JPH0273026A - Production of panaxacols - Google Patents

Production of panaxacols

Info

Publication number
JPH0273026A
JPH0273026A JP63225048A JP22504888A JPH0273026A JP H0273026 A JPH0273026 A JP H0273026A JP 63225048 A JP63225048 A JP 63225048A JP 22504888 A JP22504888 A JP 22504888A JP H0273026 A JPH0273026 A JP H0273026A
Authority
JP
Japan
Prior art keywords
compound
group
formula
ethyl acetate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63225048A
Other languages
Japanese (ja)
Other versions
JP2720176B2 (en
Inventor
Yasuo Fujimoto
康雄 藤本
Yoshitsuru Sato
佐藤 美鶴
Naoki Takeuchi
直樹 竹内
Keiichi Ushiyama
敬一 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Nitto Denko Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, RIKEN Institute of Physical and Chemical Research filed Critical Nitto Denko Corp
Priority to JP63225048A priority Critical patent/JP2720176B2/en
Publication of JPH0273026A publication Critical patent/JPH0273026A/en
Application granted granted Critical
Publication of JP2720176B2 publication Critical patent/JP2720176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the subject substance useful as a low-toxic carcinostatic agent in high stereoselectivity and yield by reacting an epoxy alcohol derivative with a diyne compound in the presence of a base and treating the reaction product with an acid. CONSTITUTION:The objective compound of formula IV can be produced by reacting a compound of formula I (R<1> is tetrahydropyranyl or trialkylsilyl) with a compound of formula II (R<2> is same as R<1>; R<3> is ethyl, vinyl, 2- chloroethyl or 2-chloro-1-hydroxyethyl) in a solvent (e.g. THF) in the presence of a base (e.g. butyllithium) at -20-0 deg.C for 3hr and deprotecting the resultant compound of formula III with an acid (e.g. hydrochloric acid or p-toluenesulfonic acid) at 0-20 deg.C for 0.5-1hr. the compouhd of formula IV can be extracted from the rhizome or callus of Panax ginseng, however, the content is small.

Description

【発明の詳細な説明】 (技術分野) 本発明は、オタネニンジン(Panax、 ginse
ngC,A、?Jeyer)の根又はカルスより抽出さ
れるジイン化合物ジヒドロパナキサコール(dihyd
ropanaxacol)及びその類縁化合物の新規合
成方法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to the use of Panax ginseng (Panax, ginseng).
ngC,A,? dihydropanaxacol (dihydropanaxacol), a diyne compound extracted from the roots or callus of P.
The present invention relates to a new method for synthesizing ropanaxacol and its analogues.

(従来の技術) 従来、癌化学療法剤として、アルキル化剤(ナイトロジ
ェンマスタード頚、エチレンイミン類、スルホン酸エス
テル類)、代謝拮抗物質(葉酸拮抗剤、プリン拮抗剤、
ピリミジン拮抗剤)、植物性核分裂前(コルセミド、ビ
ンブラスチン等)、抗生物質(ザルコマイシン、カルチ
ノフィリン、マイトマイシン等)、ホルモン類(副腎ス
テロイド、男性ホルモン、女性ホルモン)及びポルフィ
リン錯塩(マーフィリン、C0PF)等が用いられてい
る。
(Prior art) Conventionally, cancer chemotherapy agents include alkylating agents (nitrogen mustard, ethyleneimines, sulfonic acid esters), antimetabolites (folate antagonists, purine antagonists,
pyrimidine antagonists), plant pre-fission (colcemid, vinblastine, etc.), antibiotics (sarcomycin, carcinophilin, mitomycin, etc.), hormones (adrenal steroids, male hormones, female hormones), and porphyrin complex salts (marphyrin, C0PF) etc. are used.

しかしながら、その殆んどは、細胞毒型の物質であり、
重大な副作用を呈するため、低毒性で優れた制癌活性を
有する制癌剤の開発が望まれている。
However, most of them are cytotoxic substances,
Because they exhibit serious side effects, there is a desire to develop anticancer agents with low toxicity and excellent anticancer activity.

本発明者らは、上記趣旨に鑑み、低毒性で制癌活性を有
する物質を劾・植物、微生物界の広い生物範囲から探索
を行った結果、オタネニンジンの根又はそのカルスより
抽出された新規なジイン化合物が、優れた制癌活性を有
し、且つ毒性の極めて少いことを見出し、該発明につき
特許出願を行った(特願昭61−50067号)。
In view of the above-mentioned purpose, the present inventors searched for a substance with low toxicity and anticancer activity from a wide range of organisms in the ginseng, plant, and microbial worlds. They discovered that diyne compounds have excellent anticancer activity and extremely low toxicity, and filed a patent application for this invention (Japanese Patent Application No. 50067/1982).

しかし、カルス中のポリアセチレン誘導体の含量が低い
ために、in  vivoでの活性試験を行うことがで
きないという問題があった。
However, there was a problem in that in vivo activity tests could not be conducted due to the low content of polyacetylene derivatives in callus.

(発明が解決しようとする課H) 従って本発明は、化学合成により大量のポリアセチレン
誘導体の供給を可能にすることを目的とする。
(Problem H to be Solved by the Invention) Therefore, an object of the present invention is to make it possible to supply a large amount of polyacetylene derivatives by chemical synthesis.

(課題を解決するための手段) 本発明者は、酒石酒エステルを合成原料として選択する
ことにより、目的とするジヒドロバナキサコール及びそ
の類縁化合物を立体選択的に、かつ収率よく合成できる
ことを見い出し、上記課題を解決することができた。
(Means for Solving the Problem) The present inventors have discovered that by selecting tartaric liquor ester as a synthetic raw material, the target dihydrovanaxacol and its analogues can be synthesized stereoselectively and with high yield. We found this and were able to solve the above problem.

すなわち、本発明は 化合物(A> 1t (A) (式中R1は、テトラヒドロピラニル基、トリアルキル
シリル基のいずれかを示す。) と化合物(B) R3−CH−C=C−C=CH R2 (B) (式中R2は、テトラヒドロピラニル基、トリアルキル
シリル基のいずれかを示し、R3はエチル基、ビニル基
、2−クロロエチル基、2−りクロー1−ハイドロキシ
エチル基のいずれかを示す。) を塩基の存在下に反応させて、化合物(C)を製造する
方法を提供することを目的とする。
That is, the present invention provides a compound (A> 1t (A) (in the formula, R1 represents either a tetrahydropyranyl group or a trialkylsilyl group) and a compound (B) R3-CH-C=C-C= CH R2 (B) (In the formula, R2 represents either a tetrahydropyranyl group or a trialkylsilyl group, and R3 represents any of an ethyl group, a vinyl group, a 2-chloroethyl group, and a 2-chloro-1-hydroxyethyl group. An object of the present invention is to provide a method for producing a compound (C) by reacting the compound (C) in the presence of a base.

本発明の方法で合成される代表的な化合物であるジヒド
ロバナキサコールは、特開昭62−207234号公報
中、第223頁の実施例に記載される化合物であり、以
下の式 (式中、R1及びR2は、それぞれテトラヒドロピラニ
ル基、トリアルキルシリル基のいずれかを示し、R’は
エチル基、ビニル基、2−クロロエチル基、2−クロロ
−1−ハイドロキシエチル基のいずれかを示す。) を製造した後、酸で処理することにより化合物(1)で
示される化合物1)(4,6−へブタデカジイン−3,
9,10−トリオール)であり、以下の物理化学的性質
を有する。
Dihydrobanaxacol, which is a typical compound synthesized by the method of the present invention, is a compound described in Examples on page 223 of JP-A-62-207234, and has the following formula (in the formula , R1 and R2 each represent either a tetrahydropyranyl group or a trialkylsilyl group, and R' represents either an ethyl group, a vinyl group, a 2-chloroethyl group, or a 2-chloro-1-hydroxyethyl group. ) is produced, and then treated with acid to produce compound 1) (4,6-hebutadecadiine-3,
9,10-triol) and has the following physicochemical properties.

