JPH027233Y2 - - Google Patents

Info

Publication number
JPH027233Y2
JPH027233Y2 JP44784U JP44784U JPH027233Y2 JP H027233 Y2 JPH027233 Y2 JP H027233Y2 JP 44784 U JP44784 U JP 44784U JP 44784 U JP44784 U JP 44784U JP H027233 Y2 JPH027233 Y2 JP H027233Y2
Authority
JP
Japan
Prior art keywords
cavity
wall
combustion chamber
diesel engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP44784U
Other languages
Japanese (ja)
Other versions
JPS60112630U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP44784U priority Critical patent/JPS60112630U/en
Publication of JPS60112630U publication Critical patent/JPS60112630U/en
Application granted granted Critical
Publication of JPH027233Y2 publication Critical patent/JPH027233Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【考案の詳細な説明】 本考案はデイーゼル機関の燃焼室、特に、噴射
された燃料の空気利用率を向上させるキヤビテイ
ーを備えたデイーゼル機関の燃焼室に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion chamber of a diesel engine, and more particularly to a combustion chamber of a diesel engine with a cavity that improves the air utilization rate of injected fuel.

デイーゼル機関の燃焼室には、ピストンが圧縮
上死点近傍に達する毎に燃料が噴射される。噴射
された燃料は燃焼室内の空気中に分散し、空気中
の酸素と化学的に結合し、燃焼する。これにより
得られた熱エネルギーはデイーゼル機関により、
機械的な回転力に変換され出力される。このよう
なデイーゼル機関では噴射された燃料を出来るだ
け燃焼室内で完全燃焼させ出力向上を計る必要が
あり、燃料の燃焼条件の改良が計られている。
Fuel is injected into the combustion chamber of a diesel engine every time the piston reaches near compression top dead center. The injected fuel is dispersed in the air within the combustion chamber, chemically combines with oxygen in the air, and burns. The heat energy obtained from this is then used by a diesel engine.
It is converted into mechanical rotational force and output. In such a diesel engine, it is necessary to completely burn the injected fuel in the combustion chamber as much as possible in order to improve the output, and efforts are being made to improve the fuel combustion conditions.

ところで、ピストン頂部にキヤビテイーを形成
し、このキヤビテイー内に吸入行程時にスワール
を発生させ、スワール中に燃料を直接噴射して燃
料の空気との混合を促進させ、空気利用率の向上
を計る直接噴射式のデイーゼル機関では、燃焼室
の要部を形成するキヤビテイーの形状によりその
燃焼特性の良否が変化する。
By the way, in direct injection, a cavity is formed at the top of the piston, a swirl is generated in this cavity during the intake stroke, and fuel is directly injected during the swirl to promote mixing of fuel with air and improve air utilization efficiency. In this type of diesel engine, the quality of its combustion characteristics varies depending on the shape of the cavity that forms the main part of the combustion chamber.

たとえば特開昭55−75530号公報に開示される
ように、NOx生成量を押える目的でキヤビテイ
ーの内周方向に一様に凹所を形成することもあ
る。更に、第1図および第2図に示すように、燃
焼室1に4噴孔を有する噴射ノズ2を用い燃料を
噴射する直接噴射式デイーゼル機関では、各噴孔
からの噴霧束Gをキヤビテイーの内周壁3の方向
である4方向に噴射する。この場合、各噴霧束G
はスワールSの働きをも受け、キヤビテイー内部
に均等となるよう分散され、燃焼する。しかし、
第2図にも示されるように、キヤビテイーの内周
壁3に向つて進んだ噴霧束Gの多くは底壁4側に
拡散し、キヤビテイー中心部に集まる。このた
め、キヤビテイー中央空間域Aの空気は燃料に出
合う比率が少なく、空気利用率の悪い領域を生じ
ている。
For example, as disclosed in Japanese Unexamined Patent Publication No. 55-75530, recesses are sometimes formed uniformly in the inner circumferential direction of the cavity for the purpose of suppressing the amount of NOx produced. Furthermore, as shown in FIGS. 1 and 2, in a direct injection diesel engine that injects fuel using an injection nozzle 2 having four injection holes in a combustion chamber 1, the spray bundle G from each injection hole is transferred to the cavity. It is injected in four directions, which are the directions of the inner peripheral wall 3. In this case, each spray bundle G
is also affected by the swirl S, is evenly distributed inside the cavity, and burns. but,
As shown in FIG. 2, most of the spray bundle G that has advanced toward the inner circumferential wall 3 of the cavity is diffused toward the bottom wall 4 and collected at the center of the cavity. For this reason, the proportion of air in the cavity central space area A that encounters fuel is small, creating an area with poor air utilization.

