to the reaction zone again as necessary. A portion of the reaction product may be recycled to the reaction zone to vary the reaction product composition.

原料、生成物の分離は通常、蒸留によってなされるが、
蒸留は連続式で行ってもバッチ式で行っても一部に差支
えない。
Separation of raw materials and products is usually done by distillation,
Distillation may be carried out either continuously or batchwise.

反応生成物の純度1色調を改善するため、反応生成物を
活性炭、水素化ホウ素ナトリウム等で処理しても良い。
To improve the purity level of the reaction product, the reaction product may be treated with activated carbon, sodium borohydride, and the like.

水素存在下で反応を行うことにより反応生成物の色調、
臭気等を改善しても良い。
By carrying out the reaction in the presence of hydrogen, the color tone of the reaction product,
It is also possible to improve odor etc.

水酸基含有アミンのような品質上好ましくないアミン類
の生成を減少させるため、あるいは反応速度を上げるた
めに反応帯域から生成水を除去しても良いし、また触媒
寿命を延ばし、アンモニア。
Produced water may be removed from the reaction zone to reduce the formation of undesirable amines, such as hydroxyl-containing amines, or to increase the reaction rate, or to extend the catalyst life and remove ammonia.

アルキレンアミン類の取扱いを容易にするため水を加え
て反応させても良い。
In order to facilitate the handling of alkylene amines, water may be added to the reaction.

(発明の効果) 本発明は、含水液体にニオブ含有物質を加えて得られる
、反応液に侵されず、耐熱性に優れた酸化ニオブを触媒
として用いることにより、従来の方法に比べて、好まし
い品質のアルキレンアミン類を高収率で製造する方法を
提案するものであり、工業的に極めて有意義である。
(Effects of the Invention) The present invention is more preferable than conventional methods by using niobium oxide, which is obtained by adding a niobium-containing substance to a water-containing liquid and is not attacked by the reaction liquid and has excellent heat resistance, as a catalyst. This paper proposes a method for producing high-quality alkylene amines in high yields, and is of great industrial significance.

(実施例) 以下、本発明を具体的に実施例にて説明するが、本発明
はこれらの実施例にのみ特に限定されるものではない。
(Examples) Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not particularly limited to these Examples.

得られた生成物のアルキレンアミン類及び原料となるア
ルキレンアミン類及びアルカノールアミン類は以下のよ
うな記号で略記する。
The alkylene amines of the obtained product and the alkylene amines and alkanolamines used as raw materials are abbreviated using the following symbols.

EDA   エチレンジアミン M E A   モノエタノールアミンPIP   ピ
ペラジン ABP   N−(2−アミノエチル)ピペラジンDE
TA  ジエチレントリアミン AEEA  N−(2−アミノエチル)エタノールアミ
ン TETA トリエチレンテトラミン(直鎖状1分枝状、
環状異性体) TBPA  テトラエチレンペンタミン(直鎖状。
EDA Ethylenediamine MEA Monoethanolamine PIP Piperazine ABP N-(2-aminoethyl)piperazine DE
TA diethylenetriamineAEEA N-(2-aminoethyl)ethanolamineTETA triethylenetetramine (linear monobranched,
Cyclic isomer) TBPA Tetraethylenepentamine (linear.

分岐状、環状異性体) 実施例1 (触媒調製) 触媒A 500 mlのフラスコに水:200m1を入れ、加熱
、撹拌し還流させた。ニオブペンタエトキシド=5.0
gをエタノール=50mlに溶かした溶液を、ポンプを
用いて還流させた水に1時間かけて注入した。生じた沈
澱をP別、水洗し、酸化ニオブを得た。更に60°Cで
加熱乾燥後、粉砕し、100°Cで16時間加熱処理し
た。これを触媒Aとした。
Branched, cyclic isomers) Example 1 (Catalyst preparation) Catalyst A 200 ml of water was placed in a 500 ml flask, and the mixture was heated and stirred to reflux. Niobium pentaethoxide = 5.0
A solution of g dissolved in 50 ml of ethanol was injected over 1 hour into refluxed water using a pump. The resulting precipitate was separated from P and washed with water to obtain niobium oxide. After further heating and drying at 60°C, the mixture was crushed and heat-treated at 100°C for 16 hours. This was designated as catalyst A.

