JPH0273242A - Light transmission type screen - Google Patents

Light transmission type screen

Info

Publication number
JPH0273242A
JPH0273242A JP63223464A JP22346488A JPH0273242A JP H0273242 A JPH0273242 A JP H0273242A JP 63223464 A JP63223464 A JP 63223464A JP 22346488 A JP22346488 A JP 22346488A JP H0273242 A JPH0273242 A JP H0273242A
Authority
JP
Japan
Prior art keywords
light
groove
total reflection
screen
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63223464A
Other languages
Japanese (ja)
Inventor
Masamichi Kaneko
正道 金子
Kiyoshi Shimamura
島村 喜代司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63223464A priority Critical patent/JPH0273242A/en
Publication of JPH0273242A publication Critical patent/JPH0273242A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the function of total reflection by providing a surface where projected light is totally reflected, forming a groove by adjacent total reflection surfaces and filling the groove with the mixture of spherical particles whose density is 0.9-1.2g/cm<2> and whose average particle diameter is 1-30mu and light absorbing resin. CONSTITUTION:The total reflection surfaces 7 where the projected light is totally reflected are provided on a lens 8 which constitutes a lenticular lens and the groove 11 is formed by the adjacent surfaces 7. In order to uniformly fill the groove 11, it is desirable to use the spherical particle whose density is 0.9-1.2g/cm<2> and whose average particle diameter is 1-30mu as the spherical particle 5 out of the mixture with which the groove 11 is filled. When the density exceeds 1.2g/cm<2> in a state where the mixture of the particles 5 and the light absorbing resin 6 is mixed with solvent to get paint-like substance, the particles 5 precipitate, so that it is difficult to keep a stable state. When the average particle diameter exceeds 30mu, it is difficult to uniformly wipe out an unnecessary part at the time of wiping it out after applying the mixture of the particles 5 and the resin 6 to the groove 11 and the groove 11 is ununiformly filled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光透過型スクリーンに関し、特に画像のコン
トラストを良好にすべくスクリーン観察側表面での外光
の反射を抑え、かつ広い視野角をもつよ5に改良された
光透過型スクリーンに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a light-transmissive screen, and in particular, the present invention relates to a light-transmissive screen that suppresses reflection of external light on the viewing side surface of the screen to improve image contrast, and that has a wide viewing angle. This invention relates to a light-transmissive screen that has been improved to 5.

〔従来の技術〕[Conventional technology]

光透過スクリーンにおいて、視野角を広げるため、レン
チキュラーレンズ単位に全反射面を持たせるものは、従
来から知られている。(USP−3,218,924号
) またスクリーン観察側表面での外光反射による画像のコ
ントラスト低下を防ぐためレンチキュラーレンズ表面の
光不透過部に黒色の外光吸収部分を形成する事が従来か
ら行われている。
2. Description of the Related Art Light transmission screens in which each lenticular lens has a total reflection surface have been known in the art in order to widen the viewing angle. (USP No. 3,218,924) Furthermore, in order to prevent a decrease in image contrast due to reflection of external light on the observation side surface of the screen, it has been conventional to form a black external light absorbing part on the light-opaque part of the lenticular lens surface. It is being done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

スクリーン表面での外光反射を低減させるだめの光吸収
部の形成は、一般には黒色系塗料の塗装により行われる
。レンチキュラーレンズ単位に含まれる全反射面は光不
透過部であるが、この全反射面に塗料を直接塗布すると
、レンズ基材と塗料との屈折率差が小さい場合にはレン
ズ透過光が全反射せず、塗料部に吸収されスクリーン視
野角の低下を引きおこす。
Formation of a light absorbing portion for reducing external light reflection on the screen surface is generally performed by coating with black paint. The total reflection surface included in a lenticular lens unit is a light-opaque area, but if paint is applied directly to this total reflection surface, the light transmitted through the lens will be totally reflected if the difference in refractive index between the lens base material and the paint is small. Instead, it is absorbed by the paint and causes a decrease in the viewing angle of the screen.

レンズ全反射面と黒色塗料層の間に、低屈折率層を形成
し、レンズ基材と低屈折率層との界面で全反射をおこさ
せる方法があるが、手間のかかる工程を含み、収率良く
スクリーンを量産する事は難しい。
There is a method of forming a low refractive index layer between the total reflection surface of the lens and the black paint layer, and causing total reflection at the interface between the lens base material and the low refractive index layer, but this method involves a time-consuming process and is difficult to achieve convergence. It is difficult to mass produce screens at a high rate.

また、光吸収性の糸状物を溝型の全反射面に設置する方
法も開示されているが、糸状物を溝面に固定するため、
糸状物のまわりに接着剤を付着させなければならず、一
般的にスクリーン基材と接着剤との屈折率差は小さいの
で、全反射効率が低下するという問題を含んでいる。
Also, a method is disclosed in which a light-absorbing filament is installed on a groove-shaped total reflection surface, but in order to fix the filament to the groove surface,
An adhesive must be attached around the filament, and since the difference in refractive index between the screen base material and the adhesive is generally small, there is a problem in that total reflection efficiency is reduced.

また、溝壁の全反射面に吸光性粒子を充填し、粒子を外
皮で保持する方法も開示されている。
Also disclosed is a method in which the total reflection surface of the groove wall is filled with light-absorbing particles and the particles are held by an outer skin.

