JPH027195A - Abnormality monitoring system - Google Patents
Abnormality monitoring systemInfo
- Publication number
- JPH027195A JPH027195A JP15665488A JP15665488A JPH027195A JP H027195 A JPH027195 A JP H027195A JP 15665488 A JP15665488 A JP 15665488A JP 15665488 A JP15665488 A JP 15665488A JP H027195 A JPH027195 A JP H027195A
- Authority
- JP
- Japan
- Prior art keywords
- picture
- alarm
- alarm device
- photographed
- changed amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 24
- 238000012544 monitoring process Methods 0.000 title claims abstract description 13
- 239000000284 extract Substances 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 abstract description 13
- 230000007257 malfunction Effects 0.000 abstract description 4
- 101100141323 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RNR2 gene Proteins 0.000 abstract description 2
- 239000000779 smoke Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000474 nursing effect Effects 0.000 description 4
- 206010000117 Abnormal behaviour Diseases 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
Landscapes
- Burglar Alarm Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、例えば、老人ホーム、病院、その他類似の施
設において、異常行動者、あるいは火災等を監視して、
その状態が異常限界を超えた時に警報を発して監視者に
通報する異常監視システムに関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention can be used, for example, in nursing homes, hospitals, and other similar facilities to monitor abnormal behavior, fires, etc.
The present invention relates to an abnormality monitoring system that issues an alarm and notifies a supervisor when the state exceeds an abnormality limit.
近年、老人ホームや病院等においては、火災発生、ぼけ
老人の異常行動、あるいは外部からの侵入者に備えて、
その被監視区域に多数のビデオカメラを備え、監視セン
ターにてCRTによりその映像をモニタリングすること
が行なわれている。In recent years, nursing homes, hospitals, etc. have been preparing for fire outbreaks, abnormal behavior of lazy elderly people, or intruders from outside.
A large number of video cameras are installed in the monitored area, and the images are monitored using a CRT at a monitoring center.
この場合、異常事態のない時にも監視者が、常時、CR
Tの前で監視を続けることは難しく、特に異常事態発生
の高い夜間において常時人員をCRTの前に張りつけに
しておくことは非常に無駄が多く、費用が嵩むという問
題がある。In this case, even when there is no abnormal situation, the supervisor should always monitor the CR.
It is difficult to continue monitoring in front of the CRT, and it is extremely wasteful and costly to keep personnel stationed in front of the CRT at all times, especially at night when abnormal situations are most likely to occur.
一方、従来の火災報知装置は、煙イオンや熱気の感知に
よるもので、これらは感知センサー内部へ煙や熱気が侵
入して異常を検出するものであるが、気流の方向によっ
ては、これらが侵入しないため感知できなかったり、煙
草の煙等を火災と誤認したりするため、初期の火災警報
に問題がある。特に、屋外では気流が拡散するため従来
の感知センサーでは検出不可能であった。On the other hand, conventional fire alarm devices detect smoke ions and hot air, which detect abnormalities when smoke or hot air enters the sensor, but depending on the direction of the airflow, these may There are problems with early fire alarms because they cannot be detected because they do not work properly, and cigarette smoke, etc., can be mistaken for fire. In particular, it was impossible to detect with conventional sensors because air currents diffuse outdoors.
更に、従来の火災報知装置は、絶縁不良による誤動作が
しばしば発生するという問題があった。Furthermore, conventional fire alarm devices often suffer from malfunctions due to poor insulation.
本発明は、係る従来の問題点を解消するためになされた
ものであり、従来の如き感知不良や絶縁不良による誤動
作のないビデオカメラを用いて、被監視区域を常時撮影
し、異常事態や異常行動が所定の限界値を超えた時に監
視者に警報することにより、監視者が画像を常時モニタ
リングする必要のない異常監視システムを提供すること
を目的としたものである。The present invention has been made to solve these conventional problems, and uses a video camera that does not malfunction due to poor sensing or insulation as in the past, to constantly photograph the monitored area, and to detect abnormal situations and abnormalities. The object of the present invention is to provide an abnormality monitoring system that does not require the supervisor to constantly monitor images by alerting the supervisor when behavior exceeds a predetermined limit value.