本考案は空気利用率を増大させることのできる
デイーゼル機関の燃焼室を提供することを目的と
する。
The object of the present invention is to provide a combustion chamber for a diesel engine that can increase air utilization.

本考案はキヤビテイーの内周壁を、そのキヤビ
テイーの深さ方向に一様に連続して延びる連続壁
部と、キヤビテイー中心に向け突出するよう湾曲
してから不連続的に低壁側に延びる不連続壁部と
を交互に内周方向に配列することにより形成した
ことを特徴とする。
The present invention consists of a continuous wall portion that extends uniformly and continuously in the depth direction of the cavity, and a discontinuous wall portion that curves to protrude toward the center of the cavity and then discontinuously extends toward the lower wall side. It is characterized in that it is formed by alternately arranging the wall portions in the inner circumferential direction.

以下、本考案を添付図面と共に説明する。 The present invention will be described below with reference to the accompanying drawings.

第4図にはデイーゼル機関のシリンダブロツク
10とピストン11およびシリンダヘツド12が
示されており、ピストン11は圧縮上死点近傍に
達している。この時ピストンとシリンダヘツド1
2間の燃焼室13は主にピストン頂部111に凹
設されたキヤビテイー内部とピストン頂面とシリ
ンダヘツド12間のわずかな隙間とで形成され
る。このような燃焼室13にはシリンダヘツド1
2に支持された燃料噴射ノズル14により燃料噴
射がなされる。この場合、空気の多いキヤビテイ
ー内部に燃料微粉が拡散するよう、ノズルの噴孔
の向きは形成される。この燃料噴射ノズルは6つ
の噴孔を有し、平面視において、第3図に示すよ
うに、キヤビテイーの環状の内周壁15の方向に
均等間隔で噴射を行なう。ピストン頂部111の
中央のキヤビテイーは円形の開口端16と、この
開口端よりキヤビテイーの深さ方向Dに向け形成
された内周壁15と、この内周壁下端に続く底壁
17とで形成される。第3図に示すようにキヤビ
テイーの内周壁15はその平面視において、内周
方向に向つて6区分され、各区分は2つの異なつ
た形状の壁部が交互に配列されることにより形成
される。この2つの異なつた、形状の壁部の内の
一方の壁部はキヤビテイーの深さ方向Dに連続し
た一様なフラツトな連続壁部151に形成され、
他方は不連続壁部152に形成される。この不連
続壁部は深さ方向Dに向つて、深さh1までは連
続壁部151側と同様に、それに続く深さh1よ
りh2までの間はキヤビテイーの中央に向け壁面
を突出するような湾曲面aに、更に、湾曲面aと
底壁17間は湾曲面aの延長方向に対し折曲した
方向に延びる面にそれぞれ形成されている。な
お、上述の燃料噴射ノズル14の6つの噴孔は第
4図に示すように、側面視において、各連続壁部
151に対しての噴射方向より各不連続壁部15
2に対しての噴射方向を上向に保持しており、こ
れにより、不連続壁部152に向う燃料の噴霧束
Gを湾曲面aより上側(第4図において)に衝突
させている。
FIG. 4 shows the cylinder block 10, piston 11, and cylinder head 12 of a diesel engine, and the piston 11 has reached near the compression top dead center. At this time, the piston and cylinder head 1
The combustion chamber 13 between the two pistons is mainly formed by the inside of a cavity recessed in the piston top 111 and a small gap between the piston top surface and the cylinder head 12. In such a combustion chamber 13, a cylinder head 1 is installed.
Fuel injection is performed by a fuel injection nozzle 14 supported by 2. In this case, the direction of the injection hole of the nozzle is determined so that the fine fuel powder is diffused inside the cavity where there is a lot of air. This fuel injection nozzle has six injection holes, and injects fuel at equal intervals in the direction of the annular inner circumferential wall 15 of the cavity, as shown in FIG. 3 in plan view. The central cavity of the piston top 111 is formed by a circular open end 16, an inner circumferential wall 15 extending from the open end in the depth direction D of the cavity, and a bottom wall 17 continuing to the lower end of the inner circumferential wall. As shown in FIG. 3, the inner circumferential wall 15 of the cavity is divided into six sections in the inner circumferential direction in plan view, and each section is formed by alternately arranging two different shaped wall sections. . One of these two differently shaped wall portions is formed into a uniform flat continuous wall portion 151 that continues in the depth direction D of the cavity,
The other is formed into a discontinuous wall portion 152 . This discontinuous wall section extends in the depth direction D up to the depth h1 in the same way as the continuous wall section 151 side, and from the subsequent depth h1 to h2, the wall surface protrudes toward the center of the cavity. The curved surface a and the space between the curved surface a and the bottom wall 17 are respectively formed as surfaces extending in a direction bent with respect to the extending direction of the curved surface a. Note that, as shown in FIG. 4, the six injection holes of the fuel injection nozzle 14 described above are located closer to each discontinuous wall portion 15 from the injection direction with respect to each continuous wall portion 151 in a side view.
2 is maintained upward, thereby causing the fuel spray bundle G directed toward the discontinuous wall portion 152 to collide above the curved surface a (in FIG. 4).

