JPH0272930A - Manufacturing system for synthetic resin vessel - Google Patents

Manufacturing system for synthetic resin vessel

Info

Publication number
JPH0272930A
JPH0272930A JP63223921A JP22392188A JPH0272930A JP H0272930 A JPH0272930 A JP H0272930A JP 63223921 A JP63223921 A JP 63223921A JP 22392188 A JP22392188 A JP 22392188A JP H0272930 A JPH0272930 A JP H0272930A
Authority
JP
Japan
Prior art keywords
wall thickness
synthetic resin
pet
control unit
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63223921A
Other languages
Japanese (ja)
Inventor
Masaru Hoshino
優 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP63223921A priority Critical patent/JPH0272930A/en
Publication of JPH0272930A publication Critical patent/JPH0272930A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/787Thickness
    • B29C2049/7871Thickness of the extruded preform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve the conforming article rate of products, and reduce the time for measuring the wall thickness by measuring continuously the wall thickness molded by a synthetic resin vessel molding apparatus by means of a continuously automatic wall thickness inspection device, and controlling by feed back the synthetic resin vessel molding apparatus on the basis of the measured data. CONSTITUTION:Driving rotating rollers 46 rotate, following this, a PET vessel 18 and two following rollers 47 rotate, simultaneously, an insertion pipe 12 is inserted into the PET vessel 18 by means of an insertion pipe coming up and down control unit 13. When the rotating speed of the PET vessel reaches a certain rotating speed, a main control unit 9 commands to start the wall thickness measurement. The infrared rays (wavelength 2-5mum) projected from a projecting unit 14 pass through the inner part of the insertion pipe 12, and reaches a sensor light receiving unit 15 after absorbed in its a part by the body wall of the PET vessel 18, and converted into an electric signal, and outputted then to a main control unit 9 via an IF control unit 10. On the other hand, the control unit 3 of a molding apparatus 2 received the wall thickness data may control the molding conditions on the basis of the data.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合成樹脂製容器製造システムに係り、特にポリ
エチレンテレフタレート系樹脂製容器(以下、PET容
器と呼ぶ。)の製造システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a synthetic resin container manufacturing system, and particularly to a manufacturing system for polyethylene terephthalate resin containers (hereinafter referred to as PET containers).

〔従来の技術〕[Conventional technology]

従来の合成樹脂製容器製造システムの原理を第8図を参
照して説明する。
The principle of a conventional synthetic resin container manufacturing system will be explained with reference to FIG.

従来の容器製造システムは合成樹脂原料を供給する原料
供給装置1、射出成形装置およびブロー成形装置よりな
る成形装置2、成形装置の成形条件を制御する制御装置
3、成形されたPET容器を検査するボトル検査装置4
およびPET容器の良品、不良品を選別する選別装置6
よりなっている。
A conventional container manufacturing system includes a raw material supply device 1 that supplies synthetic resin raw materials, a molding device 2 consisting of an injection molding device and a blow molding device, a control device 3 that controls molding conditions of the molding device, and inspects the molded PET container. Bottle inspection device 4
And a sorting device 6 that separates good and defective PET containers.
It's getting better.

原料供給装置1より合成樹脂原料が成形装置2に供給さ
れ、成形装置2は射出成形によりパリソンを成形し、成
形されたパリソンを延伸ブロー成形により容器形状に成
形する。尚、これらの成形装置は制御装置3により成形
条件が制御されている。
A synthetic resin raw material is supplied from a raw material supply device 1 to a molding device 2, which molds a parison by injection molding, and molds the molded parison into a container shape by stretch blow molding. The molding conditions of these molding devices are controlled by a control device 3.

次に、ボトル検査装置4によりボトルが適正かどうかを
検査し、その結果に基づき選別装置6により良品と不良
品を選別する。
Next, the bottle inspection device 4 inspects whether the bottle is suitable or not, and based on the result, the sorting device 6 sorts out good products and defective products.

また、定期的なサンプリングによりボトルの肉厚を肉厚
検査装置により検査し、ロフト管理をしていた。
In addition, the wall thickness of the bottle was inspected using a wall thickness inspection device through regular sampling, and loft management was carried out.

第9図に従来の肉厚検査装置60の概観を示す。FIG. 9 shows an overview of a conventional wall thickness inspection device 60.

肉厚検査装置60は、測定用赤外線を発生する光源部6
9と、PET容器66内に挿入してPET容器66の胴
壁に測定用赤外線70を放射する投光部71と、この投
光部71に一定の間隔をおいてPET容器66の外側て
対面すべく配置された受光部72と、受光部72の出力
信号に基づいてPET容器66の、(III定部分の肉
厚を算出する演算処理装置73と、投光部71および受
光部72を一体に昇降させる昇降装置74と、PET容
器66をその周方向に回転させる回転装置75よりなっ
ている。
The wall thickness inspection device 60 includes a light source unit 6 that generates infrared radiation for measurement.
9, a light projecting section 71 that is inserted into the PET container 66 and emits measurement infrared rays 70 onto the body wall of the PET container 66; The light receiving section 72 disposed in such a manner that the light receiving section 72 is arranged to It consists of a lifting device 74 that raises and lowers the PET container 66, and a rotating device 75 that rotates the PET container 66 in its circumferential direction.

