JPS6380241A - Transmission type screen - Google Patents

Transmission type screen

Info

Publication number
JPS6380241A
JPS6380241A JP61225014A JP22501486A JPS6380241A JP S6380241 A JPS6380241 A JP S6380241A JP 61225014 A JP61225014 A JP 61225014A JP 22501486 A JP22501486 A JP 22501486A JP S6380241 A JPS6380241 A JP S6380241A
Authority
JP
Japan
Prior art keywords
total reflection
layer
refractive index
screen
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61225014A
Other languages
Japanese (ja)
Other versions
JPH0455490B2 (en
Inventor
Mizuo Okada
岡田 瑞夫
Masao Inoue
井上 雅勇
Takashi Imaura
尊 今浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61225014A priority Critical patent/JPS6380241A/en
Publication of JPS6380241A publication Critical patent/JPS6380241A/en
Publication of JPH0455490B2 publication Critical patent/JPH0455490B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Overhead Projectors And Projection Screens (AREA)

Abstract

PURPOSE:To raise the total reflection effect, and to obtain a transmission type screen having a painting film which scarcely causes optically a defect, by using a transmission type screen in which many lenticular lenses have been formed on the surface of an observation side. CONSTITUTION:Linear total reflection surfaces 5 are formed on both sides of a lens unit for constituting a lenticular lens 2, two total reflection surfaces 5 form a trough part 6, a crest part 7 consisting of three curved surfaces is provided between the total reflection surfaces 5, and a light beam which has been brought to a total reflection once by the total reflection surface 5, and a light beam which has traveled straight to the crest part 7 are diffused and emitted, respectively. In the trough part 6, a low refractive index layer 10 formed by mixing fine particles 9 into a substance 8 whose refractive index is lower than a refractive index of a screen base material 1 is formed closely as the first layer, and also, an arbitrary light absorbing substance 11 having an excellent painting characteristic is buried as the second layer in the trough part 6, and an external light absorbing layer 13 is formed. The fine particles 9 in the first layer 10 fix the low refractive index substance uniformly extending over almost the whole surface of the total reflection surface 5, slimness is prevented, the total reflection effect is raised, and a transmission type having a painting film which scarcely causes optically a defect is obtained.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、観察側の面に多数のレンチキュラーレンズが
形成されており、そのレンチキュラーレンズを構成する
レンズ単位の一部には観察側方向へ光を拡散させるため
の全反射面を備えた透過型スクリーンに関し、詳しくは
前記全反射面に第1層として低屈折率物質層、第2居と
して外光吸収層が形成された透過型スクリーンに関する
ものである。 [発明の背景] 透過型スクリーンはビデオプロジェクタ−や、マイクロ
フィルムリーダーあるいはコンピューター用ディスプレ
イ等の投影面として用いられているが、その視野角度を
大きくする等、その光透過特性について各種の検討がな
されている。そしてこのような目的を達成するための手
段の1つとして本出願人は特開昭57−185830号
公報において、レンチキュラーレンズを構成するレンズ
単位の一部に光を観察側方向へ拡散させるための全反射
面を備え、かつその全反射面上に屈折率が媒体の屈折率
よりも小さい物質からなる第1層を形成し、さらにこの
上に第2層である外光吸収層を形成した背面投影スクリ
ーンを開示している。 第5図はそのようなスクリーンを示した拡大断面図であ
り、30はレンチキュラーレンズ、32は該レンチキュ
ラーレンズ30の谷部に形成された全反射面、33は低
屈折率物質からなる全反射層、34は外光吸収層である
。このスクリーンの場合、投影側から入射した光35は
全反射面32で反射されるので、明るいスクリーンとな
る。 このように、特開昭57−1f15830号公報で提案
された発明によれば、光の出射しない全反射面を外光吸
収層として利用でき、しかも低屈折率層が全反射面と外
光吸収層の間に形成されているので全反射面の全反射′
l&俺を妨げることがなく、良好な光透過特性を有する
背面投影スクリーンを提供できる利点がある。 [発明が解決しようとする問題点] しかしながら、前記スクリーンを製造する場合において
、上記低屈折率層、外光吸収層をスクリーンの谷間に塗
る場合、溶剤の蒸発により塗料がやせてくる、いわゆる
「やせjの現象が起こる問題点がある。 このrやせ1の現象は、主に低屈折率層を形成する塗布
液の固形分量が少ないことに起因しているとみられるが
、これによって塗膜が薄くなりすぎて充分に機f莞しな
かったり、はなはだしくは部分的に亀裂が生じたりする
懸念がある。理想的には第6図に示すように、レンズ単
位20の谷部22を形成する全反射面21に、乾燥後の
塗膜が均一になるように形成されるのが望ましい。 この問題を解決するために単にハイソリッドタイプの塗
料を用いることは高粘度のために谷部22への充填が困
難で、均一な塗装が得にくくなるので現実的ではない、
さらに、上記塗膜欠陥を防ぐために、塗装液を厚く何回
も塗るということは、製造コスト上において問題があり
、また、塗膜の厚さの均一性にも欠けるきらいがあるま
た、透過型スクリーンのような光を透過し、それを肉眼
で見るという光学製品は、わずかな塗装膜の不均一も透
過光の散乱光等の欠陥となるので、揮発成分の蒸発のよ