このようなデイーゼル機関の燃焼室13はピス
トン11がシリンダブロツク10内で往復運動す
ることにより、その容積を変化させ、このピスト
ンが圧縮上死点近傍に達した際、燃料噴射を受け
る。この場合、6つの噴孔よりの各噴霧束Gはそ
れぞれ連続壁部151あるいは不連続壁部152
に向い噴射され、連続壁部151に向つた燃料の
多くは壁面を降下し、更に、底壁17に沿つて底
壁中央部に拡散していく。一方、不連続壁部15
2に向つた燃料の多くは壁面衝突後、壁面の内の
湾曲面aにより底壁側への降下を押えられ、この
湾曲面aにより流動方向を変えられ、湾曲面aよ
り離脱してキヤビテイーの中央空間域Aに拡散す
る。このようにキヤビテイー内部に拡散した燃料
微粉はスワールSの働きをも受けキヤビテイー内
部の空気に均一に拡散し、燃焼し、これによりデ
イーゼル機関はその出力発生を行なう。
The combustion chamber 13 of such a diesel engine changes its volume as the piston 11 reciprocates within the cylinder block 10, and receives fuel injection when the piston reaches near compression top dead center. In this case, each spray bundle G from the six nozzle holes has a continuous wall portion 151 or a discontinuous wall portion 152.
Most of the fuel injected toward the continuous wall portion 151 descends on the wall surface and further diffuses along the bottom wall 17 to the center of the bottom wall. On the other hand, the discontinuous wall portion 15
After colliding with the wall, most of the fuel heading toward the bottom wall is prevented from descending toward the bottom wall by the curved surface a of the wall, and the flow direction is changed by the curved surface a, leaving the curved surface a and flowing into the cavity. Diffusion into central spatial area A. The fine fuel powder thus diffused inside the cavity is also affected by the swirl S, and is uniformly diffused into the air inside the cavity and combusted, thereby causing the diesel engine to generate its output.

このように、第3図および第4図に示したデイ
ーゼル機関の燃焼室13によれば、各噴霧束Gの
内、連続壁部151に衝突したものをキヤビテイ
ーの底壁17側に拡散させ、不連続壁部152に
衝突したものを湾曲面aにより壁面側より剥離さ
せ、キヤビテイーの中央空間域Aに拡散させるこ
とができ、キヤビテイー内部の空気を平面的にも
立体的にも均等に利用でき、空気利用率の向上を
計ることができ、延いては出力の増大を計ること
ができる。
In this way, according to the combustion chamber 13 of the diesel engine shown in FIGS. 3 and 4, among the spray bundles G, those that collide with the continuous wall portion 151 are diffused toward the bottom wall 17 side of the cavity, Objects that collide with the discontinuous wall portion 152 can be separated from the wall side by the curved surface a and diffused into the central space area A of the cavity, and the air inside the cavity can be used equally both two-dimensionally and three-dimensionally. , it is possible to measure an improvement in air utilization efficiency, and in turn, it is possible to measure an increase in output.