触媒B 触媒Aを乾燥空気流通下400°Cで2時間焼成し、こ
れを触媒Bとした。触媒Bは無定形であり、X線回折測
定においてX線回折パターンは見られなかった。又、触
媒B:3gに蒸留水:100a+Iを加え、2時間還流
し、その後P別、乾燥空気流通下400°Cで焼成した
ところ、触媒Bは全量回収された。
Catalyst B Catalyst A was calcined at 400°C for 2 hours under dry air flow, and this was designated as Catalyst B. Catalyst B was amorphous and no X-ray diffraction pattern was observed in X-ray diffraction measurements. Further, 100a+I of distilled water was added to 3 g of catalyst B, and the mixture was refluxed for 2 hours. After that, the mixture was separated from P and calcined at 400° C. under dry air circulation, and the entire amount of catalyst B was recovered.

触媒C 500m1のフラスコに水:200m1を入れ、加熱、
撹拌し40℃に保った。ニオブペンタエトキシド:5.
Ogをエタノール:50m1に溶かした溶液を、ポンプ
を用いて40℃の水に1時間かけて注入した。生じた沈
澱をP別、水洗し、酸化ニオブを得た。更に60℃で加
熱乾燥後、粉砕し、乾燥空気流通下400℃で2時間焼
成した。これを触jXCとした。触媒Cは無定形であり
、X線回折測定においてX線回折パターンは見られなか
った。又、触媒C:3gに蒸留水:100m1を加え、
2時間還流し、その後P別、乾燥空気流通下400℃で
焼成したところ、触媒Cは全景回収された。
Catalyst C: Put 200ml of water into a 500ml flask, heat,
It was stirred and kept at 40°C. Niobium pentaethoxide: 5.
A solution of Og dissolved in 50 ml of ethanol was injected into 40°C water over 1 hour using a pump. The resulting precipitate was separated from P and washed with water to obtain niobium oxide. After further heating and drying at 60°C, the mixture was crushed and calcined at 400°C for 2 hours under dry air circulation. This was designated as Touch jXC. Catalyst C was amorphous, and no X-ray diffraction pattern was observed in X-ray diffraction measurements. Also, add 100ml of distilled water to 3g of catalyst C,
After refluxing for 2 hours, P was separated and calcined at 400° C. under dry air circulation, and catalyst C was recovered in its entirety.

触媒D 500mlのフラスコに7%アンモニア水:200m1
を入れ、室温で撹拌した。五塩化ニオブ:5.Ogをエ
タノール:50m1に溶かした溶液を、ポンプを用いて
アンモニア水に1時間かけて注入した。生じた沈澱をr
別、水洗し、酸化ニオブを得な。更に60゛Cで加熱乾
燥後、粉砕し、乾燥空気流通下400℃で2時間焼成し
た。これを触媒りとした。触媒りは無定形であり、X線
回折測定においてX線回折パターンは見られなかった。
Catalyst D 7% ammonia water in a 500ml flask: 200ml
and stirred at room temperature. Niobium pentachloride: 5. A solution of Og dissolved in 50 ml of ethanol was injected into aqueous ammonia over 1 hour using a pump. The formed precipitate is
Separately, wash with water to obtain niobium oxide. After drying by heating at 60°C, the mixture was pulverized and calcined at 400°C for 2 hours under dry air circulation. This was used as a catalyst. The catalyst was amorphous, and no X-ray diffraction pattern was observed in X-ray diffraction measurements.

又、触媒D:3gに蒸留水:100m1を加え、2時間
還流し、その後r別、乾燥空気流通下400℃で焼成し
たところ、触媒りは全量回収された。
Further, 100 ml of distilled water was added to 3 g of Catalyst D, refluxed for 2 hours, and then calcined at 400° C. under dry air circulation, and the entire amount of the catalyst was recovered.