次に、上記従来の肉厚測定装置の動作について説明する
Next, the operation of the conventional wall thickness measuring device described above will be explained.

まず、lPj定対象となるPET容器66を回転装置7
5上に載置し、昇降装置74により投光部71および受
光部72を一体に下降させ、PET容器66内に投光部
71を挿入し、所定の測定位置で停止させる。次にPE
T容器66の胴壁に光源部6つにより発生された測定用
赤外線70を放射し、PET容器66の胴壁を透過して
吸収させ、受光部72により電気信号に変換され演算処
理装置72に出力される。演算処理装置72は出力信号
に基づいてPET容器66の測定部分の肉厚を算出して
7111定を終了する。
First, the PET container 66 to be subjected to lPj is placed in the rotating device 7.
5, the light emitting part 71 and the light receiving part 72 are lowered together by the elevating device 74, the light emitting part 71 is inserted into the PET container 66, and the light emitting part 71 is stopped at a predetermined measurement position. Then P.E.
Measurement infrared rays 70 generated by six light sources are emitted onto the body wall of the T container 66, transmitted through the body wall of the PET container 66, absorbed, converted into an electrical signal by the light receiving unit 72, and sent to the arithmetic processing unit 72. Output. The arithmetic processing unit 72 calculates the wall thickness of the measured portion of the PET container 66 based on the output signal, and ends the 7111 determination.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の合成樹脂製容器製造システムにおいては、製
造ラインでの成形検査終了後にサンプリングによって新
たに肉厚を測定して良否を判定するため、肉厚データを
製造ラインにフィードバックすることができず、更に全
数検査が不可能であり、また、肉厚データ測定に多大の
手間を要していた。
In the above-mentioned conventional synthetic resin container manufacturing system, the wall thickness is newly measured by sampling after the molding inspection on the production line is completed to determine pass/fail, so the wall thickness data cannot be fed back to the production line. Furthermore, it is impossible to inspect all the parts, and it takes a lot of time and effort to measure wall thickness data.

そこで、本発明は製造ライン中で連続的にPET容器の
肉厚をJFJ定し、容器の肉厚データを成形装置にフィ
ードバックするとともに、肉厚測定の手間を削減する合
成樹脂製容器製造システムを提供することを目的とする
Therefore, the present invention provides a synthetic resin container manufacturing system that continuously determines the wall thickness of PET containers in the manufacturing line, feeds back the container wall thickness data to the molding equipment, and reduces the labor of wall thickness measurement. The purpose is to provide.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明は、合成樹脂製容器
の成形並びに製品検査を行う合成樹脂製容器製造システ
ムにおいて、製造ライン中に連続自動肉厚検査装置を設
け、合成樹脂製容器成形装置により成形された容器の肉
厚を前記連続自動肉厚検査装置で連続的に測定し、測定
データに基づいて前記合成樹脂製容器成形装置をフィー
ドバック制御するように構成する。
In order to solve the above problems, the present invention provides a continuous automatic wall thickness inspection device in the production line in a synthetic resin container manufacturing system for molding synthetic resin containers and product inspection. The continuous automatic wall thickness inspection device continuously measures the wall thickness of the container molded by the method, and the synthetic resin container molding device is feedback-controlled based on the measurement data.

〔作用〕[Effect]

合成樹脂製容器製造システムは、製造ライン中に自動連
続肉厚測定装置を設けることにより、成形後直ちに合成
樹脂製容器の肉厚を測定し成形装置の制御装置にフィー
ドバックすることができるので、製品の良品率を上げる
ことができるとともに、肉厚測定の手間を削減すること
ができる。
By installing an automatic continuous wall thickness measuring device in the production line, the synthetic resin container manufacturing system can measure the wall thickness of the synthetic resin container immediately after molding and feed it back to the control device of the molding equipment, making it possible to It is possible to increase the rate of non-defective products and reduce the effort required to measure wall thickness.

〔実施例〕〔Example〕

本発明の実施例について第1図乃至第7図を参照して説
明する。
Embodiments of the present invention will be described with reference to FIGS. 1 to 7.

第1図に本発明の原理説明図を示す。FIG. 1 shows a diagram explaining the principle of the present invention.

合成樹脂製容器製造システムMは合成樹脂原料を供給す
る原料供給装置1、射出成形装置およびブロー成形装置
よりなる成形装置2、成形装置の成形条件を制御する制
御装置3、成形されたPET容器を検査するボトル検査
装置4、PET容器の肉厚を自動的に連続して測定する
連続自動肉厚検査装置5、PET容器の良品、不良品を
選別する選別装置6よりなっている。
The synthetic resin container manufacturing system M includes a raw material supply device 1 that supplies synthetic resin raw materials, a molding device 2 consisting of an injection molding device and a blow molding device, a control device 3 that controls molding conditions of the molding device, and a molded PET container. It consists of a bottle inspection device 4 for inspecting, a continuous automatic wall thickness inspection device 5 for automatically and continuously measuring the wall thickness of PET containers, and a sorting device 6 for sorting out good and defective PET containers.