上述の処において燃焼室13には6つの噴孔を
持つた燃料噴射ノズル14が取付けられ、6つの
噴霧束Gは6つに区分されたキヤビテイーの内周
壁15に向け噴射される構成であつたが、これに
代え、第5図および第6図に示すように8つの噴
孔を有する噴射ノズル18により、8つの噴霧束
Gを8つに区分された内周壁19に向け噴射して
もよい。この場合、キヤビテイーの開口縁を略正
方形(平面視において)に形成し、内周壁19を
その内周方向に交互に連続壁191と不連続壁1
92を配列させることにより形成している。ここ
でも連続壁191は深さ方向Dに一様にフラツト
な壁面を有し、不連続壁192は深さ方向Dの中
間部に湾曲面aを側えた壁面として形成される。
更に、第7図および第8図に示すようにキヤビテ
イーの開口縁を円形(平面視において)に形成
し、内周壁20を連続壁201と不連続壁202
とを交互に円周方向に配列することにより形成し
てもよい。
In the above, a fuel injection nozzle 14 having six injection holes was attached to the combustion chamber 13, and the six spray bundles G were injected toward the inner circumferential wall 15 of the cavity divided into six parts. However, instead of this, as shown in FIGS. 5 and 6, the eight spray bundles G may be injected toward the inner circumferential wall 19 divided into eight parts by the injection nozzle 18 having eight injection holes. . In this case, the opening edge of the cavity is formed into a substantially square shape (in plan view), and the inner circumferential wall 19 is alternately continuous walls 191 and discontinuous walls 191 in the inner circumferential direction.
It is formed by arranging 92. Here again, the continuous wall 191 has a uniformly flat wall surface in the depth direction D, and the discontinuous wall 192 is formed as a wall surface with a curved surface a at the middle portion in the depth direction D.
Further, as shown in FIGS. 7 and 8, the opening edge of the cavity is formed into a circle (in plan view), and the inner peripheral wall 20 is divided into a continuous wall 201 and a discontinuous wall 202.
It may also be formed by alternately arranging them in the circumferential direction.