(特開@60−159734号)しかし、吸光性粒子を
溝内に均一に充填する事は難しく、吸光粒子によるスト
ライブの太さが一定とならなかったり、不用部に残存す
る吸光粒子を拭き取る際、粒子が引きずられ、充填が不
均一になるなどスクリーンとしての外観を損なう問題点
をもって(・る。また不用部粒子の拭き取りが不十分な
場合には、スクリーン透過光を一部遮へいするためスク
リーンの輝度を低下させるという問題点を含んでいる。
(Unexamined Japanese Patent Publication No. 60-159734) However, it is difficult to uniformly fill the grooves with light-absorbing particles, and the thickness of the stripes formed by the light-absorbing particles may not be constant, or the light-absorbing particles remaining in unnecessary areas may be wiped off. When cleaning the screen, there are problems such as particles being dragged and uneven filling, which impairs the appearance of the screen.Also, if the unnecessary particles are not wiped off sufficiently, it may partially block the light transmitted through the screen. This includes the problem of reducing the brightness of the screen.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の課題を解決する事を目的としてなされ
た。本発明者らは鋭意研究の結果、特定範囲の密度およ
び平均粒径なもつ球状粒子と吸光性樹脂との混合物は、
レンチキュラーレンズ単位の全反射面において、レンズ
透過光を効率よく全反射させることを見出し、本発明を
完成するに到った。
The present invention was made to solve the above problems. As a result of intensive research, the present inventors found that a mixture of spherical particles with a specific range of density and average particle size and a light-absorbing resin is
The inventors have discovered that lens-transmitted light can be efficiently totally reflected on the total reflection surface of each lenticular lens, and have completed the present invention.

すなわち、本発明は、 縦方向に延びるレンチキュラーレンズが観察f13に形
成されている光透過型スクリーンにおいて、レンチキュ
ラーレンズを構成するレンズ単位81Cは投影光を全反
射させる全反射面7が設けられていて、隣り合う全反射
面7により溝11が形成され、溝11には、密度0.9
〜1.2Lら3であり平均粒径1〜30μの球状粒子5
と、吸光性樹脂6との均一な混合物が充填されているこ
とを特徴とする光透過温スクリーン を提供するものである。このスクリーンにおいては投影
側2にフレネルレンズを設けることもできる。
That is, the present invention provides a light transmission type screen in which a lenticular lens extending in the vertical direction is formed in the viewing field f13, and a lens unit 81C constituting the lenticular lens is provided with a total reflection surface 7 that totally reflects the projected light. , a groove 11 is formed by the adjacent total reflection surfaces 7, and the groove 11 has a density of 0.9.
~1.2L et al.3 and an average particle size of 1 to 30μ spherical particles5
The present invention provides a light-transmitting thermal screen characterized in that it is filled with a uniform mixture of a light-absorbing resin 6 and a light-absorbing resin 6. This screen can also be provided with a Fresnel lens on the projection side 2.

第1図は本発明スクリーンの使用例を示す斜視図である
。第2図は本発明に用いられるレンチキュラーレンズ単
位と全反射面により形成された溝K、球状粒子と吸光性
樹脂の混合物を充填したものの一例を示す図である。
FIG. 1 is a perspective view showing an example of use of the screen of the present invention. FIG. 2 is a diagram showing an example of a lenticular lens unit used in the present invention, a groove K formed by a total reflection surface, and a groove K filled with a mixture of spherical particles and a light-absorbing resin.

このレンズ単位形状は、同一出願人が特開昭63−31
926号において示したものである。
This lens unit shape was developed by the same applicant in JP-A-63-31.
No. 926.

本発明は、レンチキュラーレンズ単位8に設けられた全
反射面7により形成される溝111C充填される混合物
に特徴を持たせたものである。溝の形状、大きさは常識
的の範囲内にて設定され得る。
The present invention is characterized in that the mixture filled in the groove 111C formed by the total reflection surface 7 provided in the lenticular lens unit 8 is characterized. The shape and size of the groove can be set within a common sense range.

この混合物はレンズ透過光に対しては全反射させる機能
を持ち、視野角の広いスクリーンの設計を可能にしてい
る。また観察側外光に対しては光吸収の機能を持ち、よ
り明瞭な画像を与えるスクリーンの設計を可能にしてい
る。しかも本発明は、レンチキュラー側スクリーン表面
に、該混合物を溶剤と混合した塗料状物として直接スク
リーン上VC塗布し、不要部を拭き取った後、乾燥によ
り溶剤を除去する等の簡易な方法で、該混合物を溝に充
填することができるという特徴を持っている。
This mixture has the ability to totally reflect the light transmitted through the lens, making it possible to design a screen with a wide viewing angle. It also has a light absorption function for external light on the observation side, making it possible to design a screen that provides clearer images. Moreover, the present invention allows the VC to be applied directly to the screen surface on the lenticular side as a paint-like substance mixed with a solvent, and after wiping off unnecessary parts, the solvent is removed by drying. It has the characteristic that the mixture can be filled into the groove.