うに周囲条件の影響を受けやすい処理を塗装膜全体にわ
たって均一に行わしめる方法が望まれていた。この辺の
事情は第2層の外光吸収層においても同様であった。 [問題点を解決するための手段] 本発明の目的は、上記従来技術の問題点に鑑み、第1層
および第2層の働きを阻害せず、かつやせの現象が起こ
りにくい良好な光学特性を有する透過型スクリーンを提
供することにある。 以上のような目的は、観察側の面と入射側の面を有し、
観察側の面には多数のレンチキュラーレンズが形成され
ている透過型スクリーンであって、該レンチキュラーレ
ンズを構成するレンズ単位の一部には観察側方向へ光を
拡散させるための全反射面を有しており、しかも該全反
射面には基材の屈折率よりも低い屈折率の物質中に微粒
子が混入された第1層と、外光吸収層である第2層が形
成されていることを特徴とする透過型スクリーンにより
達成される。 [作用] 上記のような透過型スクリーンによれば、第1層中の微
粒子が前記全反射面の略全面にわたって均一に低屈折率
物質を固定することを可能にし、全反射効果を高め、光
学的に欠陥の少ない塗装膜を有する透過型スクリーンを
得ることができる。さらに、第2層にも外光吸収性を持
つ微粒子を混入させることにより、第2層の塗膜を均一
化し、外光吸収性を高めることができる。 [実施例] 以下、本発明の透過型スクリーンについて具体的な実施
例に基づき詳細に説明する。 第3図は本発明の透過型スクリーンの一実施例を示す概
略斜視図である。 同図において、lがアクリル樹脂、ポリカーボネート樹
脂、塩化ビニル樹脂、あるいはスチレン樹脂等の合成樹
脂からなるスクリーン基材、2が該スクリーン基材1の
観察側の面(B)に形成されたレンチキュラーレンズで
ある。(A)は投影面側の面、13は外光吸収層、4は
投影側の面(A)に設けられたフレネルレンズである。 第1図は、第3図に示したスクリーンの水平方向拡大断
面図を示した図である。 同図において、レンチキュラーレンズ2を構成するレン
ズ単位の両側には直線状の全反射面5が形成され、2つ
の全反射面5が谷部6を形成している。また、2つの全
反射面5の間には3つの曲面からなる山部7が設けられ
ており、−旦全反射面5で全反射した光および山部7に
直進した光をそれぞれ拡散して出射するようになってい
る。 この第1実施例は例えば、上記のようなレンチキュラー
レンズ2の谷部6に、スクリーン基材1の屈折率よりも
低い屈折率の物質B中に微粒子9が混入された低屈折率
層lOを第1層として密着形成し、さらに第2層として
屈折率の大小を問わない任意の塗装特性の優れた光吸収
物質11を谷部6に埋め、外光吸収層13を形成したも
のである。 ここで、前記低屈折率層10に微粒子9を
添加するのは塗料中の固形分量を上げるためであり、微
粒子9により前述の第6図のようなほぼ理想的な塗装が
可能になる。低屈折率物質層lOに用いる樹脂成分は本
出願人が特願昭59−71520号、特願昭59−95
871号で開示したよう−。 に、フッぶ系ポリマー等を使用するの一般的である。微
粒子9としては無機物、有機物(ポリマー)の両方が採
用でき、無機物では、粒径 が1−100JL位で樹脂
成分と同じ比重を持つものが塗装上好ましく、例えば、
An (O)I)3、CaCO3,AJL203.雲母
、SiO2、Ti 02 、Ba5O4,ガラスピーズ
などの一般的な充填剤、顔料を使用することができる。 有機ポリマーとしてはポリエチレンなどがある。 また、微粒子9を添加した低屈折率物質層lOを全反射
面5に塗布するときに微粒子9の比重、大きさ等を塗布
液の粘性に応じて調整することにより、全反射面5に微
粒子9が直接接触しないようにすることも可能である。 第2[14は本発明に係るスクリーンの第2実施例の水
平方向拡大断面図を示した図である。 この実施例の場合は第1図の低屈折率層10と同様に外
光吸収層13にも微粒子12を添加したもので、添加す
る微粒子の色は特に問わないが、黒色顔料や黒く染色し
た微粒子のほうが光吸収性を低下させないので好ましい
、黒色染料には一般にカーボンブラックなどが顔料とし
て用いられているが、黒く着色したガラスピーズや黒く
表面染色したポリマー系ビーズを用いると、粒径の大き
いものが得やすく固形分量の増大が顕著となり、また塗
布液の凝集を防ぐことができ便利である。 次に本発明の透過型スクリーンのさらに具体的な実施例
のいくつかを説明する。 (実施例1):低屈折率層への微粒子添加の効果■スク
リーン基材の作成 まず、第4図に示すようなレンズ単位よりなるレンチキ
ュラーレンズ金型を作製し、焦点距離1m、  ピッチ
0.5mmのフレネルレンズ金型と組合せて、平均粒径
4JLの5i02.1.7%を含んだ板厚3mmのメタ
クリル樹脂基板(サイズ300X300mm)を180
℃、30分加熱、40kg/crn’で加圧成型して、
はぼ第1図に示すようなスクリーン(基材のみ)を得る
。 ■マスキング そして、該スクリーン基材にポバール水溶液を前記レン
チキュラーレンズの頂上部にスクリーン印刷またはロー
ルコートによりP!!布し、マスキングを行う。 ■光反射層(低屈折率1f!りの形成 フッ化ヒニリデン/4フッ化エチレン(80:20)共
重合20%、メチルイソブチルケトン(MIBK)80
%の溶液に下記の例1〜例3の顔料をそれぞれ添加し、
十分攪拌して本発明に係る微粒子を含んだ3種類の低屈
折率溶液を得た後、該溶液をそれぞれレンチキュラーの
谷部に塗布し光反射層を形成した。 例1:平均粒径4ILの酸化ケイ素10部例2:平均粒
径3.5鉢の水酸化アルミニウム8部 例3:平均粒径30μのポリオレフィンパウダー10部 対比例:顔料の添加なし なお、塗装液を乾燥させた後の反射層の様子は例1〜例
3はいずれも第6図に示したほぼ理想的な塗装膜になっ
ているのに対し、対比例のスクリーンはrやせ1が激し
かった。 ■外光吸収層の形成 武蔵塗料KK製rプラエース716AMJを前記光反射
層の上に塗布し、外光吸収層を形成した。 ■各スクリーンの比較 マスキングを除去して外観を観察した。低屈折率層への
微粒子添加した例1〜例3のスクリーンは対比例に比べ
外観が均一・になった、断面を観察したところ、対比例
では低屈折率層の厚さが不均一であるのに対し、例1〜
例3のスクリーンの場合は低屈折率層の厚さは均一にな
っていた。 (実施例2):外光吸収層への微粒子添加の効果■スク
リーン基材の作成:実施例1と同じ。 ■マスキング:実施例1と同じ。 ■光反射層(低屈折率層)の形成:実施例1において微
粒子は例2で形成した。 ■外光吸収層の形成 武蔵塗料KK製「プラエース716AMJに平均粒径3
0ILのポリエチレンパウダーを硫化銅により表面染色
したものを、染料に対し、10部添加し、前記反射層の
上に塗布し、外光吸収層を形成した。 ■スクリーンの観察 マスキングを除去して外観を観察すると、きめが細かく
、かつ黒味の強い塗装を持つスクリーンが得られた。 【発明の効果】 以上、説明した様に本発明の透過型スクリーンによれば
、第1層中の微粒子が前記全反射面の略全面にわたって
均一に低屈折率物質を固定することを可能にし、rやせ
」を防止することができる。また、低屈折率物質の層が
確実に形成されているため、全反射効果を高め、光学的
に欠陥の少ない塗装膜を有する透過型スクリーンを得る
ことができる。さらに、第2層にも外光吸収性を持つ微
粒子を混入させることにより、第2層の塗膜を均一化し
、外光吸収性を高めることもできる。
Detailed Description of the Invention [Industrial Application Field 1] The present invention is characterized in that a large number of lenticular lenses are formed on the viewing side surface, and some of the lens units constituting the lenticular lenses have a lens that extends toward the viewing side. The present invention relates to a transmission screen having a total reflection surface for diffusing light, and more particularly to a transmission screen in which a low refractive index material layer is formed as a first layer and an external light absorption layer is formed