第8図の従来例と異なる点は、ボトル検査装置4と選別
装置6の間に連続自動肉厚検査装置5を有している点で
あり、これにより成形後直ちに肉厚測定を行い、データ
をフィードバックできるので、成形工程への対処が素早
く出来ることになる。
The difference from the conventional example shown in FIG. 8 is that a continuous automatic wall thickness inspection device 5 is provided between the bottle inspection device 4 and the sorting device 6, which measures the wall thickness immediately after molding and data Since the information can be fed back, it is possible to quickly respond to the molding process.

原料供給装置1は主樹脂としてのポリエチレンテレフタ
レート系合成樹脂と共射出用樹脂としての耐熱性樹脂(
例えば、ボリアリレート系樹脂)および紫外線吸収樹脂
(例えば、ベンゾトリアゾール系樹脂)の混合樹脂を成
形装置に供給する。
The raw material supply device 1 is configured to supply a polyethylene terephthalate synthetic resin as a main resin and a heat-resistant resin (as a co-injection resin).
A mixed resin of a polyarylate resin (for example, a polyarylate resin) and an ultraviolet absorbing resin (for example, a benzotriazole resin) is supplied to a molding device.

成形装置2は射出成形装置およびブロー成形装置よりな
り、射出成形装置は原料供給装置1より(J(給された
樹脂を共射出してブロー成形用多層型パリソンを作製し
、ブロー成形装置に送る。ブロー成形装置に送られたパ
リソンは延伸ブロー成形され、容器の形状に加工される
。なお、これらの成形装置は制御装置3により成形条件
が制御されている。
The molding device 2 consists of an injection molding device and a blow molding device. The parison sent to the blow molding device is stretch blow molded and processed into the shape of a container.The molding conditions of these molding devices are controlled by a control device 3.

次に、成形装置2により成形された合成樹脂容器はボト
ル検査装置4に送られる。
Next, the synthetic resin container molded by the molding device 2 is sent to a bottle inspection device 4.

連続自動肉厚測定装置5は第2図に示すように、全体の
制御とデータの演算処理をおこなう制御演算部7と肉厚
を検査する検査部8よりなっている。
As shown in FIG. 2, the continuous automatic wall thickness measuring device 5 includes a control calculation section 7 that performs overall control and data calculation processing, and an inspection section 8 that inspects wall thickness.

制ia1]演算部7は装置全体の制御を行う主制御部9
、検査部8等とのデータのやりとりを制御するインタフ
ェース制御部(IF制御部)10、およびデータの演算
処理を行う演算処理部11よりなっている。
Control ia1] The calculation unit 7 is a main control unit 9 that controls the entire device.
, an interface control section (IF control section) 10 that controls data exchange with the inspection section 8, etc., and an arithmetic processing section 11 that performs data arithmetic processing.

検査部8はPET容器内に挿入される挿入管12、挿入
管12のPET容器内への挿入およびPET容器からの
取出しを行う挿入管昇降制御部13、測定用赤外線を発
生する光源部16、測定用赤外線を挿入管12に投光す
る投光部14、挿入管1.2を通り、PET容器胴壁を
透過した透過赤外線量をセンサにより電気信号に変換す
るセンサ受光部15およびPET容器を搬送用コンベア
から検査位置まで搬送し、測定時にはPET容器をPE
T容器の周方向に回転させる容器搬送回転部17よりな
っている。
The inspection section 8 includes an insertion tube 12 inserted into the PET container, an insertion tube elevation control section 13 that inserts the insertion tube 12 into the PET container and takes it out from the PET container, a light source section 16 that generates infrared radiation for measurement, A light projecting section 14 that projects infrared rays for measurement into the insertion tube 12, a sensor light receiving section 15 that converts the amount of transmitted infrared rays that passed through the insertion tube 1.2 and passed through the body wall of the PET container into an electrical signal using a sensor, and the PET container. The PET container is transported from the transport conveyor to the inspection position, and the PET container is
It consists of a container conveyance rotating section 17 that rotates the T container in the circumferential direction.

挿入管12は円筒形状をしており、挿入管昇降制御部1
3により測定するPET容器18内へ挿入され、測定用
赤外線19をPET容器18内へ導く。
The insertion tube 12 has a cylindrical shape, and the insertion tube elevation control section 1
3 into the PET container 18 to be measured, and guides the measuring infrared ray 19 into the PET container 18.

第3図にセンサ受光部15の概要を示す。FIG. 3 shows an outline of the sensor light receiving section 15.