触媒E 500mlのフラスコに25%アンモニア水=20ml
、水:14m1.t−ブタノール:80m1を入れ、こ
の混合溶液を室温で撹拌した。ニオブペンタエトキシド
:15.Ogをt−ブタノール:80m1に溶かした溶
液を、ポンプを用いて混合溶液に1.7時間かけて注入
した。生じた沈澱を炉別、水洗し、酸化ニオブを得た。
Catalyst E 25% ammonia water = 20ml in a 500ml flask
, water: 14m1. 80 ml of t-butanol was added, and the mixed solution was stirred at room temperature. Niobium pentaethoxide: 15. A solution of Og dissolved in 80 ml of t-butanol was injected into the mixed solution over 1.7 hours using a pump. The resulting precipitate was separated from the furnace and washed with water to obtain niobium oxide.

更に60℃で加熱乾燥後、粉砕し、乾燥空気流通下40
0℃で2時間焼成した。これを触媒Eとした。又、触媒
Eは無定形であり、X線回折測定においてX線回折パタ
ーンは見られなかった。更に、触媒E:3gに蒸留水:
100m1を加え、2時間還流し、その後枦別、乾燥空
気流通下400℃で焼成したところ、触媒Eは全量回収
された。
After further heating and drying at 60°C, pulverization was carried out for 40 minutes under dry air circulation.
It was baked at 0°C for 2 hours. This was designated as catalyst E. Further, Catalyst E was amorphous, and no X-ray diffraction pattern was observed in X-ray diffraction measurements. Furthermore, distilled water to 3 g of catalyst E:
After adding 100 ml of the mixture and refluxing it for 2 hours, it was separated and calcined at 400° C. under dry air circulation, and the entire amount of catalyst E was recovered.

実施例2 触媒A: 1.Og、EDA: 60゜Og。Example 2 Catalyst A: 1. Og, EDA: 60°Og.

MEA: 30.Ogを200 ml電磁撹拌式オート
クレーブに入れ、窒素置換の後300℃に昇温し、5時
間維持した0反応圧は、37、Okr/a&Gであった
。その後冷却し反応液をガスクロマトグラフィーにて分
析した。MEA転化率は58.8%であり、原料及び生
成水を除いた反応液の組成は、PIP;2゜6重量%、
DETA;48.9重量%、AEEA; i、8重量%
、AEP;1.5重量%、TETA; 14.9重量%
、TEPA;2.9重量%であった。尚、触媒の回収率
は100%であった。
MEA: 30. Og was placed in a 200 ml electromagnetic stirring autoclave, the temperature was raised to 300° C. after purging with nitrogen, and the temperature was maintained for 5 hours. The zero reaction pressure was 37, Okr/a&G. Thereafter, the reaction solution was cooled and analyzed by gas chromatography. The MEA conversion rate was 58.8%, and the composition of the reaction solution excluding raw materials and produced water was PIP; 2.6% by weight;
DETA; 48.9% by weight, AEEA; i, 8% by weight
, AEP: 1.5% by weight, TETA: 14.9% by weight
, TEPA; 2.9% by weight. Note that the recovery rate of the catalyst was 100%.

実施例3〜7 表1に記載の触媒:3.Og、EDA:60.0g、M
EA: 30.Ogを200 ml電磁撹拌式オートク
レーブに入れ、窒素置換の後300℃に昇温し、1.5
時間維持した。結果を表1に示した。
Examples 3-7 Catalysts listed in Table 1: 3. Og, EDA: 60.0g, M
EA: 30. Put Og into a 200 ml electromagnetic stirring autoclave, and after purging with nitrogen, raise the temperature to 300°C,
Time was maintained. The results are shown in Table 1.

比較例1 硝酸ランタン六水和物: 130g (0,30mo1
)を撹拌しながら脱イオン化水に溶解した。
Comparative Example 1 Lanthanum nitrate hexahydrate: 130g (0.30mol
) was dissolved in deionized water with stirring.