上記の目的を達成するため本発明の異常監視システムは
、被監視区域に設置されたビデオカメラの撮影による正
常時の画像を記憶しておき、それ以後に撮影した画像と
順次重ね合わせて演算処理によりその変化分を抽出し、
その変化物が異常限界値以上の時に、アラームや警報灯
などの警報装置を作動させることを特徴とするものであ
り、被監視区域で発生した異常行動または異常事態が予
め決められた異常限界値を超えたかどうかをコンピュー
タが分析し、それを警報装置で監視者に伝達し、それに
より監視者がCRTなどの表示装置を通じてその状態を
確認し、それに対応する判断をすればよく、常時CRT
をモニタリングする必要はないのである。In order to achieve the above object, the abnormality monitoring system of the present invention stores normal images taken by a video camera installed in the monitored area, sequentially superimposes them with images taken after that, and performs arithmetic processing. Extract the change by
It is characterized by activating a warning device such as an alarm or a warning light when the variable exceeds an abnormal limit value, and the abnormal behavior or abnormal situation that occurs in the monitored area is a predetermined abnormal limit value. The computer analyzes whether the limit has been exceeded and transmits the information to the supervisor using an alarm device, and the supervisor then checks the status through a display device such as a CRT and makes a corresponding decision.
There is no need to monitor.
以下、図面により本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明に係る異常監視システムの概略図であり
、病院や老人ホームなどの被監視区域Aにビデオカメラ
1を設置しておき、正常時に撮影した画像をパーソナル
コンピュータなどのコンピュータ2に記憶させ、その後
順次撮影した画像と重ね合わせて前の画像との差をとる
演算処理を行ない、その変化分を抽出する。FIG. 1 is a schematic diagram of an abnormality monitoring system according to the present invention, in which a video camera 1 is installed in a monitored area A such as a hospital or nursing home, and images taken during normal conditions are sent to a computer 2 such as a personal computer. The image is stored, and then sequentially photographed images are superimposed and arithmetic processing is performed to calculate the difference from the previous image, and the amount of change is extracted.
次に、その変化分が予め決めておいた所定の異常限界値
を超えた時に、このコンピュータ2から信号を発して警
報センターB内の警報装置4を作動させるのである。Next, when the amount of change exceeds a predetermined abnormality limit value, the computer 2 issues a signal to activate the alarm device 4 in the alarm center B.
この警報装置4としては、アラームや警報灯など適宜な
ものを用いるものとし、その作動により、監視センター
B内に設けたモニター用の画像の表示装置であるCRT
6により監視者がその異常状態を確認し、その対応策を
とるのである。As this alarm device 4, an appropriate device such as an alarm or a warning light is used.
6, the supervisor confirms the abnormal condition and takes countermeasures.
なお、ビデオカメラ1は第1図の如く被監視区域Aに複
数台配置し、1台のCRT6を切替えて各ビデオカメラ
1の画像をモニタリングすることができるが、CRT6
を各ビデオカメラ1に応じてそれぞれ別個に設けても良
い。Note that a plurality of video cameras 1 can be arranged in the monitored area A as shown in FIG. 1, and images of each video camera 1 can be monitored by switching one CRT 6.
may be provided separately for each video camera 1.
更に、詳しく説明すると、先ず、正常時の被監視区域A
をビデオカメラ1で撮影し、第2図(alのごとく正常
時の画像aを複数のウィンドウに分割して記憶してお(
。To explain in more detail, first, the monitored area A during normal operation
is taken with the video camera 1, and the normal image a is divided into multiple windows and stored as shown in Figure 2 (al).
.
次いで、一定時間経過後、被監視区域Aを順次撮影して
画像(b)(第2図(bl参照)を得る。そして、その
画像すと正常時の画像aと重ね合わせて正常時の画像a
との差をとる演算処理を行いその変化分を抽出する。第
2図(blのごとく、火災の前兆である発煙がはじまる
と、画像(b)の大部分が変化し、その画像すを正常時
の画像aとの差をとることにより、第2図(C1のごと
く煙8で変化した画像Cのみが抽出される。その変化し
たウィンドウの数が所定の異常限界値を超えると警報が
監視センター已に伝達され、監視員が直ちに異常を検出
したシーンをCRT6表示で目視により確認し、早期消
化や政令の作業に当たることができる。Next, after a certain period of time has elapsed, the monitored area A is sequentially photographed to obtain images (b) (see Figure 2 (bl)).Then, this image is superimposed on normal image a to obtain a normal image. a
Perform arithmetic processing to calculate the difference between the two and extract the change. As shown in Figure 2 (bl), when smoke begins, which is a sign of a fire, most of the image (b) changes, and by taking the difference between that image and the normal image (a), Only the image C that has changed due to smoke 8, such as C1, is extracted.When the number of changed windows exceeds a predetermined abnormality limit value, an alarm is transmitted to the monitoring center, and the monitoring staff immediately identifies the scene where the abnormality has been detected. You can check visually on the CRT6 display and work on early extinguishment and government ordinances.