センサ受光部15はケーシング20、特定周波数領域以
外の赤外線をカットする干渉フィルタ21、入射した赤
外線量に応じた電気信号に変換するPbS (硫化鉛)
赤外線センサ22、PbS赤外線センサ22の周囲温度
を一定に保つようにPbS赤外線センサに内蔵された電
子冷却素子23、PbS赤外線センサ22の出力信号を
増幅する増幅アンプ24、PbS赤外線センサ22およ
び増幅アンプ24に電源を供給するだめの電源コネクタ
25、増幅アンプ24により増幅された出力信号を出力
するための出力コネクタ26、および電子冷却素子23
を制御するための冷却制御用コネクタ27よりなってい
る。
The sensor light receiving section 15 includes a casing 20, an interference filter 21 that cuts infrared rays outside a specific frequency range, and PbS (lead sulfide) that converts into an electrical signal according to the amount of incident infrared rays.
The infrared sensor 22, the electronic cooling element 23 built into the PbS infrared sensor to keep the ambient temperature of the PbS infrared sensor 22 constant, the amplification amplifier 24 that amplifies the output signal of the PbS infrared sensor 22, the PbS infrared sensor 22, and the amplification amplifier. 24, an output connector 26 for outputting the output signal amplified by the amplifier 24, and the electronic cooling element 23.
It consists of a cooling control connector 27 for controlling.

干渉フィルタ21は中心透過波長は約2.6μmのもの
であり、干渉フィルタ21を透過した赤外線の光量はP
bS量子形赤外線センサ22により電気信号に変換され
、増幅アンプ23により増幅されて、IF制御部10を
介し、主制御部9に出力される。
The interference filter 21 has a center transmission wavelength of approximately 2.6 μm, and the amount of infrared light transmitted through the interference filter 21 is P.
The signal is converted into an electrical signal by the bS quantum infrared sensor 22, amplified by the amplification amplifier 23, and output to the main control unit 9 via the IF control unit 10.

なお、この時PbS赤外線センサ22を安定に動作させ
るため、ペルチェ効果を利用した電子冷却素子23によ
りPbS量子量子性赤外線センサ22付近度を約10℃
に保っている。
At this time, in order to operate the PbS infrared sensor 22 stably, the temperature near the PbS quantum infrared sensor 22 is kept at about 10 degrees Celsius by the electronic cooling element 23 that utilizes the Peltier effect.
It is kept in

第4図に光源部]−6および投光部14の概要を示す。FIG. 4 shows an outline of the light source unit]-6 and the light projecting unit 14.

光源部16はケーシング28、光源29、光源29の上
方に位置する凹面鏡30、光源2つの下方に位置するチ
ョッパ31および面状発熱体32よりなっており、光源
部16の下部に投光部14が位置している。光源29に
は、例えばニクロム線等の赤外線を発光するものを用い
る。赤外線は波長2〜5μmのものを用いるのが望まし
い。
The light source section 16 includes a casing 28, a light source 29, a concave mirror 30 located above the light source 29, a chopper 31 located below the two light sources, and a planar heating element 32. is located. For the light source 29, one that emits infrared rays, such as a nichrome wire, is used. It is desirable to use infrared light with a wavelength of 2 to 5 μm.

凹面鏡30は光源からの赤外線を集光させるためのもの
である。
The concave mirror 30 is for condensing infrared rays from a light source.

チョッパ31−はチョツパ板33および回転用モータ3
4で構成されており、凹面鏡30により集光された赤外
光をチョッピングすることにより断続的な光に(交播波
形)とするためのものである。
The chopper 31- includes a chopper plate 33 and a rotating motor 3.
4, which chops the infrared light focused by the concave mirror 30 to make it into intermittent light (alternating waveform).

チョッピングを行う理由は、前述のPb5ffi子形赤
外線センサ22の特性上ドリフトおよびオフセットが生
じるので、−旦交播波形に変換して、ドリフトおよびオ
フセットなどの変動要因を除去して高精度な測定を行う
ためである。チョッパの形式としては、本実施例のよう
な機械式のものや、電気的に光源をチョッピングする電
気式のもの等が考えられる。
The reason why chopping is performed is that drift and offset occur due to the characteristics of the Pb5ffi infrared sensor 22, so it is converted to an alternating waveform to remove fluctuation factors such as drift and offset, and perform highly accurate measurement. It is for the purpose of doing. As the type of chopper, a mechanical type as in this embodiment, an electric type that chops the light source electrically, etc. can be considered.

面状発熱体32はケーシング28の全面または数面に設
けられており、ケーシング28内の温度を一定に保つこ
とにより、光源29のゆらぎ等を押え、測定の安定性を
保つように設けられている。
The planar heating element 32 is provided on the entire surface or several surfaces of the casing 28, and is provided to keep the temperature inside the casing 28 constant, thereby suppressing fluctuations of the light source 29 and maintaining measurement stability. There is.

これにより、ケーシング28内の温度は約40℃に保つ
ように制御されている。
Thereby, the temperature inside the casing 28 is controlled to be maintained at approximately 40°C.

投光部14は反射鏡35およびレンズ群36から構成さ
れており、光源29で発生された赤外線を平行光として
挿入管12に伝達する。
The light projection unit 14 is composed of a reflecting mirror 35 and a lens group 36, and transmits the infrared rays generated by the light source 29 to the insertion tube 12 as parallel light.

第5図に容器搬送回転部17の概要を示す。FIG. 5 shows an outline of the container conveyance rotation section 17.