as a second layer on the total reflection surface. It is something. [Background of the Invention] Transmissive screens are used as projection surfaces for video projectors, microfilm readers, computer displays, etc., but various studies have been conducted on their light transmission characteristics, such as increasing their viewing angle. ing. As one of the means for achieving such an objective, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 57-185830 that a part of the lens unit constituting the lenticular lens has a structure for diffusing light toward the observation side. A back surface comprising a total reflection surface, on which a first layer made of a substance whose refractive index is smaller than the refractive index of the medium, and further formed with a second layer, an external light absorption layer, on the total reflection surface. A projection screen is disclosed. FIG. 5 is an enlarged sectional view showing such a screen, where 30 is a lenticular lens, 32 is a total reflection surface formed in the valley of the lenticular lens 30, and 33 is a total reflection layer made of a low refractive index material. , 34 are external light absorbing layers. In the case of this screen, the light 35 incident from the projection side is reflected by the total reflection surface 32, resulting in a bright screen. In this way, according to the invention proposed in JP-A-57-1F15830, a total reflection surface from which no light is emitted can be used as an external light absorption layer, and a low refractive index layer can be used as a total reflection surface and an external light absorption layer. Since it is formed between layers, the total reflection of the total reflection surface
It has the advantage of providing a rear projection screen with good light transmission properties without disturbing the light. [Problems to be Solved by the Invention] However, when manufacturing the screen, when applying the low refractive index layer and external light absorbing layer to the valleys of the screen, the paint thins due to evaporation of the solvent, so-called " There is a problem in which the phenomenon of thinning 1 occurs. This phenomenon of thinning 1 is thought to be mainly due to the small amount of solid content in the coating liquid that forms the low refractive index layer. There is a concern that it may become too thin and not be sufficiently flexible, or cracks may occur excessively or partially.Ideally, as shown in FIG. It is desirable to form a uniform coating film on the reflective surface 21 after drying.To solve this problem, simply using a high solid type coating will cause the coating to reach the valleys 22 due to its high viscosity. It is difficult to fill and it is difficult to obtain a uniform coating, so it is not practical.
Furthermore, in order to prevent the above-mentioned coating film defects, applying a thick coating solution many times is problematic in terms of manufacturing costs, and the coating film tends to lack uniformity in thickness. For optical products such as screens that transmit light and view it with the naked eye, slight unevenness in the coating film can cause defects such as scattered light in the transmitted light. There was a need for a method that would allow sensitive treatments to be carried out uniformly over the entire coating film. This situation was also the same for the second external light absorbing layer. [Means for Solving the Problems] In view of the above-mentioned problems of the prior art, an object of the present invention is to provide good optical properties that do not inhibit the functions of the first layer and the second layer and are less prone to thinning phenomenon. An object of the present invention is to provide a transmission screen having the following features. The above purpose has an observation side surface and an incident side surface,