屈折率の異なる媒質が接する界面で、光線が全反射する
時の臨界角θCは、スネルの法則により、θc = a
rcsln(n2A) (ただしnl>n、)で表わさ
れる。従って、屈折率がn、のスクリーン基材中を進行
した光線は、屈折率がn、の媒質との界面において、界
面への入射角が臨界角0cよりも大きい場合は、全反射
して、更にスクリーン基材中を進むことになる。
According to Snell's law, the critical angle θC when a light ray is totally reflected at an interface where media with different refractive indexes meet is θc = a
It is expressed as rcsln(n2A) (where nl>n). Therefore, a light beam traveling through a screen substrate with a refractive index of n will be totally reflected at the interface with a medium with a refractive index of n if the angle of incidence on the interface is larger than the critical angle 0c. It will further advance through the screen base material.

本発明において、スクリーン全反射面には、球状粒子と
、吸光性樹脂との混合物が接しているが、全反射面には
球状粒子が点接触のような、最小の面積で接している。
In the present invention, a mixture of spherical particles and a light-absorbing resin is in contact with the total reflection surface of the screen, and the spherical particles are in contact with the total reflection surface with a minimum area such as point contact.

吸光性樹脂は、球状粒子の粒子間を充填しているが、ス
クリーン全反射面には直接は接していない。吸光性樹脂
6と全反射面7との間隙には可視領域の波長をもつ光線
を全反射させるに必要な最小限の厚みを少くとも持って
いる空気層9が形成されている。この空気層9は、球状
粒子と吸光性樹脂との混合物を塗布する際に混合された
溶剤を乾燥除去した際に形成されるものである。図3に
全反射面界面の状態を示す。
The light-absorbing resin fills the space between the spherical particles, but does not directly contact the total reflection surface of the screen. An air layer 9 is formed in the gap between the light-absorbing resin 6 and the total reflection surface 7, and has at least the minimum thickness necessary for total reflection of light having wavelengths in the visible range. This air layer 9 is formed when the solvent mixed in the coating of the mixture of spherical particles and light-absorbing resin is dried and removed. Figure 3 shows the state of the total reflection surface interface.

本発明におけるスクリーン用基材としては、アクリル樹
脂、塩化ビニル樹脂、ポリカーボネート樹脂、スチレン
系樹脂、ポリオレフィン系樹脂などの透明性樹脂を用い
ることができる。中でもアクリル樹脂が、透明性、耐候
性、および表面耐擦傷性の面から好ましい。レンチキュ
ラーレンズの成形法としては加熱プレス、押出成形ある
いは射出成形など通常の成形法が用いられる。
As the base material for the screen in the present invention, transparent resins such as acrylic resin, vinyl chloride resin, polycarbonate resin, styrene resin, and polyolefin resin can be used. Among these, acrylic resin is preferred from the viewpoints of transparency, weather resistance, and surface scratch resistance. As a method for molding a lenticular lens, a conventional molding method such as hot pressing, extrusion molding, or injection molding is used.

また本発明のスクリーンの光拡散性を高めるため、基材
となる透明性樹脂に無機系あるいは有機系の光拡散剤を
添加してもよい。
Further, in order to improve the light diffusing properties of the screen of the present invention, an inorganic or organic light diffusing agent may be added to the transparent resin serving as the base material.

本発明において、光拡散剤の覆類等は特に制限はなく、
例えば、無機系としては、炭酸カルシウム、硫酸バリウ
ム、酸化チタン、二酸化珪素、フッ化カル7ウム、タル
ク、ガラスピーズ等があり、有機系としては、スチレン
樹脂、メチルメタクリレート/アクリル酸エステル/芳
香族ビニルモノマーを主成分とする架橋ポリマー等があ
り、いずれも単独もしくは2種以上の組合せで利用でき
る。
In the present invention, there are no particular restrictions on the covering of the light diffusing agent, etc.
For example, inorganic types include calcium carbonate, barium sulfate, titanium oxide, silicon dioxide, calcium fluoride, talc, glass peas, etc., and organic types include styrene resin, methyl methacrylate/acrylic acid ester/aromatic There are crosslinked polymers mainly composed of vinyl monomers, and any of them can be used alone or in combination of two or more.

この中でも望ましいのは、平均粒径10〜100μのメ
チルメタクリレート/アクリル酸エステル/芳香族ビニ
ルモノマーを主成分とする架橋ポリマー、炭酸カルシウ
ム、石英粉、硫酸バリウム、ガラスピーズ等である。
Among these, preferred are crosslinked polymers mainly composed of methyl methacrylate/acrylic acid ester/aromatic vinyl monomer with an average particle size of 10 to 100 microns, calcium carbonate, quartz powder, barium sulfate, glass peas, and the like.

またスクリーンの商品価値を高めるため、着色剤、光安
定剤、熱安定剤その他の添加剤を配合し℃もよい。
In addition, in order to increase the commercial value of the screen, colorants, light stabilizers, heat stabilizers and other additives are added to the screen at a good temperature.

本発明のスクリーンにおいてレンズ全反射面により形成
される溝部に充填される混合物成分のうち、球状粒子と
しては、密度0.9〜1.29/cvL”、平均粒径1
〜30寿である事が均一な充填を行う上で好ましい。中
でも密度0.90〜0.98 g□1、平均粒径2〜1
0μであることが最も好ましい。
Among the mixture components filled in the grooves formed by the total reflection surface of the lens in the screen of the present invention, the spherical particles have a density of 0.9 to 1.29/cvL'' and an average particle size of 1.
A lifespan of ~30 is preferable for uniform filling. Among them, density 0.90-0.98 g□1, average particle size 2-1
Most preferably, it is 0μ.