(a)物質の形態:無色油状物質 254sh (364) 、 266sh (358)
 。
(a) Form of substance: colorless oily substance 254sh (364), 266sh (358)
.

282sh (238) CHCβ。282sh (238) CHCβ.

(C) IRL’max   Cm−’: 3560(
w)、 3350(w)、 2910(s)。
(C) IRL'max Cm-': 3560 (
w), 3350(w), 2910(s).

2850 (01) 、 2220 (w) 、 14
50 (m) 。
2850 (01), 2220 (w), 14
50 (m).

1370(w) (d) MS m/e : 280(!J”)(e) 
’ H−NMR(CDCI! 3. 400MHz、δ
) :0.88(3)l、t、J=7Hz)、  1.
02(3H,t、J=7Hz)1、30 (br) 、
       1.50 (LH,br)1.74(2
H,br)、  2.57(IH,dd、J=6.15
Hz)2.59(3H,dd、J=6.15Hz)、 
 3.59(1)1.m)。
1370(w) (d) MS m/e: 280(!J”)(e)
' H-NMR (CDCI! 3. 400MHz, δ
): 0.88(3) l, t, J=7Hz), 1.
02 (3H, t, J=7Hz) 1, 30 (br),
1.50 (LH, br) 1.74 (2
H, br), 2.57 (IH, dd, J=6.15
Hz) 2.59 (3H, dd, J=6.15Hz),
3.59(1)1. m).

3、65 (IH,m) 、     4.37 (1
)1. t、 J=6)1z)本発明はかかる特徴的な
ジイン構造を有するジヒドロパナキサコール及びその類
縁化合物を、2つのコンポネートより合成することを特
徴とする。
3,65 (IH,m), 4.37 (1
)1. t, J=6)1z) The present invention is characterized in that dihydropanaxacol and its analogues having such a characteristic diyne structure are synthesized from two components.

すなわち、 例えばジヒドロパナキサコール(I)において説明すれ
ば、 れる0部のコンポーネントより合成することを特徴とす
る。
That is, for example, dihydropanaxacol (I) is characterized in that it is synthesized from 0 parts of the following components.

ジヒドロパナキサコールの合成法を例にとり、L−酒石
酸ジエチルエステルを原料とした本発明の合成方法の好
ましい1態様を、以下のスキームに示す。
Taking the synthesis method of dihydropanaxacol as an example, a preferred embodiment of the synthesis method of the present invention using L-tartrate diethyl ester as a raw material is shown in the scheme below.

■プロパツール部と■ジイン部より得られる0部、及び
■グリコール部と■ヘキシル部より得らCH3CH,C
HO スキーム2 HC=C−[”ミCH スキーム3 スキーム1 (つづき) ■ 以上のスキームに示される各反応につき以下に詳細に説
明する。
■0 part obtained from the propatool part and ■diyne part, and CH3CH,C obtained from the glycol part and ■hexyl part.
HO Scheme 2 HC=C-["miCH Scheme 3 Scheme 1 (continued) ■ Each reaction shown in the above scheme will be explained in detail below.

(イ)ケタール(2)の合成 原料物質として用いる酒石酸エステルは、L−酒石酸の
エステル若しくはD−酒石酸のエステルのいずれでもよ
く、用いるノ酉石酸エステルの立体配置により最終のジ
ヒドロバナキサコールの立体配置が定まる。D−酒石酸
のエステルを用いた場合には、得られるジヒドロバナキ
サコールのグリコール部分の立体配置は、天然型のバナ
キサコールと同一となる。エステルとしてはアルキルエ
ステルの他、ベンジル等のエステルでも良く、ジエステ
ルは、同一のアルコール由来のエステルでなくてもよい
。すなわち非対称の酒石酸エステルを用いることもでき
る。特にL−(+)−酒石酸ジエチルエステル若しくは
、D−(−)−酒石酸ジエチルエステルを用いることが
好ましい。
(a) The tartaric acid ester used as a raw material for the synthesis of ketal (2) may be either an ester of L-tartaric acid or an ester of D-tartaric acid, and depending on the configuration of the tartaric acid ester used, the final dihydrovanaxacol may be formed. The three-dimensional configuration is determined. When an ester of D-tartaric acid is used, the steric configuration of the glycol moiety of dihydrovanaxacol obtained is the same as that of natural vanaxacol. The ester may be an ester such as benzyl in addition to an alkyl ester, and the diester does not have to be an ester derived from the same alcohol. That is, asymmetric tartaric acid esters can also be used. In particular, it is preferable to use L-(+)-diethyl tartrate or D-(-)-diethyl tartrate.

ケタール化に用いることができる試薬としては、シクロ
ヘキサノン、アセトン、メヂルエチルゲトン等を挙げる
ことが出来るが、特にアセトンジメチルアセクールを用
いることが好ましい。酸触媒を用いる場合には、カンフ
ァースルホン酸(C3A)、パラトルエンスルホン酸(
TsOH) 、ピリジニウムバラトルエンスルホネート
(PPTS)等を用いることができる。溶媒としては通
常のケタール化に使用する溶媒、例えばベンゼン、トル
エン等を使用できるが、溶媒を使用しなくても良く、通
常20℃〜150℃の範囲で反応を行えばよい。
Examples of reagents that can be used for ketalization include cyclohexanone, acetone, methyl ethyl getone, etc., and it is particularly preferable to use acetone dimethyl acecool. When using an acid catalyst, camphorsulfonic acid (C3A), para-toluenesulfonic acid (
TsOH), pyridinium valatoluenesulfonate (PPTS), and the like can be used. As the solvent, solvents commonly used for ketalization, such as benzene and toluene, can be used, but it is not necessary to use a solvent, and the reaction can be carried out usually at a temperature in the range of 20°C to 150°C.

上記の条件を用いることにより、通常90%以上の収率
でケタール体(2)を得ることができる。
By using the above conditions, the ketal compound (2) can usually be obtained with a yield of 90% or more.

(ロ)ジオール(3)の合成 ジエステル(2)からジオール(2)に変換するには、
無水エーテル、無水テトラヒドロフラン(THF)等の
無水溶媒中で、リチウムアルミニウムハイドライド(L
iA j’ H,)、リチウムボロハイドライド(Li
BH4)等のエステル還元剤で通常−20℃〜50℃で
反応を行えばよく、通常80%以上の収率で目的とする
(3)を得ることができる。
(b) Synthesis of diol (3) To convert diester (2) to diol (2),
Lithium aluminum hydride (L
iA j' H,), lithium borohydride (Li
The reaction can be carried out using an ester reducing agent such as BH4), usually at -20°C to 50°C, and the desired product (3) can usually be obtained in a yield of 80% or more.