It is a transmission type screen in which a large number of lenticular lenses are formed on the observation side surface, and some of the lens units constituting the lenticular lenses have a total reflection surface for diffusing light toward the observation side. Moreover, the total reflection surface is formed with a first layer in which fine particles are mixed in a substance with a refractive index lower than that of the base material, and a second layer which is an external light absorption layer. This is achieved by a transmissive screen featuring: [Function] According to the above-mentioned transmission screen, the fine particles in the first layer enable the low refractive index material to be fixed uniformly over substantially the entire surface of the total reflection surface, increasing the total reflection effect and improving optical performance. A transmission screen having a coating film with fewer defects can be obtained. Furthermore, by incorporating fine particles having external light absorbing properties into the second layer, the coating film of the second layer can be made uniform and the external light absorbing properties can be increased. [Examples] Hereinafter, the transmission screen of the present invention will be described in detail based on specific examples. FIG. 3 is a schematic perspective view showing an embodiment of the transmission screen of the present invention. In the figure, l is a screen base material made of synthetic resin such as acrylic resin, polycarbonate resin, vinyl chloride resin, or styrene resin, and 2 is a lenticular lens formed on the observation side surface (B) of the screen base material 1. It is. (A) is a surface on the projection side, 13 is an external light absorption layer, and 4 is a Fresnel lens provided on the projection side surface (A). FIG. 1 is an enlarged horizontal cross-sectional view of the screen shown in FIG. 3. In the figure, linear total reflection surfaces 5 are formed on both sides of the lens unit constituting the lenticular lens 2, and the two total reflection surfaces 5 form a valley 6. Furthermore, a crest 7 consisting of three curved surfaces is provided between the two total reflection surfaces 5, and diffuses the light that has been totally reflected by the total reflection surface 5 and the light that has gone straight to the ridge 7, respectively. It is designed to emit light. In this first embodiment, for example, a low refractive index layer 10 in which fine particles 9 are mixed in a substance B having a refractive index lower than that of the screen base material 1 is provided in the valley portion 6 of the lenticular lens 2 as described above. The external light absorbing layer 13 is formed by closely forming the first layer, and further by filling the valleys 6 with any light absorbing material 11 having excellent coating properties regardless of the magnitude of the refractive index as the second layer. Here, the reason why the fine particles 9 are added to the low refractive index layer 10 is to increase the solid content in the paint, and the fine particles 9 enable almost ideal coating as shown in FIG. 6 described above. The resin component used for the low refractive index material layer IO is disclosed in Japanese Patent Application No. 59-71520 and Japanese Patent Application No. 59-95.
As disclosed in No. 871. It is common to use fluorine-based polymers. Both inorganic substances and organic substances (polymers) can be used as the fine particles 9. Among inorganic substances, those having a particle size of about 1 to 100 JL and having the same specific gravity as the resin component are preferable for coating purposes.