リン酸水素二アンモニウム79.2g (0,60m0
ρ)を撹拌しながら脱イオン化水に溶解しな。
Diammonium hydrogen phosphate 79.2g (0.60m0
Dissolve ρ) in deionized water with stirring.

リン酸水素二アンモニウム水溶液を激しく撹拌しながら
、硝酸ランタン水溶液を一度に加えたところ、濃厚な坤
状沈澱を形成した。撹拌して、濃厚なりリーム状の懸濁
液とし、吸引濾過により、沈澱をP別した。得られたペ
ースト状の固体を脱イオン化水で十分洗浄した後、80
〜90℃で乾燥して得られた酸性リン酸ランタンを3.
0g使用し、3時間反応させた以外は実施例2と同じ条
件で反応を行った。結果を表1に示した。
When the lanthanum nitrate aqueous solution was added all at once while vigorously stirring the diammonium hydrogen phosphate aqueous solution, a thick lump-like precipitate was formed. The suspension was stirred to form a thick, creamy suspension, and the precipitate was separated by suction filtration. After thoroughly washing the resulting pasty solid with deionized water,
3. Acidic lanthanum phosphate obtained by drying at ~90°C.
The reaction was carried out under the same conditions as in Example 2, except that 0 g was used and the reaction was carried out for 3 hours. The results are shown in Table 1.

比較例2 触媒として日揮化学■製のシリカを12.0g使用し、
6.3時間反応させた以外は実施例2と同じ条件で反応
を行った。結果を表1に示した。
Comparative Example 2 Using 12.0g of silica manufactured by JGC Chemical ■ as a catalyst,
The reaction was carried out under the same conditions as in Example 2 except that the reaction was carried out for 6.3 hours. The results are shown in Table 1.

実施例8〜10 触媒Aを3.0g使用し、表2に記載の反応温度5反応
時間にした以外は実施pA2と同じ条件で反応を行った
。結果を表2に示した。
Examples 8 to 10 The reaction was carried out under the same conditions as in Example pA2, except that 3.0 g of catalyst A was used and the reaction temperature and reaction time shown in Table 2 were changed to 5. The results are shown in Table 2.

比較例3 比較例2の触媒と同じ酸性リン酸ランタンを3.0g使
用し、表2に記載の反応温度1反応時間にした以外は実
施例1と同じ条件で反応を行った。結果を表2に示しな
Comparative Example 3 A reaction was carried out under the same conditions as in Example 1, except that 3.0 g of the same acidic lanthanum phosphate as the catalyst in Comparative Example 2 was used, and the reaction temperature and reaction time shown in Table 2 were changed. The results are shown in Table 2.

表2 実施例11〜13 触媒B:0.9gと表3に記載の原料を入れ、反応時間
を2時間にした以外は実施例2と同じ条件で反応を行っ
た。結果を表3に示した。
Table 2 Examples 11 to 13 Catalyst B: 0.9 g and the raw materials listed in Table 3 were added, and the reaction was carried out under the same conditions as in Example 2, except that the reaction time was 2 hours. The results are shown in Table 3.

実施例14 触媒A:5、Og、EDA: 30.Og。Example 14 Catalyst A: 5, Og, EDA: 30. Og.

MEA : 15、Ogを200 ml電磁撹拌式オー
トクレーブに入れ、窒素置換の後アンモ−ニア:50.
8gを添加し、280℃に昇温して3時間維持した。そ
の後冷却し反応液をガスクロマトグラフィーにて分析し
な0MEA転化率は57.3%であり、原料及び生成水
を除いた反応液の組成は、PIP;3.6重量%、DF
、TA。
MEA: 15, Og was placed in a 200 ml electromagnetic stirring autoclave, and after nitrogen substitution, ammonia: 50.
8 g was added, and the temperature was raised to 280°C and maintained for 3 hours. After cooling, the reaction solution was analyzed by gas chromatography.The 0MEA conversion rate was 57.3%, and the composition of the reaction solution excluding raw materials and produced water was PIP; 3.6% by weight, DF.
, T.A.

40.7重量%、AREA、0.8重量%。40.7% by weight, AREA, 0.8% by weight.