容器搬送回転部17はターンテーブル37、ターンテー
ブル上に90度毎に設けられ、PET容器を把持、開放
するための4つの把持部38、PET容器の導入、排出
時に把持部を押圧して把持部を開放させる抑圧部39お
よび抑圧部3つを作動するための抑圧用シリンダ部40
よりなる。
The container conveyance rotation unit 17 includes a turntable 37, four gripping parts 38 provided at every 90 degrees on the turntable, and four gripping parts 38 for gripping and opening the PET container. a suppression section 39 for opening the section, and a suppression cylinder section 40 for operating the three suppression sections.
It becomes more.

さらに前記ターンテーブル37にはその直径方向にPE
T容器の搬入用および搬出用コンベア41.42が接続
されている。
Further, the turntable 37 has PE in its diameter direction.
Conveyors 41, 42 for carrying in and carrying out T-containers are connected.

把持部38は開閉動作によりPET容器を把持、開放す
るための1対の3つのアーム部分からなる把持体138
を備え、この把持体138はクランプアーム部43と、
押圧部39により押圧されてクランプアーム部43を開
閉するための開閉用アーム部44と、クランプアーム部
43を閉じるための付勢力を与える復帰用スプリング4
8が取付けられる復帰アーム部45とからなり、この復
帰アーム部45は復帰時に復帰位置調整ネジ49に当接
する。また、1対の把持体138間には測定時にPET
容器を回転する駆動回転ローラ46が設けられ、前記ク
ランプアーム部43の先端部には付けられ駆動回転ロー
ラ46と協働してPET容器を回転する2個の従動回転
ローラ47が取付けられている。
The grip part 38 is a grip body 138 consisting of a pair of three arm parts for gripping and opening the PET container by opening and closing operations.
This gripping body 138 includes a clamp arm portion 43,
An opening/closing arm portion 44 that is pressed by the pressing portion 39 to open and close the clamp arm portion 43, and a return spring 4 that provides an urging force to close the clamp arm portion 43.
8 is attached, and this return arm part 45 comes into contact with a return position adjustment screw 49 at the time of return. In addition, there is a PET between the pair of grips 138 during measurement.
A driving rotating roller 46 for rotating the container is provided, and two driven rotating rollers 47 are attached to the tip of the clamp arm section 43 and working together with the driving rotating roller 46 to rotate the PET container. .

次に動作について第6図のフローチャートを参照して説
明する。
Next, the operation will be explained with reference to the flowchart shown in FIG.

検査準備 まず最初に測定の安定性を確保するため光源29よびセ
ンサ受光部15の予備運転をしておく(ステップSl)
Inspection Preparation First, in order to ensure measurement stability, the light source 29 and sensor light receiving section 15 are preliminarily operated (step Sl).
.

PET容器の搬入 搬入用コンベア41てPET容器18が導入位置91に
搬入されこの導入が位置検出センサ(図示せず)により
確認されると(ステップS2)、押圧部39が押圧用シ
リンダ部40により作動し自動連続肉厚検査装置のPE
T容器導入位置91にある把持体138の開閉用アーム
部44は押圧部39によって押圧され、これによりクラ
ンプアーム部43は復帰用スプリング48の付勢力に抗
してピン100を軸として押し広げられ、それとともに
復帰用アーム部45は復帰位置調整用ネジ4つから離れ
る。
When the PET container 18 is carried into the introduction position 91 by the PET container carrying-in conveyor 41 and this introduction is confirmed by a position detection sensor (not shown) (step S2), the pressing part 39 is moved by the pressing cylinder part 40. PE operating automatic continuous wall thickness inspection device
The opening/closing arm portion 44 of the gripper 138 at the T-container introduction position 91 is pressed by the pressing portion 39, and the clamp arm portion 43 is thereby pushed apart about the pin 100 against the biasing force of the return spring 48. At the same time, the return arm portion 45 separates from the four return position adjusting screws.

次に押し広げられた状態を維持したままでPET容器1
8を搬入用コンベア41により1対の把持体138内に
導入し、PET容器18が駆動回転ローラ46に接触す
ゐ位置まで導入されたことが位置検出センサ(図示せず
)により確認されると、抑圧部39は押圧するのをやめ
、復帰用スプリング48の付勢力により復帰用アーム部
45は復帰位置調整用ネジ位置49に当接するとともに
、PET容器18は駆動回転ローラ46および従動回転
ローラ47.47により、確実に把持される(ステップ
S3)。
Next, while maintaining the expanded state, insert PET container 1.
8 into the pair of gripping bodies 138 by the conveyor 41 for carrying in, and when it is confirmed by a position detection sensor (not shown) that the PET container 18 has been introduced to the position where it contacts the driving rotation roller 46. , the suppression part 39 stops pressing, and the return arm part 45 comes into contact with the return position adjustment screw position 49 due to the biasing force of the return spring 48, and the PET container 18 is moved against the driving rotation roller 46 and the driven rotation roller 47. .47, it is securely gripped (step S3).

次にターンテーブル37が図面上時計回りに回転し、P
ET容器18を把持したまま検査位置92まで搬送しタ
ーンテーブル37は回転を停止する(ステップS4)。
Next, the turntable 37 rotates clockwise in the drawing, and P
The ET container 18 is conveyed to the inspection position 92 while being held, and the turntable 37 stops rotating (step S4).