An(O)I)3, CaCO3, AJL203. Common fillers and pigments such as mica, SiO2, Ti02, Ba5O4, and glass beads can be used. Examples of organic polymers include polyethylene. In addition, when applying the low refractive index material layer 10 added with fine particles 9 to the total reflection surface 5, by adjusting the specific gravity, size, etc. of the fine particles 9 according to the viscosity of the coating liquid, the fine particles can be coated on the total reflection surface 5. It is also possible to prevent 9 from coming into direct contact. 2nd [14] is a diagram showing an enlarged horizontal cross-sectional view of a second embodiment of the screen according to the present invention. In this example, fine particles 12 are added to the external light absorbing layer 13 in the same way as the low refractive index layer 10 in FIG. Fine particles are preferable because they do not reduce light absorption.Carbon black is generally used as a pigment for black dyes, but if black colored glass beads or black surface-dyed polymer beads are used, they have a large particle size. It is convenient because it is easy to obtain a product, the solid content increases significantly, and aggregation of the coating solution can be prevented. Next, some more specific embodiments of the transmission screen of the present invention will be described. (Example 1): Effect of adding fine particles to low refractive index layer ■ Creation of screen base material First, a lenticular lens mold consisting of lens units as shown in Fig. 4 was prepared, and the focal length was 1 m and the pitch was 0. In combination with a 5 mm Fresnel lens mold, a methacrylic resin substrate (size 300 x 300 mm) with a thickness of 3 mm containing 5i02.1.7% with an average particle size of 4 JL was
℃, heated for 30 minutes, pressure molded at 40 kg/crn',
A screen (base material only) as shown in FIG. 1 is obtained. ■Masking Then, apply POVAL aqueous solution to the top of the lenticular lens by screen printing or roll coating on the screen base material! ! cloth and perform masking. ■Light reflective layer (formation of low refractive index 1f!) Hynylidene fluoride/tetrafluoroethylene (80:20) copolymerization 20%, methyl isobutyl ketone (MIBK) 80%
% solution of the pigments of Examples 1 to 3 below, respectively,
After stirring sufficiently to obtain three types of low refractive index solutions containing fine particles according to the present invention, the solutions were applied to the valleys of the lenticules to form light reflecting layers. Example 1: 10 parts of silicon oxide with an average particle size of 4IL Example 2: 8 parts of aluminum hydroxide with an average particle size of 3.5 μl Example 3: 10 parts of polyolefin powder with an average particle size of 30μ Comparative example: No pigment added, coating The appearance of the reflective layer after drying the liquid is that Examples 1 to 3 all have almost ideal coating films as shown in Figure 6, whereas the screen of the comparative example has severe thinning. Ta. (2) Formation of an external light absorbing layer R-PLACE 716AMJ manufactured by Musashi Paints KK was coated on the light reflecting layer to form an external light absorbing layer. ■Comparison of each screen The masking was removed and the appearance was observed. The screens of Examples 1 to 3, in which fine particles were added to the low refractive index layer, had a more uniform appearance compared to the comparative example. When the cross section was observed, the thickness of the low refractive index layer was uneven in the comparative example. In contrast, example 1~
In the case of the screen of Example 3, the thickness of the low refractive index layer was uniform. (Example 2): Effect of adding fine particles to the external light absorption layer ■Preparation of screen base material: Same as Example 1. ■Masking: Same as Example 1. (2) Formation of light-reflecting layer (low refractive index layer): In Example 1, the fine particles were formed in Example 2. ■Formation of external light absorption layer Musashi Paints KK's "Plaace 716AMJ" has an average particle size of 3.