(ハ)脱離基の導入((3)→(4))ジオール(3)
に脱離基として好適なバラトルエンスルホニルM (p
 −Ts基) 、メタンスルホニル基(\IS基)を導
入するには、対応するバラトルエンスルホニルクロライ
ド(p−TsCl)やメタンスルホニルクロライド(M
sCβ)等の対応するクロライド等を(3)に対し1.
0モル〜1.2モル、好ましくは1モル反応させればよ
< 、(3)の一方の水酸基に選択的に脱離基を導入す
ることができる。溶媒としてピリジン、コリジン等を用
い、θ℃〜25℃で5時間反応させることにより、両方
の水酸基に反応した副生成物をほとんど生成すること無
く、目的とする(4)を得ることができる。
(c) Introduction of leaving group ((3) → (4)) Diol (3)
Valatoluenesulfonyl M (p
-Ts group) or methanesulfonyl group (\IS group), the corresponding baratoluenesulfonyl chloride (p-TsCl) or methanesulfonyl chloride (M
sCβ) and the like in 1. for (3).
A leaving group can be selectively introduced into one of the hydroxyl groups in (3) by reacting 0 mol to 1.2 mol, preferably 1 mol. By using pyridine, collidine, etc. as a solvent and reacting at θ°C to 25°C for 5 hours, the target (4) can be obtained with almost no by-products reacted with both hydroxyl groups.

(ニ)保護基の導入((4)→(5))化合物(4)中
の未反応の水酸基は、通常用いられる水酸基の保護基に
より保護することが好ましい。
(d) Introduction of protecting group ((4)→(5)) The unreacted hydroxyl group in compound (4) is preferably protected with a commonly used hydroxyl protecting group.

用いることのできる保護基としては酸の存在で容易に水
酸基を与える保護基、例えばテトラヒドロピラニル基(
THF基)、トリアルキルシリル基等を挙げることがで
きる。保護基を導入するには、対応する化合物としてジ
ヒドロピラン(DHP)やトリアルキルシリルクロライ
ドと(4)を反応させれば良く、該反応においては酸触
媒としてCAS等を用いることもできる。溶媒としてジ
クロルメタン、クロロホルム等を用い、0℃〜25℃で
反応させることにより目的とする水酸基保護体(5)を
得ることができる。
Protective groups that can be used include those that easily form a hydroxyl group in the presence of an acid, such as a tetrahydropyranyl group (
(THF group), trialkylsilyl group, etc. In order to introduce a protecting group, (4) may be reacted with a corresponding compound such as dihydropyran (DHP) or trialkylsilyl chloride, and in this reaction, CAS or the like may be used as an acid catalyst. The desired hydroxyl group-protected product (5) can be obtained by reacting at 0°C to 25°C using dichloromethane, chloroform, etc. as a solvent.

保護基としてTHF基を導入した場合には、THP基中
の不斉炭素の存在により、得られる(5)はジアステレ
オマーの混合物となるが、混合物のまま、以後の反応を
進行させることができる。
When a THF group is introduced as a protecting group, the resulting (5) becomes a mixture of diastereomers due to the presence of an asymmetric carbon in the THP group, but it is not possible to proceed with subsequent reactions as a mixture. can.

(ホ)ヘキシル化((5)→(6ン) 化合物(5〕は求核反応によりn−ヘキシル化され、ヘ
キシル体(6)を得ることができる。ヘキシル化に用い
ることのできる試薬としてはn−ヘキシル銅リチウム、
n−ヘキシルリチウム等の金属ヘキシル化合物を挙げる
ことができる。これらの試薬は一20℃〜0℃に於て、
無水半一チル、無水THE等の無水溶媒中で、好ましく
は窒素等の不活性気体の気流下で反応させることができ
る。特に好ましいヘキシル化剤としてn−ヘキシル鋼リ
チウムを挙げることができるが、該試薬は用時に調製す
ることが好ましい。
(e) Hexylation ((5) → (6)) Compound (5) can be n-hexylated by a nucleophilic reaction to obtain hexyl compound (6). Reagents that can be used for hexylation include n-hexyl copper lithium,
Metal hexyl compounds such as n-hexyllithium can be mentioned. These reagents at -20°C to 0°C,
The reaction can be carried out in an anhydrous solvent such as anhydrous half-hydrol or anhydrous THE, preferably under a stream of an inert gas such as nitrogen. A particularly preferred hexylating agent is n-hexyl steel lithium, but it is preferred that the reagent be prepared at the time of use.

(へ)トリオール(7)の合成 ヘキシル化した化合物(7)よりトリオール体(7)を
得るには、例えば塩酸、硫酸、パラトルエンスルホン酸
等の酸の存在下にメタノール、エタノール、等の溶媒中
で反応を行えばよい。反応を0℃〜20℃で通常0.5
〜1.0時間行うことにより好収量で(7)を得ること
ができる。
(f) Synthesis of triol (7) To obtain triol (7) from hexylated compound (7), for example, in the presence of an acid such as hydrochloric acid, sulfuric acid, para-toluenesulfonic acid, etc., a solvent such as methanol, ethanol, etc. The reaction can be carried out inside. The reaction is carried out at 0°C to 20°C, usually 0.5
(7) can be obtained in good yield by carrying out the reaction for 1.0 hours.

(ト)脱離基の導入((7)→(8))脱離基として好
適な基としては、前述した()1)に挙げた脱離基を用
いることができ、それらは前述した試薬により容易に導
入することができる。
(g) Introduction of leaving groups ((7) → (8)) As suitable groups as leaving groups, the leaving groups listed in () 1) above can be used, and they can be used in combination with the above-mentioned reagents. It can be easily introduced.

試薬量をに対して1.0モル〜1.2モルとし、0〜2
5℃で5時間反応させることにより、選択的に末端の水
酸基に脱離基を導入することができ、(8)を得ること
ができる。
The amount of reagent is 1.0 mol to 1.2 mol, and 0 to 2 mol.
By reacting at 5° C. for 5 hours, a leaving group can be selectively introduced into the terminal hydroxyl group, yielding (8).

(チ)エポキシ−アルコール(9) 化合物(8)をメタノーノペエタノール等の溶媒中で無
水炭酸カリウム、無水炭酸ナトリウム等の塩基で処理す
ることにより、エポキシアルコール体(9)を得ること
ができる。反応温度を通常0℃〜30℃として、約1時
間反応させることにより収量約90%以上で(9)が得
られる。
(H) Epoxy-alcohol (9) Epoxy alcohol (9) can be obtained by treating compound (8) with a base such as anhydrous potassium carbonate or anhydrous sodium carbonate in a solvent such as methanol and ethanol. . (9) can be obtained in a yield of about 90% or more by reacting for about 1 hour at a reaction temperature of usually 0°C to 30°C.

(1ハ保護基の導入((9)→αO) 得られた(9)は水酸基を保護しておくことが好ましい
が、保護基としてはく二)で挙げた保護基を好適に使用
しうる。保護基の導入も前述した方法で行うことができ
、水酸基保護体αQを得ることができる。
(1) Introduction of protecting group ((9) → αO) It is preferable to protect the hydroxyl group of the obtained (9), but the protecting groups listed in 2) can be suitably used as the protecting group. . Introduction of a protecting group can also be carried out by the method described above, and a hydroxyl group-protected product αQ can be obtained.

(ヌ)ジイン化合物α■及び保護体0リジアセチレン0
■とプロピオンアルデヒド、アクロレイン等より塩基の
存在下、常法によりジイン化合物を得ることができる。
(NU) Diyne compound α■ and protected form 0 lydiacetylene 0
A diyne compound can be obtained from (2) and propionaldehyde, acrolein, etc. in the presence of a base by a conventional method.