肉厚?#1定 駆動回転ローラ46が回転し、それにともないPET容
器90および2個の従動回転ローラ47が回転しくステ
ップS5)、同時に挿入管昇降制御部13により挿入管
12がPET容器18内に挿入される(ステップS6)
。PET容器の回転数が一定回転数に達すると、主制御
部9は肉厚測定を開始するように命令する(ステップS
7)。
Thick? The #1 constant drive rotating roller 46 rotates, and accordingly the PET container 90 and the two driven rotating rollers 47 rotate (Step S5), and at the same time, the insertion tube 12 is inserted into the PET container 18 by the insertion tube elevation control section 13. (Step S6)
. When the rotation speed of the PET container reaches a certain rotation speed, the main control unit 9 instructs to start wall thickness measurement (step S
7).

投光部14より投光された赤外線(波長2〜5μm)は
挿入管12内を通り、PET容器18の胴壁で一部吸収
されてセンサ受光部15に到達し、センサ受光部15に
より電気信号に変換され、IF制御部10を介して、主
制御部9に出力される(ステップS8)。
The infrared light (wavelength 2 to 5 μm) emitted from the light projecting section 14 passes through the insertion tube 12, is partially absorbed by the body wall of the PET container 18, reaches the sensor light receiving section 15, and is converted into electricity by the sensor light receiving section 15. It is converted into a signal and output to the main control section 9 via the IF control section 10 (step S8).

演算処理 主制御部9は演算処理部11に出力信号データを転送し
、出力信号データを肉厚データに変換するように命令す
る。演算処理部11は第7図に示すような関係より、測
定赤外線量に対応する出力信号データを肉厚データに変
換し、主制御部9に出ツノする(ステップS9)。主制
御部9はIF制御装置10を介して成形装置2の制御装
置3に肉厚データを出力する(ステップ510)。
The arithmetic processing main control section 9 transfers the output signal data to the arithmetic processing section 11 and instructs it to convert the output signal data into wall thickness data. Based on the relationship shown in FIG. 7, the arithmetic processing section 11 converts the output signal data corresponding to the measured amount of infrared rays into wall thickness data, and outputs the data to the main control section 9 (step S9). The main control unit 9 outputs wall thickness data to the control device 3 of the molding device 2 via the IF control device 10 (step 510).

挿入管の引出し その後挿入管昇降制御部13は挿入管]2を引出しくス
テップ511)、駆動回転ローラ回転用モータは回転を
停止し、PET容器18は回転を停止する(ステップ5
12)。
Pulling out the insertion tube After that, the insertion tube elevation control unit 13 pulls out the insertion tube [2] (Step 511), the drive rotation roller rotation motor stops rotating, and the PET container 18 stops rotating (Step 5).
12).

PET容器の搬出 次に再びターンテーブルはPET容器18を把持したま
ま回転し、排出位置93に把持部38か到達すると回転
を停止する(ステップ813)。
After the PET container is carried out, the turntable rotates again while gripping the PET container 18, and stops rotating when the grip portion 38 reaches the discharge position 93 (step 813).

抑圧用シリンダ部40が作動し、抑圧部3つによって把
持体138の開閉用アーム部44が押圧されることによ
り、クランプアーム部43は復帰用スプリング48の付
勢力に抗してビン100を軸として押し広げられ、容器
は開放される(ステップ514)。それとともに復帰用
アーム部45は復帰位置調整用ネジ49から離れる。
The suppressing cylinder section 40 operates and the three suppressing sections press the opening/closing arm section 44 of the gripping body 138, so that the clamp arm section 43 pivots the bottle 100 against the biasing force of the return spring 48. The container is opened (step 514). At the same time, the return arm portion 45 separates from the return position adjustment screw 49.

次に押し広げられた状態を維持したままでPET容器を
搬出用コンベア42によりクランプアーム部43外に搬
出する(ステップ515)。
Next, the PET container is transported out of the clamp arm section 43 by the transport conveyor 42 while maintaining the expanded state (step 515).

PET容器18が所定位置まで排出されたことが位置検
出センサ(図示せず)により確認されると、抑圧用シリ
ンダ部40は作動を停止し、抑圧部3つは押圧するのを
やめ、復帰用スプリング48の付勢力により復帰用アー
ム部45は復帰位置調整用ネジ4つに当接し、クランプ
アーム部43は閉じられる。その後、ターンテーブル3
7は再び回転して、以上の動作を繰返す。
When a position detection sensor (not shown) confirms that the PET container 18 has been discharged to a predetermined position, the suppression cylinder section 40 stops operating, the three suppression sections stop pressing, and the return cylinder section 40 stops operating. Due to the biasing force of the spring 48, the return arm portion 45 comes into contact with the four return position adjustment screws, and the clamp arm portion 43 is closed. Then turntable 3
7 rotates again and repeats the above operation.

尚、PET容器18は搬出用コンベア42により次の工
程へ搬送される。
Incidentally, the PET container 18 is conveyed to the next process by an unloading conveyor 42.