0IL polyethylene powder surface-dyed with copper sulfide was added to the dye in an amount of 10 parts, and was applied onto the reflective layer to form an external light absorbing layer. ■ Observation of the screen When the masking was removed and the appearance was observed, a screen with fine texture and a strong black coating was obtained. Effects of the Invention As described above, according to the transmission screen of the present invention, the fine particles in the first layer enable the low refractive index substance to be fixed uniformly over substantially the entire surface of the total reflection surface, It is possible to prevent ``lack of weight''. Furthermore, since the layer of the low refractive index material is reliably formed, it is possible to enhance the total reflection effect and obtain a transmission screen having a coating film with few optical defects. Furthermore, by incorporating fine particles having external light absorbing properties into the second layer as well, the coating film of the second layer can be made uniform and the external light absorbing properties can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の透過型スクリーンの第1実施例を示す
概略断面図、第2図は本発明の透過型スクリーンの第2
実施例を示す概略断面図、第3図は本発明の透過型スク
リーンの概略斜視図である。 第4図はスクリーンの金型を示す図、第5図は本出願人
が提案したスクリーンを示す概略断面図、第6図は理想
的な低屈折率膜の形成状態を示す図である。 2:レンチキュラーレンズ 7:山部 6:谷部 5:全反射面 8:低屈折率物質 9:微粒子 lO:低屈折率層 11:光吸収物質 12:微粒子 13:外光吸収層 第1図 第2図
FIG. 1 is a schematic sectional view showing a first embodiment of the transmission screen of the present invention, and FIG. 2 is a schematic sectional view showing a second embodiment of the transmission screen of the invention.
A schematic sectional view showing an embodiment, and FIG. 3 is a schematic perspective view of a transmission screen of the present invention. FIG. 4 is a diagram showing a mold for the screen, FIG. 5 is a schematic sectional view showing a screen proposed by the applicant, and FIG. 6 is a diagram showing an ideal state of forming a low refractive index film. 2: Lenticular lens 7: Peaks 6: Valleys 5: Total reflection surface 8: Low refractive index substance 9: Fine particles 1O: Low refractive index layer 11: Light absorbing substance 12: Fine particles 13: External light absorbing layer FIG. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)観察側の面と入射側の面を有し、観察側の面には
多数のレンチキュラーレンズが形成されている透過型ス
クリーンであって、 該レンチキュラーレンズを構成するレンズ単位の一部に
は観察側方向へ光を拡散させるための全反射面を有して
おり、しかも該全反射面には基材の屈折率よりも低い屈
折率の物質中に微粒子が混入された第1層と、外光吸収
層である第2層が形成されていることを特徴とする透過
型スクリーン。
(1) A transmission screen that has an observation side surface and an incident side surface, and has a large number of lenticular lenses formed on the observation side surface, and a part of the lens unit constituting the lenticular lens. has a total reflection surface for diffusing light toward the observation side, and the total reflection surface includes a first layer in which fine particles are mixed in a substance with a refractive index lower than that of the base material. A transmission screen characterized in that a second layer which is an external light absorption layer is formed.
(2)前記第2層が、微粒子が混入されている外光吸収
層であることを特徴とする特許請求の範囲第1項記載の
透過型スクリーン。
(2) The transmission screen according to claim 1, wherein the second layer is an external light absorbing layer containing fine particles.
JP61225014A 1986-09-25 1986-09-25 Transmission type screen Granted JPS6380241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61225014A JPS6380241A (en) 1986-09-25 1986-09-25 Transmission type screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225014A JPS6380241A (en) 1986-09-25 1986-09-25 Transmission type screen