溶媒としてTHF。THF as solvent.

ジメトキシエタン等を用い、塩基としてブチルリチウム
(ヘキサン溶液)、メチルリチウム等を用いれば良く、
−20℃〜0℃で1時間反応させれば良い。得られた0
■は水酸基を保護することが好ましいが、保護基として
は(ニ)で挙げた保護基を好適に使用することができる
。保護基の導入も前述した方法で行えばよく、収率よく
保護体0りを得ることかできる。
Dimethoxyethane, etc. may be used, and butyllithium (hexane solution), methyllithium, etc. may be used as the base.
The reaction may be carried out at -20°C to 0°C for 1 hour. Obtained 0
In (2), it is preferable to protect the hydroxyl group, and as the protecting group, the protecting groups listed in (d) can be suitably used. The introduction of the protecting group can also be carried out by the method described above, and the protected compound can be obtained in good yield.

(ル)化合物0ω 得られた化合物α口と化合物Q4)より化合物0$を合
成することができる。化合物04)をTHF、ジメトキ
シエタン等の溶媒中で、例えばブチルリチウム(ヘキサ
ン溶液)、グリニヤール試薬、ナトリウムハイドライド
、カリウムアミド等の塩基で処理し金属アセチリドとし
た後、α0を、好ましくはTHF等の溶媒に溶解して加
えれば良い。反応は一20℃〜0℃で行うのがよく、約
3時間反応させることによりエポキシが開環した付加体
0$を得ることができる。
(l) Compound 0ω Compound 0 can be synthesized from the obtained compound α and compound Q4). Compound 04) is treated with a base such as butyl lithium (hexane solution), Grignard reagent, sodium hydride, potassium amide, etc. in a solvent such as THF or dimethoxyethane to form a metal acetylide, and then α0 is converted into a metal acetylide, preferably in THF or the like. It can be added by dissolving it in a solvent. The reaction is preferably carried out at -20°C to 0°C, and by reacting for about 3 hours, an adduct of ring-opened epoxy can be obtained.

(ヲ)保護基(05)→(1)) 保護基を除去するには、(へ)で述べた方法を用いるこ
とができる。脱保護することにより目的とするジヒドロ
バナキサコールを得ることができる。
(w) Protecting group (05)→(1)) To remove the protecting group, the method described in (f) can be used. The desired dihydrovanaxacol can be obtained by deprotection.

(発明の効果) 本発明の新規合成法により、従来抽出によって極少量し
か得られなかったジヒドロバナキサコール及びその類縁
化合物を大量に合成することが出来るようになった。
(Effects of the Invention) The novel synthesis method of the present invention has made it possible to synthesize large amounts of dihydrovanaxacol and its analogues, which were conventionally obtained in extremely small amounts through extraction.

次に実施例により本発明を説明する。Next, the present invention will be explained with reference to Examples.

(実施例) 実施例1  ((1)→(2)) L−(+)−酒石酸ジエチルエステル(1) 11.0
gをアセトンジメチルアセタール(2,2−dimet
hoxypropane)  50−に溶解後、カンフ
ァースルホン酸(C3A)100mgを加えて、50〜
70℃の油浴中で一夜撹拌した。冷機、酢酸エチル10
0蔵を加え、5%NaHc○、溶液50m1!中に注ぎ
有機層を分離した。水層を酢酸エチルにて抽出機有機層
と合せ、飽和食塩水80−で2回洗浄し、Na25O,
で乾燥、濃縮した。ここに得られた混合物をシリカゲル
カラムクロマト(ヘキサン:酢酸エチル=3 : 1)
にて分離し、(2)(9,0g、収率6g、5%)を得
ると共に15%の原料を回収した。
(Example) Example 1 ((1)→(2)) L-(+)-diethyl tartrate (1) 11.0
g to acetone dimethyl acetal (2,2-dimet
hoxypropane) 50-, add 100 mg of camphorsulfonic acid (C3A), and dissolve in 50-
Stir overnight in a 70°C oil bath. Refrigerator, ethyl acetate 10
Add 0zo, 5% NaHc○, solution 50ml! The organic layer was separated. The aqueous layer was extracted with ethyl acetate and combined with the organic layer, washed twice with saturated brine,
It was dried and concentrated. The resulting mixture was subjected to silica gel column chromatography (hexane: ethyl acetate = 3: 1).
(2) (9.0 g, yield 6 g, 5%) was obtained and 15% of the raw material was recovered.

実施例2 ((2)→(3)) 無水エーテル100m1中にLiAji!46.0 g
を撹拌しながら加え懸濁液とした後、化合物(2)(7
,7g)のエーテル溶液(40ml)をゆっくりと滴下
し、室温で一夜撹拌した。次いで、酢酸エチル20m1
を滴下し30分間撹拌後、飽和ロッシェル塩溶液30r
n1を加え、濾過補助剤としてセライトを用いて濾過し
a縮した。ここに得られた油状物をシリカゲルカラムク
ロマト(ヘキサン:酢酸エチル=3=1及び1:2)に
対し、化合物(3)(3,7g1収率77、%)を得た
。得られた(3)はに、Mori及びS、Tanada
 (テトラヘドロン35巻+1279−1284頁、1
979年)の報告中にある化合物とNMRスペクトルが
一致した。
Example 2 ((2)→(3)) LiAji! in 100 ml of anhydrous ether! 46.0 g
was added with stirring to form a suspension, and then compound (2) (7
, 7 g) in ether (40 ml) was slowly added dropwise thereto, and the mixture was stirred overnight at room temperature. Then 20ml of ethyl acetate
was added dropwise and stirred for 30 minutes, followed by 30 r of saturated Rochelle salt solution.
n1 was added, and the mixture was filtered and condensed using Celite as a filter aid. The obtained oil was subjected to silica gel column chromatography (hexane:ethyl acetate = 3 = 1 and 1:2) to obtain compound (3) (3.7g, yield 77%). The obtained (3) was obtained by Mori and S. Tanada.
(Tetrahedron volume 35 + pages 1279-1284, 1
The NMR spectrum matched that of the compound reported in 1999).

実施例3 ((3)→(4)) 化合物(3) (3,2g)のピリジン溶液(30ml
)に、パラトルエンスルホニルクロライド(pTsCj
!  3.0g)を加え室温で一夜放置した。次いで、
飽和食塩水LOOm7!を加え酢酸エチルにて抽出し、
減圧濃縮して油状物質を得た。この油状物質をシリカゲ
ルカラムクロマト(ヘキサン:酢酸エチル=2:1)に
付し、化合物(4) (3,4g。
Example 3 ((3)→(4)) Pyridine solution (30 ml) of compound (3) (3.2 g)
), para-toluenesulfonyl chloride (pTsCj
! 3.0 g) was added and left overnight at room temperature. Then,
Saturated salt water LOOm7! and extracted with ethyl acetate,
Concentration under reduced pressure gave an oily substance. This oily substance was subjected to silica gel column chromatography (hexane:ethyl acetate=2:1) to yield compound (4) (3.4 g).

収率54.5%)を得ると共に10%の原料を回収した
A yield of 54.5% was obtained and 10% of the raw material was recovered.