密度がx、21/atlを越える場合には、球状粒子と
吸光性樹脂との混合物を溶剤と混合し塗料状物とした時
に、球状粒子が沈澱し、経時的に安定した性状を保ち難
い。また密度が0.90 g/c♂未滴の球状粒子は現
在入手が困難であるが本発明の目的を達成し得る範囲に
おいて0 、9 E /cat”以下のものも用い得る
If the density exceeds x,21/atl, when the mixture of spherical particles and light-absorbing resin is mixed with a solvent to form a paint-like material, the spherical particles will precipitate, making it difficult to maintain stable properties over time. Although spherical particles with a density of 0.90 g/c♂ are currently difficult to obtain, particles with a density of 0.9 E/cat'' or less may also be used as long as the object of the present invention can be achieved.

また平均粒径が30μを越えると、溝部へ、球状粒子と
吸光性樹脂との混合物を塗布し、不要部を拭き取る際、
均一に拭き取り難く、溝部への充填が不均一になる。ま
た、平均粒径が1μ未満のものは現在入手が困難である
ので1pを下限とした。
Furthermore, if the average particle size exceeds 30μ, when applying a mixture of spherical particles and light-absorbing resin to the grooves and wiping off unnecessary parts,
It is difficult to wipe it off evenly, and the grooves are filled unevenly. Moreover, since it is currently difficult to obtain particles with an average particle diameter of less than 1 μm, 1 p was set as the lower limit.

ここで、平均粒径とは、横軸に粒径、縦軸K −定粒径
までの粒子体積の累計をプロットした積分曲線において
、体積累計50%に対応する粒径を指すものであり、コ
ールタ−カウンター(米国、コールタ−エレクトロニク
ス社)等の装置を用いて求めることができる。
Here, the average particle size refers to the particle size corresponding to 50% of the cumulative volume on an integral curve in which the horizontal axis is the particle size and the vertical axis is the cumulative total of particle volumes up to K - constant particle size. It can be determined using a device such as a Coulter Counter (Coulter Electronics, Inc., USA).

本発明において、球状粒子の形状は不定形でないことが
溝部への均一な充填を行う上で必要である。ダ円形状な
いし真球形状にわたる形態が好ましく、中でも真球形状
またはこれに近い形状が最も好ましい。
In the present invention, it is necessary that the shape of the spherical particles is not irregular in order to uniformly fill the grooves. A shape ranging from a circular shape to a true sphere is preferable, and a true sphere or a shape close to this is most preferable.

球状粒子の素材としては、特に制限はないが、有機系ポ
リマーが一般的に好ましい。例えば、エチレン、スチレ
ン、メタクリル酸メチルなどのビニルモノマーの単独重
合体または共重合体が挙げられる。このうち、密度の上
で最も好ましいのはポリエチレンである。
There are no particular restrictions on the material for the spherical particles, but organic polymers are generally preferred. Examples include homopolymers or copolymers of vinyl monomers such as ethylene, styrene, and methyl methacrylate. Among these, polyethylene is most preferable in terms of density.

本発明のスクリーンにおいて、レンズ全反射面により形
成される溝部に充填される混合物成分の5ち、吸光性樹
脂としてはシリコン樹脂、ポリエステル樹脂、エポキシ
樹脂、アルキド樹脂、アクリル樹脂、フッ素樹脂などの
汎用樹脂を単独または、混合体で用いる事ができる。ま
た吸光性をもたせるため、樹脂にはカーボンブラックあ
るいは着色性の顔料、染料を均一に分散させることがで
きる。また均一に分散させるため、溶剤、消泡剤などの
補助材料を用いることができる。
In the screen of the present invention, the five light-absorbing resins in the mixture filled in the groove formed by the total reflection surface of the lens are general-purpose resins such as silicone resin, polyester resin, epoxy resin, alkyd resin, acrylic resin, and fluororesin. Resins can be used alone or in mixtures. Furthermore, in order to impart light absorption properties, carbon black or coloring pigments or dyes can be uniformly dispersed in the resin. In addition, auxiliary materials such as a solvent and an antifoaming agent can be used for uniform dispersion.

球状粒子と吸光性樹脂との混合においては、球状粒子の
割合が大きいと、全反射性能は良好であるが、スキージ
−拭き取り時に溝部への充填が不均一になり易く、また
吸光性能も下る。逆に球状粒子の割合が小さいと、全反
射性能が低下する。
When mixing spherical particles and light-absorbing resin, if the proportion of spherical particles is large, the total reflection performance is good, but the grooves are likely to be filled unevenly during squeegee wiping, and the light-absorbing performance is also degraded. Conversely, if the proportion of spherical particles is small, the total reflection performance will decrease.

全反射性能を保持しつつ、溝部への充填も均一で、吸光
性能も持つためK、球状粒子と吸光性樹脂との混合比は
、重量比で3/1〜1/3の範囲であることが好ましい
。混合は、通常の撹拌機あるいはロール等を用いて、十
分に混合させ球状粒子が均一分散されていることが好ま
しい。
The mixing ratio of the spherical particles and the light-absorbing resin should be in the range of 3/1 to 1/3 by weight in order to maintain total reflection performance, fill the grooves uniformly, and have light-absorbing performance. is preferred. It is preferable that the mixture be sufficiently mixed using an ordinary stirrer or roll so that the spherical particles are uniformly dispersed.