Publications (2)

Publication Number Publication Date
JPS6380241A true JPS6380241A (en) 1988-04-11
JPH0455490B2 JPH0455490B2 (en) 1992-09-03

Family

ID=16822718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225014A Granted JPS6380241A (en) 1986-09-25 1986-09-25 Transmission type screen

Country Status (1)

Country Link
JP (1) JPS6380241A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220542A (en) * 1990-01-26 1991-09-27 Victor Co Of Japan Ltd Transmission type screen
EP0819975A1 (en) * 1991-11-15 1998-01-21 Matsushita Electric Industrial Co., Ltd. Transmission type screen and method of manufacturing thereof
WO2001004701A1 (en) * 1999-07-07 2001-01-18 3M Innovative Properties Company Rear projection screen using internal reflection and its production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163930A (en) * 1982-03-24 1983-09-28 Mitsubishi Rayon Co Ltd Manufacture of back projection screen
JPS60159734A (en) * 1983-12-30 1985-08-21 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Light transmitting plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163930A (en) * 1982-03-24 1983-09-28 Mitsubishi Rayon Co Ltd Manufacture of back projection screen
JPS60159734A (en) * 1983-12-30 1985-08-21 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Light transmitting plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220542A (en) * 1990-01-26 1991-09-27 Victor Co Of Japan Ltd Transmission type screen
EP0819975A1 (en) * 1991-11-15 1998-01-21 Matsushita Electric Industrial Co., Ltd. Transmission type screen and method of manufacturing thereof
EP0819974A1 (en) * 1991-11-15 1998-01-21 Matsushita Electric Industrial Co., Ltd. Transmission type screen and method of manufacturing thereof
WO2001004701A1 (en) * 1999-07-07 2001-01-18 3M Innovative Properties Company Rear projection screen using internal reflection and its production
US6417966B1 (en) 1999-07-07 2002-07-09 3M Innovative Properties Company Rear projection screen using internal reflection

Also Published As

Publication number Publication date
JPH0455490B2 (en) 1992-09-03

Similar Documents

Publication Publication Date Title
JP6345732B2 (en) Light control film
CN101341427B (en) Anti-dazzling optical laminate
CN101268389B (en) Antistatic anti-glare film
TWI449964B (en) An optical film and a method for manufacturing the same, and an anti-glare polarizing element and a display device using the same
CN103109212B (en) The polarization plates of light diffusion element, band light diffusion element and use its liquid crystal indicator
JP2000352608A (en) Light-diffusing sheet
JP2657536B2 (en) Light diffusion sheet
CN103119479A (en) Light-diffusing element and polarizing plate provided therewith
WO2010047298A1 (en) Optical sheet
TWI554777B (en) Anti-glare sheet for image display device and method for producing it, and method for improving vivid complexion and blackness and image crispness in image display device suitable for both dynamic images and still images, using the same
KR101530452B1 (en) Methods for manufacturing light-diffusing element and polarizing plate with light-diffusing element, and light-diffusing element and polarizing plate with light-diffusing element obtained by same methods
TWI468739B (en) Optical sheet
CN114384623A (en) Polaroid, display panel and display device
CN101563630A (en) Lens sheet, surface light source device and liquid crystal display device
KR20150086564A (en) Optical diffusion element
JPS6380241A (en) Transmission type screen
JP2891705B2 (en) Lenticular lens sheet for transmission screen and method of manufacturing the same
JP2006293193A (en) Support plate for film lenticular lens
KR20150143469A (en) Light-diffusing-element manufacturing method and light-diffusing element
US20080085406A1 (en) Light Diffusing Optical Member
JPS62286030A (en) Transmissive screen
JP3610826B2 (en) Transmission screen
JPS6167844A (en) Transmission type screen
JPS60214347A (en) Rear projecting screen
JPS60239719A (en) Back projecting screen

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term