フィードバック制御 一方、肉厚データを受取った成形装置2の制御装置3は
そのデータをもとに成形条件の制御を行つ0 〔発明の効果〕 本発明は、以上のように構成したので、合成樹脂製容器
製造システムにおいてPET容器の肉厚データを自動的
に連続して測定できるため、肉厚データを成形工程に直
ちにフィードバックできるとともに、肉厚測定の手間を
削減することができる。
Feedback control On the other hand, the control device 3 of the molding device 2 that has received the wall thickness data controls the molding conditions based on the data. Since the wall thickness data of PET containers can be automatically and continuously measured in the resin container manufacturing system, the wall thickness data can be immediately fed back to the molding process, and the time and effort of wall thickness measurement can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の合成樹脂製容器製造システムの原理説
明図、第2図は本発明の連続自動肉厚検査装置の概要図
、第3図は本発明のセンサ受光部の概要図、第4図は本
発明の光源部および投光部の概要図、第5図は本発明の
容器搬送回転部の概要図、第6図は本発明の処理フロー
チャート、第7図は本発明のセンサ受光部の出力電圧と
PET容器の肉厚の関係図、第8図は従来の合成樹脂製
容器製造システムの原理説明図、第9図は従来の肉厚検
査装置の概要図である。 1・・・原料供給装置、2・・・成形装置、3・・・制
御装置、4・・・ボトル検査装置、5・・・連続自動肉
厚検査装置、6・・・選別装置、7・・・制御演算部、
8・・・検査部、9・・・主制御部、10・・・インタ
フェース制御部、11・・・演算処理部、12・・・挿
入検査部、13・・・挿入検査部昇降制御装置、14・
・・投光部、15・・・センサ受光部、16・・・光源
部、17・・・容器搬送回転部、18・・・PET容器
、19・・・測定用赤外線、20・・・ケーシング、2
1・・・干渉フィルター22・・・PbS赤外線センサ
、23・・・電子冷却素子、24・・・増幅アンプ、2
8・・・ケーシング、29・・・光源、30・・・凹面
鏡、31・・・チョッパ、32・・・面状発熱体、33
・・・チョツパ板、34・・・回転用モータ、35・・
・反射鏡、36・・・レンズ群、37・・・ターンテー
ブル、38・・・把持部、39・・・押圧部、40・・
・押圧用シリンダ部、41・・・搬入用コンベア、42
・・・搬出用コンベア、43・・・クランプアーム部、
44・・開閉用アーム部、45・・・復帰用アーム部、
46・・・駆動回転ローラ、47・・・従動回転ローラ
、48・・・復帰用スプリング、49・・・復帰位置調
整ネジ、91・・・導入位置、92・・・検査位置、9
3・・・排出位置。
Fig. 1 is an explanatory diagram of the principle of the synthetic resin container manufacturing system of the present invention, Fig. 2 is a schematic diagram of the continuous automatic wall thickness inspection device of the present invention, and Fig. 3 is a schematic diagram of the sensor light receiving section of the present invention. FIG. 4 is a schematic diagram of the light source section and light projecting section of the present invention, FIG. 5 is a schematic diagram of the container conveyance rotation section of the present invention, FIG. 6 is a processing flowchart of the present invention, and FIG. 7 is a diagram of sensor light reception of the present invention. FIG. 8 is a diagram explaining the principle of a conventional synthetic resin container manufacturing system, and FIG. 9 is a schematic diagram of a conventional wall thickness inspection device. DESCRIPTION OF SYMBOLS 1... Raw material supply device, 2... Molding device, 3... Control device, 4... Bottle inspection device, 5... Continuous automatic wall thickness inspection device, 6... Sorting device, 7. ...control calculation section,
8... Inspection section, 9... Main control section, 10... Interface control section, 11... Arithmetic processing section, 12... Insertion inspection section, 13... Insertion inspection section elevation control device, 14・
... Light projecting section, 15... Sensor light receiving section, 16... Light source section, 17... Container transport rotation section, 18... PET container, 19... Infrared rays for measurement, 20... Casing ,2
1... Interference filter 22... PbS infrared sensor, 23... Electronic cooling element, 24... Amplification amplifier, 2
8... Casing, 29... Light source, 30... Concave mirror, 31... Chopper, 32... Planar heating element, 33
...Chopper board, 34...Rotation motor, 35...
・Reflector, 36... Lens group, 37... Turntable, 38... Gripping part, 39... Pressing part, 40...
・Press cylinder part, 41... Carrying conveyor, 42
... Carrying out conveyor, 43... Clamp arm section,
44... Opening/closing arm part, 45... Returning arm part,
46... Drive rotation roller, 47... Driven rotation roller, 48... Return spring, 49... Return position adjustment screw, 91... Introduction position, 92... Inspection position, 9
3... Discharge position.