レンチキュラーレンズ側表面の溝部に、球状粒子と吸光
性樹脂との混合物を充填する方法は、該混合物を適当な
溶剤で粘性のある塗料状物セした後、スクリーン上に直
接印刷するものである。すなわち、球状粒子と吸光性樹
脂との混合物に溶剤を加え、適当な粘度例えば50〜5
00ボイズ、好ましくは150〜350ボイズの粘度を
もった塗料状物とした後、スクリーンのレンチキュラー
側表面に塗布し、スクリーン印刷に用いられるウレタン
ゴム類のスキージ−で不要部の塗料状物をかき取ること
Kより溝部に均一に塗料状物を充填することができる。
The method of filling the grooves on the surface of the lenticular lens with a mixture of spherical particles and a light-absorbing resin is to form the mixture into a viscous paint-like substance with an appropriate solvent and then print it directly onto the screen. That is, a solvent is added to a mixture of spherical particles and a light-absorbing resin, and the viscosity is adjusted to an appropriate viscosity, for example, 50 to 5.
After forming a paint-like material with a viscosity of 0.00 voids, preferably 150 to 350 voids, it is applied to the lenticular side surface of the screen, and unnecessary parts of the paint-like material are scraped off with a urethane rubber squeegee used for screen printing. The groove can be more uniformly filled with the paint-like material by removing the material.

更に、スクリーンを例えば、60〜80℃で10〜60
分間加熱することにより、溶剤が蒸発し、残留固型分が
スクリーン溝部に固化し、固定される。
Furthermore, the screen is heated at 60 to 80°C for 10 to 60°C.
By heating for a minute, the solvent evaporates and the remaining solids solidify and become fixed in the screen grooves.

実施例1 以下に実施例により本発明を説明するが、これらは本発
明を限定するものではない。
Example 1 The present invention will be explained below with reference to Examples, but these are not intended to limit the invention.

(1)  光拡散板 撹拌器、還流冷却器、窒素ガス導入口のついた反応容器
に次の化合物を仕込んだ。
(1) The following compounds were charged into a reaction vessel equipped with a light diffusion plate stirrer, a reflux condenser, and a nitrogen gas inlet.

■ メチルメタクリレート    40重量部■ ブチ
ルアクリレート     30x量部0 スチレン  
        30重量部■ アリルメタクリレート
    1.5重量部■ t−ドデシルメルカプタン 
 0.3重量部■ アゾビスイソブチロニトリル 0.
5重量部■ ポリビニルアルコール    360重量
部■ 水            200重量部容器内
を十分に窒素ガスで置換した後、上記化合物の混合物を
十分に撹拌しながら70℃まで加熱し、窒素ガス中で重
合を進めた。4時間後に90℃まで昇温し、90℃に1
時間保持して重合を完了させた。重合終了後、脱水、水
洗、乾燥して粒状ビーズを得た。得られたビーズを篩別
し、平均粒径48μの有機架橋ポリマー粒子を得た。
■ Methyl methacrylate 40 parts by weight ■ Butyl acrylate 30 x parts by weight 0 Styrene
30 parts by weight■ Allyl methacrylate 1.5 parts by weight■ t-dodecyl mercaptan
0.3 parts by weight ■ Azobisisobutyronitrile 0.
5 parts by weight ■ Polyvinyl alcohol 360 parts by weight ■ 200 parts by weight Water After the inside of the container was sufficiently replaced with nitrogen gas, the mixture of the above compounds was heated to 70°C with sufficient stirring to proceed with polymerization in nitrogen gas. . After 4 hours, the temperature was raised to 90℃, and then the temperature was increased to 90℃.
The polymerization was completed by holding for a period of time. After the polymerization was completed, granular beads were obtained by dehydration, washing with water, and drying. The obtained beads were sieved to obtain organic crosslinked polymer particles with an average particle size of 48 μm.

デルペラ)70H(旭化成工業〔株〕製)VC1得られ
た光拡散剤を5重量5加え、押出機で加熱混線後(樹脂
温度250℃)、ダイスから出た溶融樹脂をロール間に
通し、冷却して610X460X3龍の光拡散板を得た
Delpera) 70H (manufactured by Asahi Kasei Industries, Ltd.) VC1 5 weight 5 of the obtained light diffusing agent was added, and after heating and mixing in an extruder (resin temperature 250°C), the molten resin coming out of the die was passed between rolls and cooled. A 610x460x3 dragon light diffusing plate was obtained.

(2)  レンチキュラーレンズ、フレネルレンズの成
形 (1)にて製造された基板を下記に示すレンチキュラー
レンズ金型、フレネルレンズ金型の間に基板を配し、加
熱プレスで成形温度160℃、成形時間10分、成形圧
力30νdの条件で成形した後、10分間水冷して成形
品を得た。
(2) Molding of lenticular lenses and Fresnel lenses The substrate manufactured in step (1) was placed between the lenticular lens molds and Fresnel lens molds shown below, and heated with a hot press at a molding temperature of 160°C for a molding time. After molding for 10 minutes at a molding pressure of 30 νd, the molded product was cooled with water for 10 minutes to obtain a molded product.