この場合、煙8による異常がどんどん拡大して行くと、
順次撮影した画像の差をとっても、いつまでたっても変
化分は残り、かつ拡大するので、その変化分が正常時の
画像に対する異常限界の設定値、例えば60%以上に拡
大すると、警報装置4を作動させるようにする。In this case, as the abnormality caused by smoke 8 continues to expand,
Even if you take the difference between images taken sequentially, the change remains and expands, so if the change increases to an abnormal limit setting value of 60% or more compared to the normal image, the alarm device 4 is activated. Let them do it.
一方、人の場合でも、ぼけ老人などの徘徊の場合は、変
化分がいつまでも残るので、それと分かる。On the other hand, even in the case of a person, if the person wanders around, such as a dull old man, it can be recognized because the changes remain forever.
次に、第3図のフローチャートについて説明する。Next, the flowchart shown in FIG. 3 will be explained.
先ず、図中の10で画像取込み’ G (1) Jを行
ない、20で2回目の画像取込み’ G T214を行
ない、更に、30で上記2つの画像の差、つまり、’
G (11−G (2) = F (21Jを演算処理
し、40の’F(2)=0」がYES”であれば40か
ら10に戻る。First, at 10 in the figure, image capture 'G (1) J is carried out, at 20 the second image capture' G T214 is carried out, and then at 30 the difference between the above two images, that is, '
G (11-G (2) = F (process 21J, and if 'F(2)=0' of 40 is YES'', return from 40 to 10.
また、’ F (21= OJでない”NO″の場合は
、50から60の3回目の画像取込み’ G (31J
に進み、70において’ G (21−G (31=
F (31Jのごとく2枚目と3枚目との差をとり、8
0において’ F f3) / G fl) Jが異常
の発生した2枚目と3枚目の変化分と1枚目の正常時の
画像との比αよりも小さい時は10へ戻ることになる。Also, ' F (If 21 = "NO", which is not OJ, the third image capture from 50 to 60 ' G (31 J
and at 70 'G (21-G (31=
F (take the difference between the second and third sheets, like 31J, and get 8
At 0, 'F f3) / G fl) When J is smaller than the ratio α between the change in the second and third images where an abnormality occurred and the first normal image, it will return to 10. .
この比αは、正常時の画像に対する異常部分の予め決め
られた異常限界値であるので、r F (3)/ G
(11>α」・のときには、更に90の次の画像を取り
込み、1つ前の画像との差をF (n)のごとくとり、
’ F (nl/ G(1)Jを計算して上記αとの比
較をとる。Since this ratio α is the predetermined abnormality limit value of the abnormal part with respect to the normal image, r F (3)/G
(11>α”), further capture the next 90 images and calculate the difference from the previous image as F (n),
'F(nl/G(1)J) is calculated and compared with the above α.
この時、何枚分計算するか予め制限をつけておき、この
制限回数に対してもαを超える時はアラーム等の警報装
置4を作動する。At this time, a limit is set in advance as to the number of sheets to be calculated, and if α exceeds this limit, a warning device 4 such as an alarm is activated.
もし、何回か計算するうちにαより小さい値になれば、
正常と判断して初期のルーチンに戻るものとする。If the value becomes smaller than α after several calculations,
It shall be determined that it is normal and return to the initial routine.
なお、第3図においてiはカウント値の初期化を表し、
Kはアラーム出力用の判定回数を表している。In addition, in FIG. 3, i represents initialization of the count value,
K represents the number of determinations for alarm output.
以上に説明したごとく、本発明は、従来のように感知不
良や絶縁不良等による誤動作のないビデオカメラを用い
ているので、より信鯨性の高い異常検出ができ、直ちに
その異常シーンを目視することにより従来の火災報知装
置のように現場に行き確認する必要がなく直ちに異常事
態に対応できる。As explained above, since the present invention uses a video camera that does not malfunction due to poor sensing or poor insulation, etc., it is possible to detect abnormalities with a higher degree of reliability, and immediately visually observe the abnormal scene. This allows for immediate response to abnormal situations without the need to go to the scene and check, unlike conventional fire alarm systems.