’ H−NMR1,35(S) (ppmン         1.38 (S)2.2
0(br、  s) 2、45 (S) 3.74(m) 4.15(m) 7.35(d、  J=8.3Hz) 7.77(d、  J=8.3)+2)実施例4 ((
4)→(5)) 化合物(4) (1,7g)のジクロルメタン溶液(1
0mil”)に、3,4−ジヒド1:l−2H−ビラ:
/(DHP。
' H-NMR1,35 (S) (ppm 1.38 (S) 2.2
0 (br, s) 2,45 (S) 3.74 (m) 4.15 (m) 7.35 (d, J=8.3Hz) 7.77 (d, J=8.3)+2) Example 4 ((
4) → (5)) Compound (4) (1.7 g) in dichloromethane solution (1
0 mil”), 3,4-dihydro 1:l-2H-bira:
/(DHP.

679mg、 1.5当量)とC3A50mgを加えて
室温で30分撹拌した。反応終了後、酢酸エチル50m
j’を加えたのち飽和N a HCOa水中に注ぎ酢酸
エチルにて抽出した。次いで、有機層を飽和食塩水(5
0mf!X2)にて2回洗浄し、N a 2 S O4
で乾燥、濃縮し得られた油状物質をシリカゲルカラムク
ロマト(ヘキサン:酢酸エチル=3 : 1)に付し、
化合物(5) (2,0g、収率93.0%)を得た。
679 mg, 1.5 equivalents) and 50 mg of C3A were added and stirred at room temperature for 30 minutes. After the reaction is complete, add 50ml of ethyl acetate.
After adding j', the mixture was poured into saturated NaHCOa water and extracted with ethyl acetate. Next, the organic layer was diluted with saturated saline (5
0mf! Wash twice with
The oily substance obtained by drying and concentrating was subjected to silica gel column chromatography (hexane: ethyl acetate = 3: 1),
Compound (5) (2.0 g, yield 93.0%) was obtained.

’ H−N、MR1,35(S) (ppm)    1.38 (s) 1.57(br、 s) 2、45 (s) 3.52(br、 m) 3.57(br、 m) 4.14(m) 4.6Hbr、 s) ?、34(d、 J=8.3)1z) 7.81(d、 J=8.3Hz) 実施例5 ((5)→(6)) ヨウ化第−銅” <1.34g、 3.Oeq )を無
水エーテル(25mj?)中に懸濁し一40℃に冷却し
た。次いで、n−ヘキシルリチウム−エーテル2)(4
,5mj!、l、 55mmol/m)を滴下し、15
分間撹拌した(この時、反応液の色は、淡黄色であった
が、徐々に褐色から黒褐色となった)。更に、n−ヘキ
シルリチウム/エーテル2)4.5m!!(1,56m
m01/mj’)を滴下し、15分間撹拌したく反応液
の色は、黒褐色から淡紫色から濃青紫色へと変化した)
。次に、化合物(5) (930mg)のエーテル溶液
(8mりを浴温−30℃、10分間で滴下した。(滴下
していくにつれて反応液の色は、濃青紫色から黒色へと
変化した)。更に、この温度で1時間撹拌した後、飽和
塩化アンモニウム溶液(10rrLl)を加え20分撹
拌した。次いで、この混合物をエーテルで抽出し、飽和
食塩水(30mlりで2回洗浄後Na2S 04で乾燥
し、濃縮した。得られた粗生成物をシリカゲルカラムク
ロマト(ヘキサン:酢酸エチル=7 : 1)により粗
分直後、更にHP LC(Nucleosil 5Q−
5,8X 3 Q Q mm。
'H-N, MR1,35 (S) (ppm) 1.38 (s) 1.57 (br, s) 2,45 (s) 3.52 (br, m) 3.57 (br, m) 4.14(m) 4.6Hbr, s)? , 34(d, J=8.3)1z) 7.81(d, J=8.3Hz) Example 5 ((5)→(6)) Cupric iodide <1.34g, 3. Oeq ) was suspended in anhydrous ether (25mj?) and cooled to -40°C. Then, n-hexyllithium-ether 2) (4
,5mj! , l, 55 mmol/m) was added dropwise, and 15
The mixture was stirred for a minute (at this time, the color of the reaction liquid was pale yellow, but gradually changed from brown to blackish brown). Furthermore, n-hexyl lithium/ether 2) 4.5 m! ! (1,56m
m01/mj') was added dropwise and stirred for 15 minutes.The color of the reaction solution changed from dark brown to pale purple to deep blue-purple.)
. Next, an ether solution (8 ml) of compound (5) (930 mg) was added dropwise over 10 minutes at a bath temperature of -30°C. (As the dropwise addition progressed, the color of the reaction solution changed from deep blue-purple to black. ). After further stirring at this temperature for 1 hour, saturated ammonium chloride solution (10rrLl) was added and stirred for 20 minutes.Then, this mixture was extracted with ether, and after washing twice with saturated brine (30ml), Na2S04 The obtained crude product was purified by silica gel column chromatography (hexane:ethyl acetate = 7:1), and then further purified by HPLC (Nucleosil 5Q-
5,8X 3 Q Q mm.

ヘキサン:酢酸エチル= 20 : 1 、3.0 m
/m1n)にて精製し、化合物(6) (500mg、
収率66.4%、17分に溶出)を得た。
Hexane:ethyl acetate = 20:1, 3.0 m
/m1n) to obtain compound (6) (500mg,
A yield of 66.4% was obtained (eluting at 17 minutes).

1) 市販のヨウ化第−銅をソックスレー抽出器を用い
てTHFで洗浄し、真空ポンプで4−5時間乾燥したも
のを使用した。
1) Commercially available cupric iodide was washed with THF using a Soxhlet extractor and dried for 4-5 hours using a vacuum pump.

2)金属リチウム(30%)ディスバージョン11.8
g、2.5当量)を無水エーテル(60ml’)中に加
えて撹拌した。、、n−ブロムヘキサン(3ml、使用
する全量の約1/3)を加えて室温で攪拌し、内温か上
昇してきたところで、−15℃に冷却した。次いで、残
りのn−ブロモヘキサン(25mN)を徐々に加えた後
、更に3−4時間、−15℃で撹拌した。得られたヘキ
シルリチウム溶液を冷蔵庫に静置し、上澄みのエーテル
層の力価を5ec−ブタノール(指示薬:1,10=フ
エナンスリロン)で検定した後反応に使用した。
2) Metallic lithium (30%) disversion 11.8
g, 2.5 eq.) in anhydrous ether (60 ml') and stirred. ,, n-Bromhexane (3 ml, about 1/3 of the total amount used) was added and stirred at room temperature, and when the internal temperature rose, the mixture was cooled to -15°C. Then, the remaining n-bromohexane (25 mN) was gradually added, and the mixture was further stirred at -15°C for 3-4 hours. The obtained hexyllithium solution was left standing in a refrigerator, and the titer of the supernatant ether layer was assayed with 5ec-butanol (indicator: 1,10=phenanthrylon), and then used for the reaction.

Rf (ヘキサン:酢酸エチル=7 : l、シリカゲ
ル薄層クロマトグラフィー、メルク社製Art。
Rf (hexane:ethyl acetate=7:l, silica gel thin layer chromatography, Merck & Co., Ltd. Art.

5715.0.25mm、以下実施例において同じ)=
0.33 実施例6 ((6)→(7)) 化合物(6) (400mg)のメタノール溶液(4m
l)に2N−HCl(1rnl)を加え室温で1時間撹
拌した。次いで、酢酸エチル40rrLlを加え飽和食
塩水(10mf’)で2回洗浄後、N a 2 S O
4にて乾燥、濃縮し、化合物(7) (206mg、収
率88.0%)を無色結晶として得た。
5715.0.25mm (same in the following examples) =
0.33 Example 6 ((6) → (7)) Methanol solution (4 m
2N-HCl (1 rnl) was added to the mixture and stirred at room temperature for 1 hour. Next, 40rrLl of ethyl acetate was added, and after washing twice with saturated saline (10mf'), N a 2 SO
4 and concentrated to obtain compound (7) (206 mg, yield 88.0%) as colorless crystals.