レンチキュラーレンズ単位:第4図 フレネルレンズ     :ピツチ 0.5絽焦点距離
 1000 m (3)外光吸収層の形成 (実施例1用) (2)で作製したスクリーン成形用のレンチキュラーレ
ンズ表面全面K、密度0.929/an’の低密度ポリ
エチレン製で平均粒径5.2μの真球状粒子1に鉄化学
製フロービーズLE−1080)と、エマルジョン系シ
リコン樹脂(有効成分45 wt%)と黒色焼成顔料と
を2:2二1の重量比で十分撹拌混合し、溶剤を適量加
えて粘度200ボイズの塗料状物に調整したものを塗布
した。
Lenticular lens unit: Fig. 4 Fresnel lens: Pitch 0.5 mm Focal length 1000 m (3) Formation of external light absorption layer (for Example 1) Full surface K of the lenticular lens for screen molding prepared in (2), True spherical particles 1 made of low-density polyethylene with a density of 0.929/an' and an average particle size of 5.2μ, iron chemical flow beads LE-1080), emulsion silicone resin (active ingredient 45 wt%) and black firing. The mixture was thoroughly stirred and mixed with the pigment at a weight ratio of 2:221, and an appropriate amount of solvent was added to form a paint-like product with a viscosity of 200 voids, which was then applied.

更にウレタンゴム類のスキージ−で外光吸収層に相当す
る部分以外をかき取り、熱風乾燥機中で80℃で30分
間加熱し、均一な線巾の外光吸収層を形成した。
Further, the portion other than the portion corresponding to the external light absorbing layer was scraped off with a urethane rubber squeegee, and heated in a hot air dryer at 80° C. for 30 minutes to form an external light absorbing layer with a uniform line width.

(比較例1用) フッ化ヒニリデン:テトラフルオロエチレン=80:2
0を用い、メチルイソブチルケトンに溶解させたものを
、スプレー法にて全面に塗布した。
(For Comparative Example 1) Hynylidene fluoride: Tetrafluoroethylene = 80:2
0 was dissolved in methyl isobutyl ketone and applied to the entire surface by a spray method.

外光吸収層に相当する部分以外をスキージ−にてかきと
り、熱風乾燥機中で乾燥した、その後、武蔵塗料社製プ
ラエース716 AMをスプレー法にて全面に塗布し、
外光吸収層に相当する部分以外をスキージ−にてかきと
り、熱風乾燥機中で乾燥して外光吸収層を形成した。
The area other than the part corresponding to the external light absorption layer was scraped off with a squeegee and dried in a hot air dryer. Then, Musashi Paint Co., Ltd.'s Plaace 716 AM was applied to the entire surface by spraying.
A portion other than the portion corresponding to the external light absorbing layer was scraped off with a squeegee and dried in a hot air dryer to form an external light absorbing layer.

(比較例2月) 武蔵塗料社製プラエース716AMをスプレー法にて全
面に塗布し、外光吸収層に相当する部分以外をスキージ
−にてかきとり、熱風乾燥機中で乾燥して外光吸収層を
形成した。
(Comparative example, February) Apply PLACE 716AM manufactured by Musashi Paint Co., Ltd. to the entire surface by spraying, scrape off the area other than the part corresponding to the external light absorbing layer with a squeegee, and dry in a hot air dryer to form the external light absorbing layer. was formed.

(4)  評価 以上のような方法で作製された透過型スクリーンのフレ
ネルレンズ側からコリメータにて平行光線を入射し、輝
度計(ミノルタ製nt−1/3’P)を用いて輝度分布
を測定した。
(4) Evaluation A parallel beam of light is incident on a collimator from the Fresnel lens side of the transmission screen made by the above method, and the brightness distribution is measured using a brightness meter (NT-1/3'P manufactured by Minolta). did.

また、投影機にTWTN CABIN 5UPER(キ
ャビン工業製ランプ:3QOWレンズp3f50B)を
用い、螢光灯照明下の室内にて第6図に示す白黒パター
ン12のスライドの像を作製した透過型スクリーンに投
影した。そして、スクリーン上の白部分と点部分の輝度
を測定し、両者の比からコントラストを求めた。
In addition, using a TWTN CABIN 5UPER (cabin industrial lamp: 3QOW lens p3f50B) as a projector, images of the black and white pattern 12 slides shown in Figure 6 were projected onto a prepared transmission screen in a room under fluorescent light illumination. did. Then, the brightness of the white part and the dot part on the screen was measured, and the contrast was calculated from the ratio of the two.

(5)結果 実施例1および比較例1.2の輝度分布の測定結果を第
5図に示す。これより、実施例1のスクリーンは、最も
相対輝度が高く、半値角も大きいことがわかった。すな
わち、レンチキュラーレンズ全反射面において、全反射
させる機能が最も優れている事がわかった。
(5) Results The measurement results of the luminance distribution of Example 1 and Comparative Example 1.2 are shown in FIG. From this, it was found that the screen of Example 1 had the highest relative brightness and the largest half-value angle. In other words, it was found that the total reflection surface of the lenticular lens has the best total reflection function.