TETA ; 12.4重量%であった。TETA: 12.4% by weight.

Claims (3)

【特許請求の範囲】[Claims] (1)含水液体にニオブ含有物質を加えて得られる酸化
ニオブの存在下、アンモニア及び/又はアルキレンアミ
ン類をアルカノールアミン類と反応させ、原料のアンモ
ニア及び/又はアルキレンアミン類よりアルキレン鎖の
増加したアルキレンアミン類を得ることを特徴とするア
ルキレンアミン類の製法。
(1) In the presence of niobium oxide obtained by adding a niobium-containing substance to a water-containing liquid, ammonia and/or alkylene amines are reacted with alkanolamines, resulting in an increased number of alkylene chains than the raw material ammonia and/or alkylene amines. A method for producing alkylene amines, characterized by obtaining alkylene amines.
(2)アルキレンアミン類が、エチレンアミン類である
特許請求の範囲第1項記載の製法。
(2) The method according to claim 1, wherein the alkylene amines are ethylene amines.
(3)アルカノールアミン類が、エタノールアミン類で
ある特許請求の範囲第1項記載の製法。
(3) The method according to claim 1, wherein the alkanolamines are ethanolamines.
JP62325274A 1987-12-24 1987-12-24 Preparation of alkyleneamines Expired - Lifetime JP2600734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62325274A JP2600734B2 (en) 1987-12-24 1987-12-24 Preparation of alkyleneamines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62325274A JP2600734B2 (en) 1987-12-24 1987-12-24 Preparation of alkyleneamines

Publications (2)

Publication Number Publication Date
JPH01168647A true JPH01168647A (en) 1989-07-04
JP2600734B2 JP2600734B2 (en) 1997-04-16

Family

ID=18174978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62325274A Expired - Lifetime JP2600734B2 (en) 1987-12-24 1987-12-24 Preparation of alkyleneamines

Country Status (1)

Country Link
JP (1) JP2600734B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225341A (en) * 1986-08-13 1988-09-20 Tosoh Corp Production of alkylamines
JPH01132550A (en) * 1987-11-19 1989-05-25 Tosoh Corp Production of alkyleneamines by vapor-phase reaction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225341A (en) * 1986-08-13 1988-09-20 Tosoh Corp Production of alkylamines
JPH01132550A (en) * 1987-11-19 1989-05-25 Tosoh Corp Production of alkyleneamines by vapor-phase reaction

Also Published As

Publication number Publication date
JP2600734B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
EP0315189B1 (en) Process for producing an alkylenamine by using a mixing oxide catalyst.
JPS63225341A (en) Production of alkylamines
US4584405A (en) Activated carbon catalysts and preparation of linear polyethylene polyamines therewith
JPH0229066B2 (en)
JP2764968B2 (en) Method for producing alkyleneamines
US5011999A (en) Process of preparing non-cyclic polyalkylenepolyamines employing group VB metal catalysts
JPH07504660A (en) Catalytic modification of cyclic alkylene amines
US4996363A (en) Catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
JPS63307846A (en) Production of alkyleneamines
JPH022876A (en) Compound oxide catalyst and production of alkyleneamines with same
JPH01168647A (en) Production of alkyleneamines
JP3218378B2 (en) Improved catalyst and method for producing linear polyamine
JP2590504B2 (en) Method for producing alkyleneamines
JPH01132550A (en) Production of alkyleneamines by vapor-phase reaction
JP2508771B2 (en) Method for producing alkylene amines
US5118850A (en) Catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
JP2676847B2 (en) Method for producing alkylene amines
JP2508772B2 (en) Method for producing alkylene amines
US5149877A (en) Process for producing alkylenamine
US5210307A (en) Catalytic reforming of alkyleneamines to linearly-extended polyalkylenepolyamines
JPH02157249A (en) Production of alkyleneamines
US5124485A (en) Catalysts and methods of separation thereof
JP2762642B2 (en) Method for producing polyethylene polyamine
JPH04217659A (en) Production of aziridine compound
JPH0665161A (en) Production of polyethylenepolyamine