H−N!、(RO,95(t、 J=7.1Hz)(9
11m)      1.2〜1.4(br、 m)1
、50 (m) 3、62 (m) 3、75 (m) ”C−Nλ(R14,1,22,7,25,8,29,
4(ppm)      29.8. 31.9. 3
3.6. 64.572.4. 74.3゜ m、 p、       48℃ IR(CHCj2*)cm−’; 3400(”)、2
925(s)、  28+0(m)実施例?  ((1
)→(8)) 化合物(力(190mg)のピリジン溶液(2ml’)
にバラトルエンスルホニルクロライ)’(p−Tsi)
  (185mg)を加え室温で1汝放置した。
H-N! , (RO,95(t, J=7.1Hz)(9
11m) 1.2-1.4 (br, m)1
, 50 (m) 3,62 (m) 3,75 (m) ”C-Nλ(R14,1,22,7,25,8,29,
4 (ppm) 29.8. 31.9. 3
3.6. 64.572.4. 74.3゜m, p, 48℃ IR(CHCj2*)cm-';3400(''), 2
925(s), 28+0(m) Example? ((1
) → (8)) Pyridine solution (2 ml') of compound (190 mg)
(p-Tsi)
(185 mg) was added and left to stand at room temperature.

飽和食塩水(30d)を加え、酢酸エチルにて抽出し、
を機層をNa 2 S Oa にて乾燥、濃縮した。
Add saturated brine (30d), extract with ethyl acetate,
The organic layer was dried with Na 2 S Oa and concentrated.

得られた混合物をシリカゲルクロマト(ヘキサン:酢酸
エチル=3:1)に付し、化合物(8) < 150m
g、収率43.6%)を無色結晶として得た。
The obtained mixture was subjected to silica gel chromatography (hexane: ethyl acetate = 3:1), and compound (8) < 150m
g, yield 43.6%) was obtained as colorless crystals.

H−NMR0,88(t、  J=7.3Hz)(pp
m)      1.2〜1.4(br、  m)2、
46 (s) 3.72(br、  m) 4.09(d、  J=5.4Hz) 7.35(d、  J=8.1)1z)7.80(d、
  J=8.1Hz) m、 p、        63℃ rR(cm−’)  ;  3550(m)、  29
25(s>、  2850(m)。
H-NMR0,88 (t, J=7.3Hz) (pp
m) 1.2-1.4 (br, m)2,
46 (s) 3.72 (br, m) 4.09 (d, J=5.4Hz) 7.35 (d, J=8.1)1z) 7.80 (d,
J=8.1Hz) m, p, 63℃ rR (cm-'); 3550 (m), 29
25 (s>, 2850 (m).

1730(m)、  1600(m)、  1460(
m)実施例8 ((8)→(9)) 化合物(8) (114mg)のメタノール溶液(3,
5−)に無水炭酸カリウム(457mg、10当量)を
加え、室温で1時間撹拌した。反応混合物に飽和食塩水
(40rnl)を加え、酢酸エチルにて抽出した。抽出
液を飽和食塩水で洗浄後、Na2SO4にて乾燥し濃縮
した。得られた混合物をシリカゲルクロマト(ヘキサン
:酢酸エチル=2 : 1)に付し、化合物(9) (
550g、収率75.5%)を得た。
1730 (m), 1600 (m), 1460 (
m) Example 8 ((8)→(9)) Methanol solution of compound (8) (114 mg) (3,
Anhydrous potassium carbonate (457 mg, 10 equivalents) was added to 5-) and stirred at room temperature for 1 hour. Saturated brine (40rnl) was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The extract was washed with saturated brine, dried over Na2SO4, and concentrated. The resulting mixture was subjected to silica gel chromatography (hexane:ethyl acetate = 2:1) to obtain compound (9) (
550 g, yield 75.5%) was obtained.

H−NMR0,88(t、  J=7.3Hz)(pp
m)     1.2〜1.4(br、 m)1、60
 (m) 1.78(d、  J=5.9Hz −CH)2.72
(dd、  J=2.7. 4.9Hz)2.83(t
、  J=4.9Hz) 2.9g(m) 3、44 (m) IR(c+n−リ ;  3600(w)、  350
0(w)、  3430(s)。
H-NMR0,88 (t, J=7.3Hz) (pp
m) 1.2-1.4 (br, m) 1,60
(m) 1.78 (d, J=5.9Hz -CH) 2.72
(dd, J=2.7.4.9Hz)2.83(t
, J=4.9Hz) 2.9g(m) 3,44 (m) IR(c+n-ri; 3600(w), 350
0(w), 3430(s).

3360 (m) 実施例9 ((9)→αQ) 化合物(9)(50mg)のジクロルメタン溶液(1,
5m1.) ニDHP (40μm)と微量のC3Aを
加え、室温で30分撹拌した。次いで、反応液にN a
 HCO3溶液(20m7りを加え、酢酸エチルにて抽
出した。有機層を飽和食塩水で洗浄後、N a 2 S
 Oa にて乾燥し濃縮した。得られた混合物をシリカ
ゲルクロマト(ヘキサン:酢酸エチル=3:1)に付し
、化合物α167mg、収率9o、0%)を得た。
3360 (m) Example 9 ((9) → αQ) Dichloromethane solution of compound (9) (50 mg) (1,
5m1. ) DHP (40 μm) and a trace amount of C3A were added, and the mixture was stirred at room temperature for 30 minutes. Next, the reaction solution was added with Na
HCO3 solution (20ml) was added and extracted with ethyl acetate.The organic layer was washed with saturated brine, and then Na2S
It was dried over Oa and concentrated. The resulting mixture was subjected to silica gel chromatography (hexane:ethyl acetate = 3:1) to obtain compound α (167 mg, yield 9o, 0%).

Rf (ヘキサン:酢酸エチル=5 : 1) =0.
40.0.47(ジアステレオマー混合物) ’H−NMRO,88(t、 J=7.3Hz)(1)
I)m)     1.2〜1.4(br、 m)15
〜1.7 (br、 m) 1、76 (+n) 1.84(m) 2.49(dd、 J=2.7.4.9Hz)2.67
(dd、 J=2.7.4.9)1z)2.76(t、
 J=4.9)1z) 2.80(t、 J=4.9)1z) 2、95 (m) 3、09 (m) 3、38 (m) 3、50 (m) 3、88 (m) 4、00 (m) 4.70(t、 J=4.4Hz) 4.98(t、 J=4.4Hz) 実施例10 ((社)十〇り→0■→α4))ジアセチ
レン面のTHF溶液(15mjり(1mmo 17 m
l )を−50℃に冷却し撹拌した。これにブチルリチ
ウム−ヘキサン(10−11,5mmol /ml)と
プロピオンアルデヒド((6)、840mg。
Rf (hexane:ethyl acetate=5:1) =0.
40.0.47 (Diastereomer mixture) 'H-NMRO, 88 (t, J=7.3Hz) (1)
I) m) 1.2-1.4 (br, m) 15
~1.7 (br, m) 1,76 (+n) 1.84 (m) 2.49 (dd, J=2.7.4.9Hz) 2.67
(dd, J=2.7.4.9)1z)2.76(t,
J=4.9)1z) 2.80(t, J=4.9)1z) 2,95 (m) 3,09 (m) 3,38 (m) 3,50 (m) 3,88 ( m) 4,00 (m) 4.70 (t, J=4.4Hz) 4.98 (t, J=4.4Hz) Example 10 ((Company) 100 → 0 ■ → α4)) Di THF solution on the acetylene surface (15 mj (1 mmo 17 m
l) was cooled to -50°C and stirred. To this was added butyllithium-hexane (10-11.5 mmol/ml) and propionaldehyde ((6), 840 mg).