また、実施例1のコントラストは80であり、比較例の
ものも80であり、同等のコントラストであることがわ
かった。
In addition, the contrast of Example 1 was 80, and that of the comparative example was also 80, and it was found that the contrast was equivalent.

外光吸収層の形成方法は、実施例1のものが比較例1の
ものに比較し、簡易である。すなわち、実施例1ではレ
ンチキュラーレンズ表面へ塗料状物を直接塗布できるの
に対し、比較例1では、フッ素系化合物を含む低屈折率
層を塗布し、更に乾燥させた後に、外光吸収用塗料を塗
布するため工程に手間を要し、収率よく、外光吸収層を
もつスクリーンを量産することが難しい。
The method for forming the external light absorption layer in Example 1 is simpler than that in Comparative Example 1. That is, in Example 1, a paint-like substance can be applied directly to the surface of the lenticular lens, whereas in Comparative Example 1, a low refractive index layer containing a fluorine-based compound is applied, and after further drying, an external light absorbing paint is applied. The coating process requires time and effort, making it difficult to mass-produce screens with an external light absorption layer at a high yield.

以上の結果より、実施例1のスクリーンは、比較例1の
ものに比べ、外光吸収層の形成方法が簡易である点にお
いて優れており、また、輝度分布性能についても優れて
いることがわかった。
From the above results, it was found that the screen of Example 1 is superior to that of Comparative Example 1 in that the method for forming the external light absorption layer is simple, and it is also superior in brightness distribution performance. Ta.

また実施例1のスクリーンは、比較例2のものに比べ、
外光吸収層の形成方法については、同等であるが、輝度
分布性能については、大巾に優れていることがわかった
In addition, the screen of Example 1 has the following characteristics compared to that of Comparative Example 2:
Although the method of forming the external light absorption layer was the same, it was found that the brightness distribution performance was significantly superior.

実施例2〜9 実施例1と同様の光拡散板で、同様の金型を用いてスク
リーンを成形した。更に、レンチキュラーレンズ表面全
面に表1に示すような、球状粒子と吸光性樹脂の混合物
を塗布し、スキージ−で外光吸収層に相当する部分以外
をかき取り、外光吸収層を形成した。
Examples 2 to 9 Screens were molded using the same light diffusing plates as in Example 1 and the same molds. Furthermore, a mixture of spherical particles and a light-absorbing resin as shown in Table 1 was applied to the entire surface of the lenticular lens, and the portions other than those corresponding to the external light-absorbing layer were scraped off with a squeegee to form an external light-absorbing layer.

上記方法で得られたスクリーンの性能を第1表に示す。Table 1 shows the performance of the screen obtained by the above method.

全反射性が良とは、実施例1と同程度の輝度分布性能が
得られることを示す。また印刷適性が良とは、ムラの目
立たない外光吸収層ストライプが形成されることを示す
Good total reflection means that a luminance distribution performance comparable to that of Example 1 can be obtained. In addition, "good printability" means that stripes of the external light absorbing layer with inconspicuous unevenness are formed.

(発明の効果) 本発明の光透過をスクリーンは、簡易な方法で形成しう
る外光吸収量をもち、しかも該外光吸収層は、レンズ透
過光を効率よ(全反射させる機能をもっている。従って
、本発明によりコントラストが良好で視野角の広いスク
リーンを簡易な方法で作製する事が可能になった。
(Effects of the Invention) The light transmission screen of the present invention has an amount of external light absorption that can be formed by a simple method, and the external light absorption layer has a function of efficiently (total reflection) the light transmitted through the lens. Therefore, according to the present invention, it has become possible to produce a screen with good contrast and a wide viewing angle by a simple method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明スクリーンの使用例を示す斜視図である
。工は光源、2はスクリーン投影側面、3はスクリーン
観察側面、4は観察者を示す。 第2図は本発明に用いられるレンチキュラーレンズ単位
と全反射面により形成された溝部に1球状粒子と吸光性
樹脂の混合物を充填したものの一例を示す図である。5
は球状粒子、6は吸光性樹脂、7は全反射面、8はレン
ズ単位、11は溝を示す。 83図はレンチキュラーレンズ全反射面と球状粒子及び
吸光性樹脂混合物との界面の状態を示す図である。7は
全反射面、9は空気層、10はレンチキヱラーレンズ部
を示す。 第4図はレンチキュラーレンズ単位の一例を示すもので
ある。第5図は輝度分布の測定結果を示すものである。 第6図はスクリーンコントラスト測定のための白黒パタ
ーンを示すものである。 特許出麩 旭化成工業株式会社 嬉 図 第2図 第4 図 第5図 a野角 eg 第3図 第6 図
FIG. 1 is a perspective view showing an example of use of the screen of the present invention. 5 is a light source, 2 is a screen projection side, 3 is a screen observation side, and 4 is an observer. FIG. 2 is a diagram showing an example of a groove formed by a lenticular lens unit and a total reflection surface used in the present invention, in which a mixture of spherical particles and a light-absorbing resin is filled. 5
is a spherical particle, 6 is a light-absorbing resin, 7 is a total reflection surface, 8 is a lens unit, and 11 is a groove. FIG. 83 is a diagram showing the state of the interface between the total reflection surface of the lenticular lens, the spherical particles, and the light-absorbing resin mixture. 7 is a total reflection surface, 9 is an air layer, and 10 is a lenticular lens portion. FIG. 4 shows an example of a lenticular lens unit. FIG. 5 shows the measurement results of the luminance distribution. FIG. 6 shows a black and white pattern for measuring screen contrast. Patented wheat Asahi Kasei Kogyo Co., Ltd. Figure 2 Figure 4 Figure 5 aNokakueg Figure 3 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)縦方向に延びるレンチキュラーレンズが観察側に
形成されている光透過型スクリーンにおいて、レンチキ
ュラーレンズを構成するレンズ単位には投影光を全反射
させる全反射面が設けられ、隣り合う全反射面により溝
が形成され、溝には密度0.9〜1.2g/cm^3、
平均粒径1〜30μの球状粒子と吸光性樹脂との均一な
混合物が充填されている光透過型スクリーン
(1) In a light transmission screen in which a lenticular lens extending in the vertical direction is formed on the viewing side, each lens unit constituting the lenticular lens is provided with a total reflection surface that totally reflects the projected light, and adjacent total reflection surfaces A groove is formed, and the groove has a density of 0.9 to 1.2 g/cm^3,
A light-transmitting screen filled with a uniform mixture of spherical particles with an average particle size of 1 to 30μ and a light-absorbing resin.
(2)投影側にフレネルレンズが形成されている請求項
第1項に記載の光透過型スクリーン
(2) The light transmission type screen according to claim 1, wherein a Fresnel lens is formed on the projection side.
JP63223464A 1988-09-08 1988-09-08 Light transmission type screen Pending JPH0273242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223464A JPH0273242A (en) 1988-09-08 1988-09-08 Light transmission type screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223464A JPH0273242A (en) 1988-09-08 1988-09-08 Light transmission type screen