また、このシステムは異常事態の多い夜間においても監
視者が常時画像を注視している必要がなく、監視者は常
時は他の作業に従事し、異常を警報により知り、直ちに
適切な対応を行なえるので、最少人数の人員で病院や老
人ホーム等を安全に管理できるようになる。In addition, this system does not require a supervisor to constantly watch images even at night, when abnormal situations often occur. Supervisors are usually engaged in other tasks, are alerted to abnormalities, and can take appropriate measures immediately. This makes it possible to safely manage hospitals, nursing homes, etc. with a minimum number of personnel.
また、本発明は、火災の警報はもとより、不法浸入者等
の人の動きを監視して警報を発することが可能である。Further, the present invention is capable of not only issuing a fire alarm but also monitoring the movement of people such as illegal intruders and issuing an alarm.
第1図は本発明に係る異常監視システムの概略図、第2
図fa)、第2図(b)及び第2図fc)はコンピュー
タによる画像処理のプロセスを示す説明図、第3図は本
発明に係る異常監視システムのフローチャートである。
1・・・ビデオカメラ、2・・・コンピュータ、4・・
・警報装置、6・・・CRTつ
第1図Figure 1 is a schematic diagram of the abnormality monitoring system according to the present invention, Figure 2 is a schematic diagram of the abnormality monitoring system according to the present invention;
FIG. fa), FIG. 2(b), and FIG. 2 fc) are explanatory diagrams showing the process of image processing by a computer, and FIG. 3 is a flowchart of the abnormality monitoring system according to the present invention. 1...video camera, 2...computer, 4...
・Alarm device, 6...CRT Figure 1
Claims (1)
に撮影した画像とを順次重ね合わせてその変化分を抽出
し、その変化分が所定の異常限界を越えた時に警報装置
を作動させる異常監視システム。An abnormality monitoring system that sequentially superimposes normal images taken by a video camera and images taken after that, extracts changes, and activates an alarm device when the changes exceed a predetermined abnormality limit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15665488A JPH027195A (en) | 1988-06-27 | 1988-06-27 | Abnormality monitoring system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15665488A JPH027195A (en) | 1988-06-27 | 1988-06-27 | Abnormality monitoring system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH027195A true JPH027195A (en) | 1990-01-11 |
Family
ID=15632379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15665488A Pending JPH027195A (en) | 1988-06-27 | 1988-06-27 | Abnormality monitoring system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH027195A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0939387A1 (en) * | 1998-02-28 | 1999-09-01 | Siemens Building Technologies AG | Room supervision device |
-
1988
- 1988-06-27 JP JP15665488A patent/JPH027195A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0939387A1 (en) * | 1998-02-28 | 1999-09-01 | Siemens Building Technologies AG | Room supervision device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3147879B1 (en) | Contextual fire detection and alarm verification | |
US6614348B2 (en) | System and method for monitoring behavior patterns | |
US9311540B2 (en) | System and method for predicting patient falls | |
KR100985804B1 (en) | Total disaster management system | |
CN114360194B (en) | Multi-point monitoring visual array type fire alarm system | |
KR102233679B1 (en) | Apparatus and method for detecting invader and fire for energy storage system | |
US6693534B2 (en) | Emergency alarm system using pull-station with camera | |
JPH11259775A (en) | Monitoring system | |
CN108898781A (en) | A kind of intelligent fire Internet of things system based on public cloud | |
JP3286444B2 (en) | Fire detector | |
JPH027195A (en) | Abnormality monitoring system | |
CN209199284U (en) | A kind of Household security system | |
JPH05282580A (en) | System for monitoring life check | |
KR20070018485A (en) | A fire and trespasser alert system by using infrared rays camera | |
KR100984389B1 (en) | Ubiquitous Intelligent style prevention system | |
TWM605852U (en) | System for detecting body temperature, face and mask | |
US20040066282A1 (en) | Alarm pull-station with camera | |
Bhardwaj et al. | Controls and intelligence behind “NISTARA-2”—A disaster management machine (DMM) | |
JP2006039906A (en) | Alarm generation system and video processing apparatus | |
Vignesh et al. | Fire detection and extinguisher system using image processing | |
KR102716839B1 (en) | Disaster safety and object recognition automatic tracking video surveillance system using people counting | |
JP2003085671A (en) | Movement stoppage detector | |
JP7560951B2 (en) | Fire Detection Systems | |
JP7553940B2 (en) | User terminal, disaster prevention system, user terminal program, and cooperation method using user terminal | |
Hing et al. | Development of home monitoring system with integration of safety and security modules |