14.5mmol)を徐々に滴下後、更に30分撹拌し
た。次いで、飽和塩化アンモニウム溶液(50mlりを
加え、酢酸エチルにて抽出した。有機層を飽和食塩水で
洗浄後N a 2 S O4で乾燥し濃縮した。ここに
得られた混合物をシリカゲルクロマト(ヘキサンニ酢酸
エチル=5:1)で分離・精製した後、ジクロルメタン
(10rrfりに溶解し、DHP (1ml)とC3A
(20mg)を加えて室温で1時間撹拌した。反応液に
N a HCOs溶液(20ml)を加え、酢酸エチル
にて抽出し、有機層を飽和食塩水で洗浄後、Na2S○
、で乾燥して濃縮した。得られた混合物をシリカゲルク
ロマト(ヘキサン:酢酸エチル=7 : 1)に付し、
化合物α4)(1,4g、収率50.0%)を得た。
14.5 mmol) was gradually added dropwise, and the mixture was further stirred for 30 minutes. Next, 50 ml of saturated ammonium chloride solution was added and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over Na 2 SO 4 and concentrated. The resulting mixture was chromatographed on silica gel (hexane). After separation and purification with ethyl acetate = 5:1), dissolved in dichloromethane (10rrf), DHP (1 ml) and C3A
(20 mg) was added and stirred at room temperature for 1 hour. A Na HCOs solution (20 ml) was added to the reaction solution, extracted with ethyl acetate, and the organic layer was washed with saturated brine, then diluted with Na2S○.
, and concentrated. The resulting mixture was subjected to silica gel chromatography (hexane: ethyl acetate = 7: 1),
Compound α4) (1.4 g, yield 50.0%) was obtained.

Rf (ヘキサン:酢酸エチル=5 : 1) =0.
60.0.68(ジアステレオマー混合物) ’H−N!、IR1,00(t、 J・7.3Hz)(
ppm)     1.04(t、 J=7.3)1z
)1、56 (m) 1、78 (m) 2.14(d、 J=0.9tlz) 2.15(d、 J=0.9Hz) 3.54(m> 3、80 (m) 4、00 (m) 4.25(t、 J=6.4Hz) 4.41(t、 J=6.4Hz) 4.74(t、 J=3.4H2) 4.93(t、 J=3.4flz) 実施例11 (α[] + Q4)→0つ)化合物α4
)(77mg、0.4mmol)のTHF溶液(130
μl)を−30℃に冷却後、ブチルリチウム−へキサ7
 (230AII、 0.3mmol)及びHMPA 
(50μl、 0.3mmol)を徐々に滴下した。
Rf (hexane:ethyl acetate=5:1) =0.
60.0.68 (diastereomeric mixture) 'H-N! , IR1,00 (t, J・7.3Hz) (
ppm) 1.04 (t, J=7.3)1z
) 1,56 (m) 1,78 (m) 2.14 (d, J=0.9tlz) 2.15 (d, J=0.9Hz) 3.54 (m> 3,80 (m) 4 , 00 (m) 4.25 (t, J=6.4Hz) 4.41 (t, J=6.4Hz) 4.74 (t, J=3.4H2) 4.93 (t, J=3 .4flz) Example 11 (α[] + Q4)→0) Compound α4
) (77 mg, 0.4 mmol) in THF solution (130
μl) to -30°C, butyllithium-hexa7
(230AII, 0.3 mmol) and HMPA
(50 μl, 0.3 mmol) was gradually added dropwise.

次いで化合物α(1(25mg、 O,1mmol)の
THF溶液(100μm)を滴下し、−30℃で2時間
撹拌した。反応終了後、飽和N H,C1溶液(10m
jりを加え、酢酸エチルにて抽出した。有機層を飽和食
塩水で洗浄後N a 2 S O4で乾燥し濃縮した。
Then, a THF solution (100 μm) of compound α (1 (25 mg, O, 1 mmol)) was added dropwise and stirred at −30° C. for 2 hours. After the reaction was completed, a saturated N H, C1 solution (10 m
and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over Na 2 SO 4 and concentrated.

得られた混合物をシリカゲルクロマト(ヘキサン:酢酸
エチル=5 : 1)に付し、化合物層(20mg。
The resulting mixture was subjected to silica gel chromatography (hexane:ethyl acetate = 5:1) to obtain a compound layer (20 mg).

収率44.4%)を得た。A yield of 44.4% was obtained.

Rf (ヘキサン:酢酸エチル=5 : 1) =0.
22.0.26(ジアステレオマー混合物) 実施例12(QS−7史) 化合物側(10mg)のメタノール溶液(500μm)
に微量のC3Aを加えて室温で1時間撹拌した。次いで
、酢酸エチル(10rnl)を加えて飽和食塩水で洗浄
後、Na* S O,で乾燥し濃縮した。
Rf (hexane:ethyl acetate=5:1) =0.
22.0.26 (diastereomer mixture) Example 12 (QS-7 history) Methanol solution (500 μm) of compound side (10 mg)
A trace amount of C3A was added to the mixture, and the mixture was stirred at room temperature for 1 hour. Next, ethyl acetate (10 rnl) was added and the mixture was washed with saturated brine, dried over Na*SO, and concentrated.

これをHP LC(Nucleosil 50−5. 
8 x 300 mm。
This was analyzed using HP LC (Nucleosil 50-5.
8 x 300 mm.

hexane :εtO^c =2 : L、3.0m
j!/分)にて分離・精製し、化合物(1)(4mg、
収率64.5%、22分に溶出)を得た。
hexane:εtO^c=2: L, 3.0m
j! /min) to separate and purify compound (1) (4 mg,
A yield of 64.5% was obtained (eluting at 22 minutes).

’H−NMRQ、89(t、 J=7.1Hz>(pp
m)      1.OHt、 J=7.3Hz)1.
2〜1.4(br、  m> 1、50 (m) 1.74(m) 2.57(dd、  J=6.4. 16.9Hz)2
.59<dd、  J=5.6. 16.9Hz)3、
58 (m) 3、63 (m) 4.35(t、  J=6.4)1z)IR(C)lc
J、)cm−’; 3600(w)、    2930
(s)2860 (m) 、   2260 (w)〔
α)   =−17,0 口 本実施例で得られた化合物(1)を、天然より得られた
パナキサコールを還元して得たジヒドロパナキサコール
と比較した。バナキサコールの還元には以下の方法を用
いた。
'H-NMRQ, 89(t, J=7.1Hz>(pp
m) 1. OHt, J=7.3Hz)1.
2 to 1.4 (br, m> 1, 50 (m) 1.74 (m) 2.57 (dd, J=6.4. 16.9Hz) 2
.. 59<dd, J=5.6. 16.9Hz)3,
58 (m) 3, 63 (m) 4.35 (t, J=6.4)1z)IR(C)lc
J,) cm-'; 3600 (w), 2930
(s) 2860 (m), 2260 (w) [
α) = -17.0 Compound (1) obtained in this example was compared with dihydropanaxacol obtained by reducing naturally-obtained panaxacol. The following method was used to reduce vanaxacol.