Publications (1)

Publication Number Publication Date
JPH0273242A true JPH0273242A (en) 1990-03-13

Family

ID=16798560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223464A Pending JPH0273242A (en) 1988-09-08 1988-09-08 Light transmission type screen

Country Status (1)

Country Link
JP (1) JPH0273242A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050710A1 (en) * 1998-03-30 1999-10-07 Minnesota Mining And Manufacturing Company Light dispersing film and method of manufacture
JP2012155343A (en) * 2012-04-23 2012-08-16 Dainippon Printing Co Ltd Two-dimensional viewing angle expansion member and display device
JP2015031798A (en) * 2013-08-01 2015-02-16 大日本印刷株式会社 Screen
JP2015031799A (en) * 2013-08-01 2015-02-16 大日本印刷株式会社 Screen
JP2015031797A (en) * 2013-08-01 2015-02-16 大日本印刷株式会社 Screen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108232A (en) * 1985-11-06 1987-05-19 Mitsubishi Rayon Co Ltd Transmission type screen and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108232A (en) * 1985-11-06 1987-05-19 Mitsubishi Rayon Co Ltd Transmission type screen and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050710A1 (en) * 1998-03-30 1999-10-07 Minnesota Mining And Manufacturing Company Light dispersing film and method of manufacture
US6344263B1 (en) 1998-03-30 2002-02-05 3M Innovative Properties Company Light dispersing film and method of manufacture
US6692647B2 (en) 1998-03-30 2004-02-17 3M Innovative Properties Company Light dispersing film and method of manufacture
JP2012155343A (en) * 2012-04-23 2012-08-16 Dainippon Printing Co Ltd Two-dimensional viewing angle expansion member and display device
JP2015031798A (en) * 2013-08-01 2015-02-16 大日本印刷株式会社 Screen
JP2015031799A (en) * 2013-08-01 2015-02-16 大日本印刷株式会社 Screen
JP2015031797A (en) * 2013-08-01 2015-02-16 大日本印刷株式会社 Screen

Similar Documents

Publication Publication Date Title
CN101341427B (en) Anti-dazzling optical laminate
JP5446252B2 (en) Anti-glare film, anti-glare polarizer and display device
CN102073082B (en) Antidazzle optical laminate
JP4155338B1 (en) Method for producing antiglare film
TW200305597A (en) Optical diffusion layer, method for preparing same, polarizing plate and liquid crystal device
JPH0273242A (en) Light transmission type screen
JP2667878B2 (en) Light diffusing plastic
JP2002365731A (en) Front surface plate for transmission type projection screen and lenticular lens
JP2000039506A (en) Light diffusion sheet
JPH02212880A (en) Transmission type display device
JP2006084927A (en) Light diffusing agent and its manufacturing method
JP2667876B2 (en) Light diffusing plastic
JP3265755B2 (en) Diffusion plate and method of manufacturing the same
JP2005165252A (en) Optical functionality diffusion board, reflection screen and its manufacturing method
US4184745A (en) Translucent screen
JPH02213825A (en) High-resolution transmission type screen
JPH05249564A (en) Transmission type screen
JPS6380241A (en) Transmission type screen
JP3212085B2 (en) Manufacturing method of lenticular lens sheet
JPH1067829A (en) Microparticle suitable for light-diffusing plastic
JPH01207735A (en) Transmission screen
JPS62286030A (en) Transmissive screen
JPS6231741B2 (en)
JPH04143743A (en) Transmission type screen
JPH04134440A (en) Lenticular lens sheet