第5図乃至第8図に示した各ピストンのキヤビ
テイーを用いても、第3図および第4図に示した
燃焼室13と同様に、キヤビテイー内部の空気利
用率の増大を計れる。特に噴霧束Gの数を多く
し、内周壁の連続および不連続の区分を多くする
ほど燃料分散が均一化し易く、より空気利用率の
増大を計れる。
Even if the cavities of the pistons shown in FIGS. 5 to 8 are used, the air utilization rate inside the cavities can be increased in the same way as the combustion chamber 13 shown in FIGS. 3 and 4. In particular, the greater the number of spray bundles G and the greater the number of continuous and discontinuous sections of the inner circumferential wall, the more uniform the fuel dispersion becomes, and the more the air utilization rate can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のピストンの平面図、第2図は第
1図のピストンを備えたデイーゼル機関の要部断
面図、第3図、第5図および第7図は本考案の
各々異なる実施例としてのデイーゼル機関の燃焼
室を形成するピストンの各平面図、第4図は第3
図のピストンを備えたデイーゼル機関の要部断面
図、第6図は第5図のX−X線断面図、第8図は
第7図のY−Y線断面図をそれぞれ示している。 11……ピストン、111……ピストン頂部、
12……シリンダヘツド、13……デイーゼル機
関の燃焼室、16……開口端、17……底壁、1
5,19,20……内周壁、151,191,2
01……連続壁部、152,192,202……
不連続壁部、D……深さ方向。
Fig. 1 is a plan view of a conventional piston, Fig. 2 is a sectional view of a main part of a diesel engine equipped with the piston shown in Fig. 1, and Figs. 3, 5, and 7 are different embodiments of the present invention. Fig. 4 is a plan view of each piston forming the combustion chamber of a diesel engine.
6 is a sectional view taken along the line X--X in FIG. 5, and FIG. 8 is a sectional view taken along the Y--Y line in FIG. 7. 11... Piston, 111... Piston top,
12... Cylinder head, 13... Combustion chamber of diesel engine, 16... Open end, 17... Bottom wall, 1
5, 19, 20... Inner peripheral wall, 151, 191, 2
01... Continuous wall part, 152, 192, 202...
Discontinuous wall portion, D...depth direction.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] キヤビテイーの形成されたピストン頂部とシリ
ンダヘツドとの間に形成されると共に、ピストン
が圧縮上死点近傍に達した際キヤビテイーの開口
端と底壁との間の内周壁に向けて直接燃料噴射が
なされるデイーゼル機関の燃焼室において、上記
キヤビテイーの内周壁を、そのキヤビテイーの深
さ方向に一様に連続して延びる連続壁部と、キヤ
ビテイー中心に向け突出するよう湾曲してから不
連続的に底壁側に延びる不連続壁部とを交互に内
周方向に配列することにより形成したことを特徴
とするデイーゼル機関の燃焼室。
A cavity is formed between the top of the piston and the cylinder head, and when the piston reaches near compression top dead center, fuel is injected directly toward the inner peripheral wall between the open end of the cavity and the bottom wall. In the combustion chamber of a diesel engine, the inner circumferential wall of the cavity has a continuous wall portion that extends uniformly and continuously in the depth direction of the cavity, and a continuous wall portion that protrudes toward the center of the cavity and then discontinuously extends. A combustion chamber for a diesel engine, characterized in that it is formed by alternately arranging discontinuous wall portions extending toward the bottom wall in the inner circumferential direction.
JP44784U 1984-01-06 1984-01-06 Diesel engine combustion chamber Granted JPS60112630U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP44784U JPS60112630U (en) 1984-01-06 1984-01-06 Diesel engine combustion chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP44784U JPS60112630U (en) 1984-01-06 1984-01-06 Diesel engine combustion chamber

Publications (2)

Publication Number Publication Date
JPS60112630U JPS60112630U (en) 1985-07-30
JPH027233Y2 true JPH027233Y2 (en) 1990-02-21

Family

ID=30472294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP44784U Granted JPS60112630U (en) 1984-01-06 1984-01-06 Diesel engine combustion chamber

Country Status (1)

Country Link
JP (1) JPS60112630U (en)

Also Published As

Publication number Publication date
JPS60112630U (en) 1985-07-30

Similar Documents

Publication Publication Date Title
US6220215B1 (en) Combustion chamber structure in an internal combustion engine
US4221190A (en) Combustion chamber for an internal combustion engine of direct injection type
JPH027233Y2 (en)
CA1199243A (en) Catalytic combustion engines
JPS6316124A (en) Pent roof type piston
JPH0517369B2 (en)
JPH11190217A (en) Direct injection type diesel engine
JPH0623540B2 (en) Pentorf type direct injection internal combustion engine
JPS60187714A (en) Combustion chamber of diesel engine
JPS6224010Y2 (en)
JPS6332910Y2 (en)
JPS6121549Y2 (en)
JPS5849689B2 (en) direct injection diesel engine
JPH0612197Y2 (en) Combustion chamber of internal combustion engine
JPS6321690Y2 (en)
JPS6314022Y2 (en)
JPS6121551Y2 (en)
JPH03264725A (en) Subchamber type combustion chamber for internal combustion engine
JPS5979029A (en) Combustion chamber of internal-combustion engine
JPH11117747A (en) Direct injection type diesel engine
JP3644230B2 (en) Piston for in-cylinder internal combustion engine
JP3120549B2 (en) Subchamber engine
JPS6212828Y2 (en)
JPH0238028Y2 (en)
JP4016748B2 (en) In-cylinder direct injection spark ignition internal combustion engine