Claims (1)

【特許請求の範囲】[Claims] 合成樹脂製容器の成形工程並びに製品検査工程を有する
合成樹脂製容器の製造システムにおいて、製造ライン中
に連続自動肉厚検査装置を設け、合成樹脂製容器成形装
置により成形された容器の肉厚を前記連続自動肉厚検査
装置で連続的に測定し、測定データに基づいて前記合成
樹脂製容器成形装置をフィードバック制御することを特
徴とする合成樹脂製容器製造システム。
In a synthetic resin container manufacturing system that includes a synthetic resin container molding process and a product inspection process, a continuous automatic wall thickness inspection device is installed in the production line to check the wall thickness of containers molded by the synthetic resin container molding device. A synthetic resin container manufacturing system, characterized in that the continuous automatic wall thickness inspection device continuously measures the thickness, and the synthetic resin container molding device is feedback-controlled based on the measurement data.
JP63223921A 1988-09-07 1988-09-07 Manufacturing system for synthetic resin vessel Pending JPH0272930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223921A JPH0272930A (en) 1988-09-07 1988-09-07 Manufacturing system for synthetic resin vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223921A JPH0272930A (en) 1988-09-07 1988-09-07 Manufacturing system for synthetic resin vessel

Publications (1)

Publication Number Publication Date
JPH0272930A true JPH0272930A (en) 1990-03-13

Family

ID=16805800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223921A Pending JPH0272930A (en) 1988-09-07 1988-09-07 Manufacturing system for synthetic resin vessel

Country Status (1)

Country Link
JP (1) JPH0272930A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025838A (en) * 2002-03-26 2004-01-29 Agr Internatl Inc Method for monitoring wall thickness of blow molded plastic container, and apparatus therefor
JP2008126636A (en) * 2006-11-24 2008-06-05 Dainippon Printing Co Ltd Compression molding method for preform, and preform compression molding device
JP2010524737A (en) * 2007-04-30 2010-07-22 スィデル・パルティスィパスィヨン Transfer device and linear type equipment for container production
CN110281515A (en) * 2019-06-28 2019-09-27 重庆瑞霆塑胶有限公司 Thin-wall tube width control system
WO2019225609A1 (en) * 2018-05-22 2019-11-28 株式会社フコク Resin blow-molded article inspection method, inspection device, and resin blow-molded article manufacturing device provided with said inspection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025838A (en) * 2002-03-26 2004-01-29 Agr Internatl Inc Method for monitoring wall thickness of blow molded plastic container, and apparatus therefor
JP4606704B2 (en) * 2002-03-26 2011-01-05 エイジーアール インターナショナル,インコーポレイテッド Method and apparatus for monitoring wall thickness of blow molded plastic containers
JP2008126636A (en) * 2006-11-24 2008-06-05 Dainippon Printing Co Ltd Compression molding method for preform, and preform compression molding device
JP2010524737A (en) * 2007-04-30 2010-07-22 スィデル・パルティスィパスィヨン Transfer device and linear type equipment for container production
WO2019225609A1 (en) * 2018-05-22 2019-11-28 株式会社フコク Resin blow-molded article inspection method, inspection device, and resin blow-molded article manufacturing device provided with said inspection device
CN110281515A (en) * 2019-06-28 2019-09-27 重庆瑞霆塑胶有限公司 Thin-wall tube width control system
CN110281515B (en) * 2019-06-28 2021-05-28 重庆瑞霆塑胶有限公司 Thin-walled tube width control system

Similar Documents

Publication Publication Date Title
US5139406A (en) Apparatus and system for inspecting wall thickness of synthetic resin containers
JP5550134B2 (en) Inspection method for defective sealing of containers using infrared rays
US5049750A (en) Apparatus and system for inspecting wall thickness of synthetic resin containers
US7253892B2 (en) Method and apparatus for measuring a characteristic of a plastic container
US5259716A (en) Container conveyor for conveying a container to an inspecting station
JPH02256254A (en) Temperature measuring method for semiconductor wafer and semiconductor manufacturing apparatus
KR20150118492A (en) X-ray Apparatus for Inspecting Object Automatically Using Controlled Transfer Structure
JPH0272930A (en) Manufacturing system for synthetic resin vessel
US20220307989A1 (en) Device for optical inspection of preforms
JP2010197054A (en) Inspection apparatus of sealing performance in sealed section
JP2793203B2 (en) Thickness inspection device for synthetic resin containers
JP2753002B2 (en) Thickness inspection device for synthetic resin containers
JP2710360B2 (en) Inspection equipment for synthetic resin containers
JP2781184B2 (en) Thickness inspection device for synthetic resin containers
CN204448621U (en) The location of food multi-packaging thing nondestructive detection system and device for eliminating
JP2007191179A (en) Method and device for detecting unsealed letter
JPH0953920A (en) Instrument and method for measuring coating film thickness of bottle
EP3232185B1 (en) Apparatus for detecting micro-cracks in lids
JPH03105238A (en) Apparatus for judging defective molded piece
CN112105915A (en) Method and device for checking a moulding process of plastic preforms into plastic containers
CN211627348U (en) Detection device based on polarized light
JPH0210256A (en) Method for detecting flaw in ceramic board
JP2002122478A (en) Method for removing temperature nonconforming item of moving article
CN114871135B (en) Semiconductor breakdown testing device and method
CN218340400U (en) Bottle detects conveying system