パナキサコール(74mg)をメタノール(1,0−)
に溶解し、撹拌しながら過剰のN a B H4を加え
た。約30分後、飽和食塩水(Lornl)を加えて酢
酸エチルにて抽出した。抽出液をNa 2 S O4で
乾燥し、濃縮後、得られた油状物質をHPLC(Nuc
leosil 50−5. 8 X 300111[0
,ヘキサン:酢酸エチル=1 : 1)にて精製し、ジ
ヒドロパナキサコール(60mg、収率80.0%)を
得た。
Panaxacol (74 mg) in methanol (1,0-)
and excess NaB H4 was added with stirring. After about 30 minutes, saturated saline (Lornl) was added and extracted with ethyl acetate. After drying the extract with Na 2 SO and concentration, the resulting oil was analyzed by HPLC (Nuc
leosil 50-5. 8 X 300111[0
, hexane:ethyl acetate=1:1) to obtain dihydropanaxacol (60 mg, yield 80.0%).

得られたジヒドロパナキサコールと、本発明の方法で合
成された化合物(1)のNMRスペクトルを測定して比
較した。化合物(1)がジヒドロパナキサコールである
こと力(確言忍できた。
The NMR spectra of the obtained dihydropanaxacol and the compound (1) synthesized by the method of the present invention were measured and compared. It was confirmed that compound (1) is dihydropanaxacol.

Claims (1)

【特許請求の範囲】 化合物(¥A¥) ▲数式、化学式、表等があります▼ (¥A¥) (式中R^1は、テトラヒドロピラニル基、トリアルキ
ルシリル基のいずれかを示す。)と化合物(¥B¥) ▲数式、化学式、表等があります▼ (¥B¥) (式中R^2は、テトラヒドロピラニル基、トリアルキ
ルシリル基のいずれかを示し、R^3はエチル基、ビニ
ル基、2−クロロエチル基、2−クロロ−1−ハイドロ
キシエチル基のいずれかを示す。) を塩基の存在下に反応させて、化合物(¥C¥)▲数式
、化学式、表等があります▼ (¥C¥) (式中、R^1及びR^2は、それぞれテトラヒドロピ
ラニル基、トリアルキルシリル基のいずれかを示し、R
^3はエチル基、ビニル基、2−クロロエチル基、2−
クロロ−1−ハイドロキシエチル基のいずれかを示す。 ) を製造した後、酸で処理することにより化合物¥(1)
¥▲数式、化学式、表等があります▼ ¥(1)¥ (式中、R^3はエチル基、ビニル基、2−クロロエチ
ル基、2−クロロ−1−ハイドロキシエチル基のいずれ
かを示す。) を製造する方法。
[Claims] Compound (¥A¥) ▲Mathematical formulas, chemical formulas, tables, etc.▼ (¥A¥) (In the formula, R^1 represents either a tetrahydropyranyl group or a trialkylsilyl group. ) and compounds (¥B¥) ▲Mathematical formulas, chemical formulas, tables, etc.▼ (¥B¥) (In the formula, R^2 represents either a tetrahydropyranyl group or a trialkylsilyl group, and R^3 is ethyl group, vinyl group, 2-chloroethyl group, or 2-chloro-1-hydroxyethyl group) in the presence of a base to form a compound (¥C¥)▲mathematical formula, chemical formula, table, etc. ▼ (¥C¥) (In the formula, R^1 and R^2 each represent a tetrahydropyranyl group or a trialkylsilyl group, and R
^3 is ethyl group, vinyl group, 2-chloroethyl group, 2-
Indicates any chloro-1-hydroxyethyl group. ) After producing compound ¥(1), by treating with acid
¥▲There are mathematical formulas, chemical formulas, tables, etc.▼ ¥(1)¥ (In the formula, R^3 represents either an ethyl group, a vinyl group, a 2-chloroethyl group, or a 2-chloro-1-hydroxyethyl group. ).
JP63225048A 1988-09-08 1988-09-08 Method for producing panaxacols Expired - Lifetime JP2720176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225048A JP2720176B2 (en) 1988-09-08 1988-09-08 Method for producing panaxacols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225048A JP2720176B2 (en) 1988-09-08 1988-09-08 Method for producing panaxacols

Publications (2)

Publication Number Publication Date
JPH0273026A true JPH0273026A (en) 1990-03-13
JP2720176B2 JP2720176B2 (en) 1998-02-25

Family

ID=16823223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225048A Expired - Lifetime JP2720176B2 (en) 1988-09-08 1988-09-08 Method for producing panaxacols

Country Status (1)

Country Link
JP (1) JP2720176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510953A (en) * 2008-08-27 2012-05-17 ザ トラスティーズ オブ コロンビア ユニバーシティー イン ザ シティー オブ ニューヨーク Compounds, compositions and methods for reducing toxicity and treating or preventing disease

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510953A (en) * 2008-08-27 2012-05-17 ザ トラスティーズ オブ コロンビア ユニバーシティー イン ザ シティー オブ ニューヨーク Compounds, compositions and methods for reducing toxicity and treating or preventing disease

Also Published As

Publication number Publication date
JP2720176B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
US5530020A (en) Taxol derivatives
KR100400941B1 (en) Condensed six-ring compound and a process for producing the same
CA2080393A1 (en) Water soluble derivatives of taxol
KR20150074062A (en) Process for preparing bile acid derivatives
JP2012136544A (en) Process for producing docetaxel, and medicine
Bradshaw et al. Proton‐ionizable crown compounds. 3. Synthesis and structural studies of macrocyclic polyether ligands containing a 4‐pyridone subcyclic unit
AU2016225781A1 (en) Radioactive fluorine labeling precursor compound and method for manufacturing radioactive fluorine labeled compound using the same
WO2022007838A1 (en) Method for preparing glucopyranosyl derivatives and intermediates thereof
CN109053496B (en) Synthetic method of 3-Boc-aminomethyl cyclobutanone
JP5960130B2 (en) Preparation of tesetaxel and related compounds and corresponding synthetic intermediates
JPH0273026A (en) Production of panaxacols
JP2010513472A (en) Method for producing taxane derivative and intermediate used therefor
CN113480453B (en) Synthesis method of NH2-PEG5-NHBoc
CN114805168B (en) Pyrrolinones and synthesis method thereof
CN114380840B (en) Synthesis of eribulin
CN113135931B (en) Synthesis method of cytochalasin compound flaviperine A
EP3956332B1 (en) Diasteroselective process for the preparation of thiol- or disulfide-containing maytansinoid esters and intermediates thereof
CN115716799A (en) Method for preparing cis-chiral-3-fluoro-4-hydroxypiperidine and derivatives thereof by reduction of organic borohydride metal reagent
No Preparation of lower rim functionalized tetrahomodiaza p-phenylcalix [4] arenes
CN111943893A (en) Synthesis method of 4, 7-diazaspiro [2.5] octane compound
RO133248A2 (en) Bicyclo[2.2.1.]heptane amines protected at hydroxyl group
JPH069642A (en) 4-desoxy-4-epipodophyllotoxin derivative and its salt
JPH07247248A (en) Racemic cis-2-amino-1-acenaphthenol, its optically active compound and production thereof
JP2021515760A (en) Method
JPH0381258A (en) New dopa derivative